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Abstract: Emotion recognition is of great importance for artificial intelligence, robots, and medicine
etc. Although many techniques have been developed for emotion recognition, with certain successes,
they rely heavily on complicated and expensive equipment. Skin potential (SP) has been recognized
to be correlated with human emotions for a long time, but has been largely ignored due to the
lack of systematic research. In this paper, we propose a single SP-signal-based method for emotion
recognition. Firstly, we developed a portable wireless device to measure the SP signal between the
middle finger and left wrist. Then, a video induction experiment was designed to stimulate four
kinds of typical emotion (happiness, sadness, anger, fear) in 26 subjects. Based on the device and
video induction, we obtained a dataset consisting of 397 emotion samples. We extracted 29 features
from each of the emotion samples and used eight well-established algorithms to classify the four
emotions based on these features. Experimental results show that the gradient-boosting decision tree
(GBDT), logistic regression (LR) and random forest (RF) algorithms achieved the highest accuracy of
75%. The obtained accuracy is similar to, or even better than, that of other methods using multiple
physiological signals. Our research demonstrates the feasibility of the SP signal’s integration into
existing physiological signals for emotion recognition.

Keywords: emotion recognition; gradient-boosting decision tree; skin potential; portable device

1. Introduction

Emotion is an important characteristic of human beings, which affects humans’ physi-
cal and mental states. Empowering computers and robots to understand human emotions
would make human-machine interaction more meaningful and useful for various ap-
plications [1]. For instance, in a shopping recommendation system, the computer may
make accurate personalized recommendations based on the user’s emotions [2]. Emotion
recognition is also important for medical applications, such as the identification of mental
problems so that proper medication and preventative measures can be taken.

Many efforts have been made to recognize human emotions. Audiovisual methods
are one of the non-contact methods used to catch emotion expressions, i.e., the facial
expressions, speech, and gestures used for analysis [3-6]. However, there are limitations to
these approaches, because people can deliberately hide or disguise emotions by controlling
their voices and facial expressions. In addition, obtaining audiovisual signals requires the
cooperation of subjects; thus, these are difficult to use in most medical applications.

On the other hand, physiological signals are usually considered to be involuntary
signals, and are hence more natural and useful for emotional recognition [7]. Electrocar-
diography (ECG), electroencephalography (EEG) and galvanic skin response (GSR), etc.,
are widely used physiological signals, which have been found to be strongly correlated
with emotions [8-13].
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In this paper, we study emotion recognition based on the skin potential (SP) sig-
nal, which is another physiological signal that has been relatively ignored. SP has been
considered to be correlated with the change in emotions since the 1880s [14]. Between
1880 and 1889, Tarchanoff stimulated subjects” emotions and memories and used a very
sensitive galvanometer to measure changes in SP [14]. SP is one method used to record
the galvanic skin response (GSR) [15]. However, nowadays, skin conductance (SC), which
is another method of recording GSR, has been much more widely used in psychophysio-
logical measurements than SP [16,17]. The reason for this is that the SP response (SPR) is
composed of two underlying processes that drive the SP in opposite directions, making
the evaluation of SPR amplitudes problematic [17]. Compared with its use in psychophysi-
ological measurement, SP measurements are more frequently used within neurology for
assessment of the autonomous nervous system functionality, where the term sympathetic
skin response is used [18].

Previous research [17,19,20] revealed that the correlation between SP and SC changes
due to different situations, such as sex and type of stimulation received. The SP signal
contained unique information compared with SC. Wilcott et al. [21] believed that the com-
plex waveform of the SP signal might contain additional psychological significance. This
encourages us to develop a technique to acquire SP signal and build an SP-based emotion
recognition system to explore the feasibility of using the SP signal for emotion recognition.

In this paper, a portable device was developed to measure the SP signals. Through
experimentation, we found that the SP signals obtained between the middle finger and
the left wrist are sensitive to emotion changes. Hence, a video induction experiment was
designed to stimulate four typical emotions (happiness, sadness, anger, fear) in 26 subjects
and obtain their corresponding SP signals. Based on the device and video induction, we
obtained a dataset consisting of 397 emotion samples. We then extracted 29 features from
each of the emotion samples and used eight well-established algorithms to classify the four
emotions based on these features. Experimental results show that the gradient-boosting
decision tree (GBDT), logistic regression (LR) and random forest (RF) algorithms achieved
the highest accuracy of 75%. We recommend the GBDT algorithm because it obtains
balanced classification errors for the four emotions. Our experiments demonstrate the
feasibility of SP signals for emotion recognition.

