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Abstract: In this paper, we are interested in the data gathering for Wireless Sensor Networks (WSNs).
In this context, we assume that only some nodes are active in the network, and that these nodes are
not transmitting all the time. On the other side, the inactive nodes are considered to be inexistent
or idle for a long time period. Henceforth, the sink should be able to recover the entire data matrix
whie using the few received measurements. To this end, we propose a novel technique that is based
on the Matrix Completion (MC) methodology. Indeed, the considered compression pattern, which
is composed of structured and random losses, cannot be solved by existing MC techniques. When
the received reading matrix contains several missing rows, corresponding to the inactive nodes,
MC techniques are unable to recover the missing data. Thus, we propose a clustering technique
that takes the inter-nodes correlation into account, and we present a complementary minimization
problem based-interpolation technique that guarantees the recovery of the inactive nodes’ readings.
The proposed reconstruction pattern, combined with the sampling one, is evaluated under extensive
simulations. The results confirm the validity of each building block and the efficiency of the whole
structured approach, and prove that it outperforms the closest scheme.

Keywords: Wireless Sensor Networks; Matrix Completion; data gathering, spatial data interpolation

1. Introduction

During the last decades, the Internet of Things (IoT) has emerged as a new business
model that is composed of billions of communicating devices. Hence, it has gained consid-
erable attention in both the scientific community and industry. However, the inclusion of
the IoT into the fifth generation cellular systems (5G) and their evolution still represent
a formidable technical challenge due to the huge number of sensors and the generated
information. Note that one of the main challenges of the 5G is the massive connectivity for
Machine-Type Communications (MTC) and managing its coexistence with the high rate
continuous traffic that is generated by Human-Type Communications (HTC) in an efficient
and effective manner. An interesting proposal is the Compressive Sensing (CS), which
reduces the number of active agents at a given time slot, while remaining able to recover
the sensing data. In general, Wireless Sensor Networks (WSNs) consist of a large set of
sensor nodes, which are self-organising and geographically distributed across the network.
They are usually used to monitor various physical phenomena with a high resolution, such
as in forests, under water, as well as in civilian and habitat application areas. Usually, these
devices operate in an unattended mode and they are unable to renew their batteries. Hence,
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energy efficiency is the main challenge for these networks, since it directly affects their
lifetimes and, thus, their sustainability. In usual data gathering techniques, each sensor
node takes measures and sends data to the sink node via multi-hop transmission. If nodes
face packet losses, due to collisions or buffer overflows, packets are retransmitted, which
leads to a high sensing cost and a heavy traffic, especially in large-scale networks. Indeed,
reducing the number of transmitting source nodes, using techniques such as CS, is not
only useful in reducing the collisions, but also crucial for sensor nodes that need to sleep to
prolong their lifetimes.

Recently, it has been shown that the integration of the Matrix Completion (MC) tech-
nique, viewed as an extension of CS, has enhanced wireless networks scenarios. If the
received data matrix has a low-rank structure, then it can be recovered with high accu-
racy while using the partially received elements [1]. Firstly, data are directly sensed in
compressed form and the high energy-intensive recovery algorithm is executed at the sink
node. Hence, the computation complexity is moved from sensor nodes to the sink. This
meets well the resource-constrained devices and significantly reduces the energy consump-
tion. Secondly, because MC handles the data in its matrix form, it can fully capture the
signal correlation in both space and time dimensions and, hence, achieves a satisfying
interpolation quality with a higher compression rate (very few transmitted readings).

In some applications, especially the densely deployed WSNs, the sensed data are,
in general, highly correlated, and redundancy exists between the sensor nodes that belong
to the same geographic area. These nodes can be arranged into a group or a cluster.
Because they are monitoring the same targets or events, collecting raw data from all of the
cluster members becomes inefficient and wasteful for the energy. Therefore, a sufficient
subset of nodes can be selected from each group, according to a certain criteria, to be
the representative of the whole network. These active nodes deliver their readings to the
sink under a compression ratio that is guaranteed by MC theory, while the rest of nodes
remain silent and do not participate in the sensing operation. Thus, as an extension to [2],
we carry on with the twofold compression technique that has been updated compared to
the paper [2]. First, we assume that part of nodes do not sense the environment at all. We
can consider that these sensors are inactive or idle for a long period or that these nodes are
absent. Specifically, in this paper, these notations are only related with the sensing activity,
and all of the nodes are connected in order to participate in data forwarding (Here, a node
is absent in the sense that its data reading is completely missing, and the sink node has to
recover it correctly). The second compression level is that, at each time slot, only a subset
of the active nodes, referred to as the transmitting ones, send their sensing data to the
sink. Different from [2], the nodes having the higher correlation with other nodes, i.e., best
represent the network, are selected as representative sensor nodes. Indeed, in order to be
chosen as active nodes, they should be able to capture enough information regarding the
others and the whole network. This strategy not only minimizes the energy cost and extend
the network lifetime, but it also helps to avoid other problems, such as the traffic congestion
collapse [3]. It is true that in [4], the choice of the active nodes follows a deterministic based
metric. However, unlike [4], in this work, we explain, in detail, each building block of
the introduced structured MC-based data gathering framework (the representative nodes
selection process and the network clustering phase). Subsequently, we separately evaluate
them in the numerical results section in order to illustrate the benefits of each building
block of the proposed technique. Furthermore, in this paper, we propose a Multi-Gaussian
signal model that introduces the solution of reproducing a signal retaining the behaviour
of a given real world data by adjusting the correlation parameters. For that reason, this
method represents an effective alternative to the real world signals.