The remainder of this paper is given as follows. Section 2 summarizes the related work
of emotion recognition based on physiological signals. Section 3 introduces the portable
device used to collect the SP signals, the characteristics of the SP signals and factors
affecting the acquirement of SP signals. In Section 4, we describe the experimental setup of
emotion sample collection. Section 5 introduces data preprocessing, feature extraction and
the GBDT algorithm. Section 6 provides the experimental results and Section 7 concludes
the paper.

2. Related Works

With the widespread application of machine-learning algorithms, many researchers
use different emotion-induction methods to collect physiological signals of subjects in
different emotional states, and implement algorithms to build emotion recognition models.
Kim et al. collected four kinds of physiological signal (ECG, respiration, electromyogram
and skin conductance) from three subjects by using music to induce emotions, and com-
bined pseudoinverse linear discriminant analysis (pLDA) and emotion-specific multilevel
dichotomous (EMDC) algorithms to recognize four different emotions (joy, anger, sadness,
pleasure). The overall recognition accuracy rate reached 69.70% [3]. Wen et al. induced joy
and sadness emotions in subjects through movies, and recorded their ECG signals. Fisher
projection algorithm was selected to classify these two emotions, and an accuracy of 85%
was obtained [22]. Hsu et al. used music induction to combine expert selection and subject
selection to induce emotions of joy, tension, sadness and peacefulness. They collected the
ECG signals of 61 subjects, and extracted a large number of ECG signal features in the time
domain, frequency domain and nonlinear analysis. Finally, the least-squares support vector
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machine (LS-SVM) algorithm was used to build an emotion recognition model based on
these features. The overall accuracy for the four emotions was 61.52% [23].

Generally, emotion-recognition methods based on physiological signals rely on the
use of complicated and expensive equipment for signal acquisition [3,23,24]. With the
progress of modern electronics, wearable/portable devices have gradually been developed
to collect physiological signals, with the advantages of wearability / portability, wireless
capability, and continuous monitoring without causing difficulties in users’ daily lives [25].
Athavipach et al. [26] discussed a preliminary study to develop a wearable device that is
a low-cost, single-channel, dry contact, in-ear EEG suitable for non-intrusive monitoring.
The device is able to classify four emotions (happiness, calmness, sadness, and fear) with an
accuracy of 53.72%. Lin Shu et al. [27] used videos to induce three target emotions (neutral,
happiness, and sadness) and collected the heart rate data from a wearable smart bracelet.
The overall accuracy for the three emotions was 84%. Dominguez-Jiménez et al. [28] devel-
oped a reliable methodology for emotion recognition using wearable devices to measure
heart rate, and SC. Salkevicius et al. [29] used wearable biofeedback sensors to collect
blood volume pressure (BVP), SC, and skin temperature from subjects to classify four
anxiety levels (low, mild, moderate, and high), and obtained 86.3% accuracy. AN increas-
ing number of researchers are using wearable/portable devices to collect physiological
signals for emotion recognition, which will promote the application of emotion-recognition
technology based on physiological signals in people’s daily lives.

3. Characteristics of SP Signals
3.1. Design of Portable SP Signal Acquisition Device

Firstly, we designed a portable wireless device to collect the SP signals. Figure la
shows the block diagram of the designed circuits. Figure 1b illustrates the portable device.
It consists of a small box containing electronics and two electrodes, which are to be attached
to the middle finger and left wrist. The device collects SP signals at a sampling rate of 5 Hz,
and transmits them to a mobile phone through the Bluetooth wireless communication
module for real-time display and storage.

We selected the AD620 chip as the preamplifier, which is a low-cost and high-accuracy
instrumentation. It has a large impedance of 10 G() and a high common mode rejection
ratio (100 dB). Therefore, the resistance of the human body can be neglected, making the
measurement of skin potential accurate. A low-pass filter module was used to filter out
noise above 10 Hz, so that all collected physiological signals do not face interference from
environmental power frequency noise. The boost circuit lifts the output voltage from the
last module to a positive value to meet the input demand of ADC. The accuracy of 12-bit
ADC is enough to ensure the reliability of the signal after analog-to-digital conversion.
Finally, the digital signal is processed in a microcontroller unit and sent to the connected
mobile phone through Bluetooth. The device also has the functions of detecting low-
battery, lead-off and connection status, and provides timely warnings for abnormalities in
the system.

A mobile application is developed for this device. The application connects with the
device through Bluetooth and receives the transmitted signal in real-time for display and
storage. Figure 1c shows a screenshot of the application when it receives signals. The
functionality of Button “Bluetooth” is to switch among all Bluetooth devices and select
a specific device to connect with. The button “Clear Off” is used to clear the display
of the current signal. Because the mobile phone has more than one application, the
“Service On” button ensures that signal recording is not interrupted by other applications.
Correspondingly, the “Service Off” button is used to close this functionality.
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Figure 1. (a) Block diagram of the circuit functions of the portable device. (b) The portable device for
skin potential (SP) signal acquisition. (c) The screenshot of the application when it receives signals.

It is worth mentioning that our signal acquisition method is a passive monitoring
method, which does not apply any electrical stimulation to the user; thus, it would not
cause any harm to the human body. In addition, the portable device can easily be converted
to a wearable device for future application because of its small size of 10 x 6 x 3 cm.
Compared with the expensive and complicated bio-amplifiers on the market [30], our
device focuses on the acquisition of SP signals. Therefore, our device is cheaper and more
convenient to use.

We have conducted a systematic studied on the SP signals generated by multiple parts
of the human hands, including elbows, wrists and fingers, and, finally, we found that the
SP signals between the fingers and the wrist are more sensitive to emotional responses than
those between the elbow and the wrist. Thus, the middle finger and the inner side of the
left wrist were selected as the measurement and reference points, as shown in Figure 1b.
Please refer to Section 4.1 for details of the comparison experiments.

3.2. Analysis of Amplitude-Frequency Characteristics of SP signals

Figure 2a shows a SP signal collected by the device. It can be seen that the amplitude
of the SP signal typically ranges from —10 to —17 mV. Figure 2b is the result of unilateral
spectrum analysis of the signal after fast Fourier transform (FFT) in Figure 2a. It is obvious
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that most of the energy of SP signals is accumulated within extremely low frequencies,
below 1 Hz. We observed similar amplitude and frequency ranges for all subjects.
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Figure 2. Characteristics the of SP signal. (a) The original signal spectrum, and (b) frequency spectrum analysis of the signal.

3.3. Factors Affecting SP Signals

The purpose of this paper is to study the relationship between the SP signals and
emotion states, so it is necessary to exclude other factors which would affect the SP signals.
By our experiments, we summarize the factors that may affect the SP signals as follows:

Rapid changes in temperature;

Rapid movements of the subject;

Talking with others;

After putting on the portable device, the subjects usually cannot calm down quickly,
which would make the SP signal unstable.

Therefore, we took the following measures for experiments. First, the experiments
were carried out in a controlled temperature scene. Second, we told the subjects not to
move or talk deliberately during the experiment. In addition, after putting on the portable
device, we waited for 2 min until the SP signal became stable.

4. Experiment
4.1. Preliminary Experiments

To find measurement points that are sensitive to emotions, we conducted the following
preliminary experiments. A portable device with six measurement electrodes and one
reference electrode was used to collect SP signals. While a subject is watching the video,
the six measurement electrodes are placed on three points of the elbow and three fingers,
respectively. The reference electrode is placed on the inner side of the left wrist, as shown in
Figure 3b. All SP signals are obtained by the potential differences between the measurement
points and the reference, that is, the potential of the red point minus the potential of the
white point, as shown in Figure 3b.

Figure 3a shows the SP record diagram of subject 2. Lines numbered 1-6 correspond
to the six points marked in Figure 3b. Four different emotions are induced in the subject
when watching the video (happiness, sadness, anger and fear). The lasting periods of four
emotions are divided by the black dashed lines.

It is obvious from Figure 3a that the SP signals at the three points on the fingers are
more sensitive to emotion changes than the SP signals at the three points on the elbow.
In addition, the three points on the elbow produce similar SP signals, while the three
points on the fingers also produce similar SP signals. Thus, we finally chose to place the
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measurement electrode on the middle finger and the reference electrode on the inner side
of the left wrist for the remaining experiments.
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Figure 3. (a) SP record diagram of six points from a subject during video viewing. (b) The testing points.

4.2. Materials and Setup

Experiments were carried out on 26 subjects (seven females and 19 males). Their
ages were between 22 and 42 years. All subjects gave their informed consent for inclusion
before they participated in the study. The study was conducted in accordance with the
Declaration of Helsinki, and the protocol was approved by the Clinical Research Ethics
Committee of the First Affiliated Hospital, College of Medicine, Zhejiang University, China
(No. 2018YFC0810201).

The experiment was performed in a laboratory environment with controlled tempera-
ture (26 &= 1 °C). The SP signals were collected by the portable device in Section 3.1, and
sent to a mobile phone via Bluetooth. A 29 min video was used to stimulate the emotions of
the subjects. Figure 4a shows the experimental scene. The subject is sitting on the sofa and
watching the video, while the portable device is collecting the SP signals of the subject. The
experimenter can observe the subject’s signals in real time on a mobile phone, as shown
in Figure 4a.

The video contained four video parts that aimed to stimulate emotions of happiness,
sadness, anger and fear, respectively, with the scenes shown in Figure 4b—e. There was
a two-minute interval between two adjacent video parts. During this interval, a relaxing
landscape image (Figure 4f) and soft music were displayed to cause the subjects to calm
down before entering into another emotion state.
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Figure 4. (a) The experimental scene and a screenshot of the SP signal on the mobile phone; (b) The scene of happiness
from the first part of the video (excerpt from the movie NEVER SAY DIE); (c) The scene of sadness from the second part of
the video (excerpt from the movie Aftershock); (d) The scene of anger from the third part of the video (excerpt from the
movie God Of Gamblers); (e) The scene of fear from the fourth part of the video (excerpt from the movie Insidious); (f) The
landscape image shown between two adjacent video parts.

4.3. Experimental Protocol

During the experiment, the subject was required to answer a questionnaire, with the

following three questions, for each part of the video:

1.

What is the emotion aroused after you watch this video part? Please choose one from
the four emotions—happiness, sadness, anger and fear. If you think the emotion
aroused is not in the above four categories, please choose “others”;

Please quantitatively score the degree of emotion aroused by this video part. The
score is from 1 to 5, where 1 represents the weakest degree and 5 represents the
strongest degree;

Please select the exact time periods that arouse this emotion and the corresponding
arouse degree for each time period. Each time period is represented as “from MM:SS
(the start time) to MM:SS (the end time)”. The score of degree is also from 1 to 5,
where 1 represents the weakest degree and 5 represents the strongest degree.

Questions 1 and 2 were to be completed by the subject within the two-minute interval

between each video. After the subject watched the whole video, the experimenter would
help the subject answer Question 3 by dragging the progress bar to replay the video. During
the replay, the experimenter should confirm the time periods and degree of emotion with
the subject.

Figure 5 shows the block diagram of the experimental procedures. The specific

experimental procedures are as follows:

1.

Put the electrodes on the middle finger and left wrist of the subject. Turn on the
device. Wait for 2 min until the SP signal becomes stable;

Play the first part of the video and record the SP signal of the subject on the experi-
menter’s mobile phone;
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3. During the two-minute interval after the video is played, the experimenter asks the
subject to complete Questions 1 and 2;

4. Recursively go to Step 2 and 3 to play the remaining three videos, and obtain the SP
signals and answers to Questions 1 and 2;

5. After the whole video has been played, take off the subject’s portable device. The
experimenter helps the subject answer Question 3 by dragging the progress bar to
replay the video and confirms the time periods and degree of emotion with the subject;

6.  After the experiment is finished, the experimenter needs to request that the subject sit
for several minutes to calm down before they walk out of the laboratory.

Adapt to the testing environment | I Continue replaying the video |‘-
- . l - - ‘
Video part that stimulate specific emotions [+ Participants find scenes that aroused their
‘ specific emotions
Answer Question 1 and 2 and restore
emotion - . -
Pause the video and Answer Question 3
The whole video is finished

Video playback finished

Replay the whole video by
dragging the progress bar Fininsh the experiment

Figure 5. Block diagram of experimental procedures.

The experimental results of Question 1 indicate that most subjects felt the emotion
assigned to each video part, except for four subjects, who misclassified the anger emotion
as “others”. For Question 2, the average degree scores for four emotions are 3.46, 3.62, 3.15
and 4.08, respectively, indicating that the emotions aroused by the video parts were strong
enough for recognition.

5. Methodology

Figure 6 shows the block diagram of the SP-based emotion recognition system, which
consists of signal acquisition, data preprocessing, dataset construction, feature extraction

and model building.
Signal Data Dataset Feature Model
acquisition preprocessing construction extraction building

Figure 6. Block diagram of the construction procedure of SP-based emotion recognition model.

5.1. Data Preprocessing and Dataset Construction

Firstly, the SP signals for each subject are normalized by the following equation
x_norm = (x — x_min)/ (x_max — x_min) 1)

where x_min and x_max represent the minimum and maximum values of the original
signal x.

Figure 7 shows one example of the SP record diagram of subject 5 after data prepro-
cessing. The black dashed lines represent the end time of each video section. For our
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recognition system, we only selected the time periods which aroused strong emotions as
emotion samples for training and testing. In our experiment, all emotion samples lasted
for 30 s. The selection principles are listed as follows:

1. Select the time period with a degree score greater than 3;

2. If the selected time period is less than 30 s, then expand the time period to 30 s by
filling the gap equally before and after this time period;

3. If the selected time period is more than 30 s, then expand the time period to a multiple
of 30 s and equally divide it into several 30-s time periods.

Happiness:

Fear

Anger

i

05:00 10:00 15:00 20:00 25:00
Time (MM:SS)

Figure 7. The whole SP recording from subject 5 during video viewing after data preprocessing.

In much of the related research, emotion samples are segmented by fixed lengths.
For example, Kim et al. [7] and Hsu et al. [23] selected 50 s and 1 min as the lengths for
emotion samples, respectively. According to the answers of Question 3, the lengths of most
time periods were within 30 s. Hence, we set 30 s as the length of emotion samples. Each
emotion sample is represented as a 150-dimensional vector, because the sampling rate is 5
Hz and its length is 30 s. The red rectangles of Figure 7 show four examples of the extracted
emotion samples.

Figure 8 shows 12 emotion samples of the four emotion classes (three samples for
each class). It can be seen that samples of each emotion class have intrinsic characteristics.
For example, the emotion samples of happiness and fear rise and fall very rapidly, but
the changes in sadness and anger are relatively steady. These intrinsic characteristics are
foundations for the design of our emotion recognition algorithm.
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Figure 8. Twelve emotion samples of happiness, sadness, anger and fear.

5.2. Feature Extraction

Following previous research into physiological signal analysis [23,31-34], we ex-
tracted 29 features from each emotion sample, which include 15 time-domain features,
13 frequency-domain features and 1 nonlinear feature. Table 1 lists details of these
extracted features.

Table 1. 29 Features Extracted in This Study.

Domain Feature name

ql, g3, median, mean, std, var, rmsmin_ratio,
Time-Domain max_ratiodiffl_mean, diffl_median,
diffl_stddiff2_mean, diff2_median, diff2_std

mean_f, median_f, std_f, var_f, rms_fmin_ratio_f,
Frequency-Domain max_ratio_fdiffl_mean_f, diffl_median_f{,
diffl_std_fdiff2_mean_f, diff2_median_f, diff2_std_f

Nonlinear mcr
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5.2.1. Time-Domain Features

The time-domain features include the first quartile (q1), median value (median), the
third quartile (q3), mean value (mean), standard deviation (std), variance (var) and root
mean square (rms) of the original emotion samples. In addition, the maximum ratio
(max_ratio) and minimum ratio (min_ratio) of the original emotion samples are also
calculated by Equations (2) and (3)

min_ratio = (x_min)/(len_x) )

max_ratio = (x_max)/(len_x) ©)]

where len_x represents the data length of the signal. In addition, we calculated the first-
order differentiation and the second-order differentiation from the emotion sample, and
their mean (diffl_mean and diff2_mean), median (diff1_median and diff2_median) and
standard deviation (diff1_std and diff2_std) were also obtained as the time domain features.

5.2.2. Frequency Domain Features

In order to extract the frequency domain features of the SP signals, we first used
fast Fourier transform (FFT) on the emotion samples to extract the unilateral spectrum.
Subsequently, the unilateral spectrum was calculated to obtain its mean (mean_f), me-
dian (median_f), variance (var_f), standard deviation (std_f), root mean square (rms_f),
maximum ratio (max_ratio_f) and minimum ratio (min_ratio_f) as the frequency domain
features. Then, the first- and second-order differentiations were calculated from the unilat-
eral spectrum. We further obtained their means (diffl_mean_f and diff2_mean_f), medians
(diff1_median_f and diff2_median_f) and standard deviations (diffl_std_f and diff2_std_f)
as the frequency domain features.

5.2.3. Nonlinear Features

The only non-linear feature extracted in our experiments was the mean crossing rate
of the signal (mcr), which refers to the number of times the signal crosses the average value.
This measures the vibration level of the signal.

5.3. Classifier Construction

We use the gradient-boosting decision tree (GBDT) algorithm to classify the four
emotions based on the extracted 29 features. The idea of GBDT was first proposed by
Friedman [35]. It is a powerful ensemble machine-learning algorithm that produces a
prediction model in the form of an ensemble of weak learners, typically decision trees such
as classification and regression trees [36]. Compared with traditional classifiers, GBDT
can produce competitive, robust and interpretable procedures for both classification and
regression, which are especially appropriate for mining unclean data [35]. Hence, GBDT
has been widely used in radar target recognition [36], intrusion detection systems [37],
hand gesture recognition [38] and indoor localization [39].

For our emotion recognition task, take N training samples {X;, Yi}N , where X; is the
i-th emotion sample with 150 dimensions. Y; = (y;1, ¥i2, - . - ¥ik) is the one-hot ground-truth
label for X;, and K represents the number of classes (K = 4 in our experiment, because we
need to classify four emotions). The general training procedures are given as follows.

Initializing the model

Fo(X)=0 ,k=1,2,...,K (4)

where F o(X) represents the initial decision tree of the k-th class.
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(1) For iteration m = 1:M:

(a) Calculating the probability that the training sample belongs to each class by
Equation (5)

K
Pe1(X) = exp(Fem1(X))/ ) exp(Fm1(X)), k=1,2,...,K )
i=1

where m refers to the m-th iteration;
(b) Calculating the approximation of residual for each class and each sample

717{ = yik_Pk,mfl(Xi)r 1= 1,2,..., N, k= 1,2,...,K (6)

(c) Fitting decision trees of each class to the approximation of residual

] ~
{Rjkm} = ] — leaf node tree({rik, Xi}{\]) (7)
where j refers to the j-th leaf, k refers to the k-th decision tree, and m refers to the m-th
iteration. Rjy;, is the specific leaf space;

(d) The new step-size of model can be computed with

Bikm = (K=1) Y 7/ (K Y [Pl (1= [Fik])) ®)

XiGRjkm XieRjkm

(e) Updating model with Equation (9)

]
Fom(X) = Fep1(X) + Zv-ﬁjka(Xi € Rjkm),o <v<i )
j=1

where I(-) is the indicator function, which equals 1 if its argument is true and 0 otherwise.
v is the learning rate.

The testing procedure used Equation (5) to calculate the probability that a testing
sample X belonged to each class. The class with the maximum probability is the one
predicted by the model.

6. Experimental Results and Discussions

We collected 397 emotion samples from 26 subjects, which included 85 happiness,
135 sadness, 42 anger and 135 fear samples. We split the emotion samples into the train and
test sets, as shown in Table 2. Generally, we used the samples of 19 subjects for training and
the remaining seven subjects for testing. In this way, we used data from different subjects
to train and test the classification models, avoiding the data dependency problem.

Table 2. Statistics of the Dataset.

Number of Subjects Happiness Sadness Anger Fear
Train Set 19 67 107 31 96
Test Set 7 18 28 11 39
Total 26 85 135 42 135

We used eight algorithms based on feature selection to classify the datasets, which
included K-nearest neighbor (KNN), neural network (NN), linear discriminant analy-
sis (LDA) [40], logistic regression (LR) [41], random forest (RF) [27,41,42], decision tree
(DT) [42,43], support vector machines (SVM) [23] and gradient boost decision tree (GBDT).
All algorithms were implemented with Python sklearn library. The hyperparameter settings
for the above algorithms are listed in Table 3.
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Table 3. Hyperparameter Settings of Classification Algorithms (the settings of other parameters follow the default settings

of sklearn if not listed).

Classifier

Parameter

Parameter Explanation

K-nearest neighbor (KNN)

leaf_size = 50

leaf_size: leaf node size

neural network (NN)

hidden_layer_sizes =
(50,100,100,50,40)solver = “Ibfgs”,
alpha=1 x 10-°

hidden_layer_sizes: the structure of the hidden
layersolver: selection of weight-optimization
methodalpha: regularization parameter

linear discriminant analysis (LDA)

solver = “svd”,shrinkage = None

solver: choice of solution algorithmshrinkage:
whether to use parameter shrink

logistic regression (LR)

penalty = “I12”, solver = “newton-cg”,
multi_class = “multinomial”

penalty: regularization selection
parametersolver: choice of loss
functionmulti_class: choice of classification

random forest (RF)

n_estimators = 1000

n_estimators: the number of trees in the forest

decision tree (DT)

criterion = “gini”, max_depth = 2,
splitter = “best”

criterion: the function used to calculate the
impurity of the treemax_depth: the maximum
depth of the decision treesplitter: the strategy
used to choose the split at each node

support vector machines (SVM)

C =17, gamma = 0.001, kernel = “rbf”

C: penalty coefficientkernel: the choice of
kernel functiongamma: the parameter of
kernel function “rbf”

gradient boost decision tree (GBDT)

n_estimators = 100, max_depth =3,
min_samples_split = 2,
min_samples_leaf =1,
learning_rate = 0.1

n_estimators: maximum number of iterations
of the weak learnermax_depth: the maximum
depth of the decision treemin_samples_split:
parameters that restrict the conditions of
subtree divisionmin_samples_leaf: parameters
that limit the minimum number of samples of
child nodeslearning rate: weight reduction
coefficient of each weak learner

In the process of building the recognition model, we set a five-fold cross-validation of

the train set to evaluate the performance of different parameters, and to finally determine a
better combination of parameters to build the recognition model.

Figure 9 shows the classification accuracy of each algorithm on the test set when a

different number of features is selected. Here, the “SelectKBest” function of the sklearn
library was used for feature selection. The number of features was set to 15, 20, 25 and 29
(all features), respectively. It can be seen that all algorithms obtain an accuracy greater than
65%, which proves the feasibility of using SP signals for emotion recognition.

Figure 9 also shows that LR, RF and GBDT achieved the same highest accuracy 75%

when all 29 features were selected. To further compare their performance, we list the
accuracy of each emotion for these three algorithms in Table 4. It can be seen that the
accuracy of GBDT is more balanced. It obtained the highest accuracy for the anger emotion,
which has the fewest samples of the four emotions. Thus, we chose the GBDT algorithm
for further experiments.

In order to understand which feature of SP signal has a stronger correlation with

emotion, we plot the contribution rate of each feature in Figure 10. The contribution rate is
proportional to the frequency that this feature is selected by the decision trees of GBDT [35].
We find that the standard deviation of the first-order differential (diff1_std) had the largest
contribution, followed by the median of the first-order differential (diffl_median). From
Figure 8, we can see that the fluctuation in SP signals carries abundant emotion information,
so it is not surprising that features related to the degree of fluctuation, such as diffl_std
and diffl_median, have a greater impact on the recognition results.



Sensors 2021, 21, 1018

14 of 19

Feature number = 15 Feature number = 20
0.7500 0.7500 0.7395 0.7395 0.7291 0.7291 0.7395 0.7395 (72971 0-7500
0.7 0.6979 0.7
/1 0.6562 0.6562 :
0.6 0.6
@ ®
504 504
o o
< 0.3 < 0.3
0.2 0.2
0.1 0.1
0.0
KNN NN LDA LR RF DT SVM GBDT KNN NN LDA LR RF DT SVM GBDT
Classifier Classifier
(c) . (d) _
Feature number = 25 Feature number = 29
0.7395 0.7500 0.7500 0.7500 0.7500 0.7500
0.7 0.6979 0.7083 0.7083 0.6979 0.7083
0.6
> 0.5
@
504
v}
< 0.3
0.2
0.1
0.0

0.
KNN NN LDA LR RF DT SVM GBDT KNN NN LDA LR RF DT SVM GBDT

Classifier Classifier

Figure 9. The classification accuracy on the test set of eight classifiers when (a) 15 features are selected; (b) 20 features are
selected; (c) 25 features are selected; (d) 29 features are selected.

Table 4. Accuracy of Every Emotion with LR, RF and GBDT Algorithms.

Algorithms Happiness Sadness Anger Fear
LR 50.00% 92.86% 9.09% 92.31%
RF 66.67% 89.28% 9.09% 87.18%
GBDT 61.11% 89.28% 18.18% 87.18%

Table 5 shows the confusion matrix of GBDT on the test set. The accuracies for
happiness, sadness, anger and fear are 61.11%, 89.28%, 18.18% and 87.17%, respectively.
The accuracy of sadness and fear is relatively high. The accuracy of anger is relatively low,
probably because, intuitively, anger is difficult arouse through watching videos. In our
experiments, we only collected 42 anger samples, which is the least of the four emotions.
This means that the 26 subjects produced degree scores greater than 3 only 42 times. The
average degree score for this emotion was 3.15, which indicates that the subjects were also
not very confident with their aroused anger emotion.

Another observation is that, in many cases, anger is misclassified as sadness (54.54%).
This may indicate that the SP signal collected when the subjects feel angry is similar to the
SP signal collected when they feel sad. However, sadness has more emotion samples, so
the GBDT algorithm tends to misclassify anger as sadness. Generally, the total recognition
rate is 75%, indicating that the SP signals have a discriminative ability for these emotions.
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Figure 10. The contribution rates of all 29 features.
Table 5. Confusion Matrix on the Test Set.
True Predicted Happiness Sadness Anger Fear
Happiness 11(61.11%) * 3(16.66%) 2(11.11%) 2 (11.11%)
Sadness 1(3.57%) 25(89.28%) * 1(3.57%) 1(3.57%)
Anger 2(18.18%) 6(54.54%) 2(18.18%) * 1(5.56%)
Fear 4(10.26%) 1(2.56%) 0(0.00%) 34(87.17%) *

The * indicates the accuracy of each emotion.

Table 6 shows the accuracy of each subject in the test set. The highest and lowest
accuracy was 93.57% and 61.11%, respectively. According to Table 5, GBDT is more accurate
in classifying sadness and fear, so, generally, the accuracy is higher for subjects with a
higher proportion of sadness and fear emotion samples.

Table 6. The Accuracy of Each Subject in the Test Set.

The Number of Emotion Samples

Subjects Accuracy
Happiness Sadness Anger Fear
S1 6 4 0 1 81.81%
S2 1 6 1 8 93.75%
S3 0 2 2 8 83.33%
S4 2 4 2 6 64.28%
S5 2 5 1 6 71.43%
S6 4 5 4 5 61.11%
S7 3 2 1 5 63.63%
Sum 18 28 11 39 75.00%




Sensors 2021, 21, 1018

16 of 19

We further compare the performance of the SP signal with other physiological signals
for emotion recognition. Table 7 lists the classification performance of the proposed method,
together with other existing methods in the literature. For each line, we listed the signal
types, number of subjects, emotions to be recognized, induction methods, classification
algorithms and accuracies. However, the accuracy is influenced by various factors, such
as signal type, emotions to be recognized, sample distributions and induction methods.
The results show that the performance of the proposed methods using only the SP signal
is similar to, or even better than, that of other methods using multiple physiological
signals. For example, Rainville et al. [44] used the PCA+Heuristic-decision-tree algorithm
to process the electrocardiogram and respiration signals and obtained 65.30% accuracy for
four emotions, compared with the 75% accuracy of our proposed method for the same
emotions. Moreover, our device for obtaining SP signals is simple and portable, compared
with complicated and expensive measurement systems [3,23], which is another advantage
of the proposed method.

Table 7. Classification Performance Comparisons of Proposed Emotion Recognition Methods with Some Existing Methods

for Multi-Emotion Recognition.

. No. of . Induction Classification
Author Signals Subjects Emotions Method Algorithm Accuracy
Happiness,
Proposed method Skin potential 26 Sadness, Anger, Videos GBDT 75% (4 emotions)
Fear
Electrocardiogram,
. Skin temperature, Sad, Anger, Stress, . 78.4% (3 emotions)
Kim etal. [7] Electrodermal 50 Surprise I SVM 61.8% (4 emotions)
activity
Fear, Anger, Recall their
Rainville et al. Electroca.rdlf)gram, 43 Sadness perspnal PCAfHeurlstlc 65.3% (4 emotions)
[44] Respiration . emotional decision tree
Happiness .
episode
Electrocardiogram Positive and High
Blood volume arousal, Negative
) pulse, Skin and High arousal . K-nearest 50.3%
Guetal. [45] conductivity, 28 Positive and Low Pictures (IAPS) neighbor (4 dimensions)
Electromyogram, arousal, Negative
Respiration rate and Low arousal
Wen et al. [21] Electrocardiogram 154 Joy, Sadness Movies Fisher projection 85% (2 emotions)
Joy, Tension,
Hsu et al. [23] Electrocardiogram 61 Sadness, Music LS-SVM 61.52% (4 emotions)
Peacefulness
Becroeardogram oy Anges
Kim et al. [3] p ! 3 Sadness, Music pLDA+EMDC 69.7% (4 emotions)
Electromyogram,
. .. Pleasure
Skin conductivity
Electrocardiogram,
Respiration, Happiness, K-nearest
Rigas et al. [46] Electromyogram, 9 app ’ Pictures (IAPS) . 62.7% (3 emotions)
A Disgust, Fear neighbor
Galvanic skin
response
(Fingeip tlood Amisemen:
Wen et al. [47] y8 R . 101 Anger, Grief, Fear, Videos Random forests 74% (5 emotions)
Galvanic skin .
Baseline
response, Heart rate
Lin Shu et al. [27] Heart rate 25 Happiness, Videos Decision tree 84% (3 emotions)

Sadness, Neutral
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7. Conclusions and Future Work

In this paper, the extremely low-frequency SP signal between the middle finger and
left wrist was found to be strongly correlated with emotions. A portable wireless device
was developed to measure the SP signals for emotion recognition. We extracted 29 features
from each of the emotion samples collected in our video induction experiment. Eight
classification algorithms were trained to classify four emotions (happiness, sadness, anger
and fear) based on these features. Experimental results show that all algorithms obtain an
accuracy greater than 65%, and three algorithms (LR, RF and GBDT) achieved the highest
accuracy of 75% on the test set. The accuracy of GBDT is more balanced for the four
emotions, which is our recommended algorithm.

The single SP-signal-based emotion recognition method is convenient, simple and
obtains a similar or better accuracy than existing complicated and expensive systems. Thus,
the SP signal could feasibly be integrated into the existing emotion recognition system
based on physiological signals.

For our future work, we will collect a large number of emotion samples from more
subjects and build a more reliable emotion recognition model. In addition, the portable
SP-signal-based emotion recognition system could be used in outdoor scenes to obtain
more natural emotions.
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