The application of the just mentioned atypical high-loss scenario leads to a significant
number of empty rows in the signal data matrix (a row (resp. column)) is called an empty
row (resp. column) if and only if all of the values of the row (resp. column) are un-sampled),
which completely disagrees with MC fundamentals. In fact, because MC approaches are
based on the minimization of the matrix rank, they become useless when there is any
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empty row or empty column in the matrix. Indeed, MC techniques have been conceived to
recover a matrix containing random missing elements [5]. In the state-of-art of MC-based
algorithms, to the best of our knowledge, Ref. [6] is the only paper who dealt with the case,
where there is a small number of missing rows in the received data matrix by applying a
spatial pre-interpolation technique, which recovers data from neighboring sensor nodes.
However, as the number of active nodes decreases, we also face absent nodes having
absent neighbor sensors. Thus, this framework becomes unable to recover the data rows of
these isolated sensor nodes. Hence, although this approach is interesting, it seems not well
suited for the addressed scenario and it fails to take the existence of isolated sensor nodes
(absent nodes having all their neighbors absent) into account. In this context, we develop
our scheme, which, firstly, schedules the sampling pattern after efficiently identifying
the different clusters and their representative nodes. Secondly, it treats the case of high
compression ratios with a considerable number of inactive sensor nodes (empty rows)
while using a sequence of three different interpolation techniques.

The proposed framework is also useful for another challenging scenario; when we
have a small number of sensors that have to be deployed in a spacious area. Indeed, either
the sensor nodes are costly or the environment is large enough to be content with the
limited number of sensors. This may also concern the harsh environments that are difficult
to access such as volcanoes and other troublesome environments, where the deployment of
many sensor nodes is not practical and becomes expensive. However, in many applications,
the amount of gathered data must be significant enough to be processed. The idea here is
to place a relatively small number of spatially spaced sensor nodes to control the correlated
field under a compression ratio. These sensor nodes represent other sensor nodes that do
not really exist. Particularly, the sensory data field is, most of the time, highly correlated and
redundant between nearby sensor nodes, which makes possible to estimate the readings at
locations, where the signal cannot be sensed.

The main contributions of the paper are summarized, as follows:

• We generate a synthetic space-time signal that is composed of different Gaussians,
each of which presents a cluster of wireless nodes. Like all the WSNs signals’ profiles,
the generated signals are correlated in space and time, where spatial and temporal
correlation parameters and models differ from one Gaussian to another and can be
separately adjusted.

• For the sampling part, only a small subset of sensor nodes is selected to be active
and report its readings. For each detected cluster, the active sensor nodes selection
is achieved by considering the correlation criteria. Subsequently, for each time in-
stant, we choose the transmitting sensor nodes with the same percentage from each
cluster in order to ensure the diversity in the transmitted data, notably for the high
compression ratios.

• For the reconstruction part, we propose using three different techniques to accurately
rebuild the entire data matrix. In the first step, we fill the missing readings of the
active sensor nodes by applying the MC. Subsequently, we carry on with the spa-
tial pre-interpolation to handle a part of the empty rows while adjusting the 1-hop
topology matrix to the presence of the disjoint clusters in the monitored field. Fi-
nally, we recover the rows of the isolated sensor nodes using a minimization problem
interpolation-based technique with a spatial correlation matrix. In this paper, the third
stage of data recovery pattern has been re-investigated and improved to be more
efficient when compared to the one used in papers [2,4], i.e., providing a lower data
recovery error for the isolated nodes. In the numerical results section, we evaluate the
two techniques with respect to a tuning parameter, and we show that the proposed
minimization problem interpolation-based method significantly enhances the data
recovery performance.

• Through extensive simulations, we show that the proposed framework outperforms
other existing techniques in the literature, especially when the number of inactive
nodes increases.
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The remainder of the paper is organized, as follows. The next section discusses the
related work, and Section 3 provides a brief overview on the MC theory and introduces
the problem formulation of the paper. Section 4 presents the signal model that we used
for the evaluation of our approach. In Section 5, we introduce the efficient clustering
method that we propose. In Section 6, we present a strategy that selects the set of the
representative sensor nodes. Section 7 is dedicated to the data reconstruction framework.
Before concluding the paper in Section 9, we carry out, in Section 8, extensive simulations
in order to evaluate the performance of the proposed approach.

2. Related Work

Environmental WSN signal profiles exhibit both spatial and temporal dependency.
Such structures generate redundancy and enable a succinct representation of the data
while using a number of coefficients that are much smaller than its actual dimension. One
popular postulate of such low-dimensional structures is sparsity, which is, a signal can be
simply represented with a few non-zero coefficients in an invertible proper sparsifying
domain [7]. CS has been introduced as a good fit for such application in both the acquisition
and reconstruction of the signal [8]. With a number of measurements proportional to the
sparsity level, CS enables the reliable reconstruction of the signal. Indeed, the latter can be
encoded using a much lower sampling frequency than the traditional Nyquist one [9–11].
In order to handle the under-determined linear systems, efficient convex relaxation and
greedy pursuit-based solvers have been proposed, such as NESTA [12], L1-MAGIC [13],
and orthogonal matching pursuit (OMP) [14]. Over the past years, plenty of papers have
addressed the data gathering problems in WSNs by the integration of the CS theory, which
had made appealing progress in the network energy consumption [15–21].

Originally, CS-based schemes were designed to sample and recover sparse vectors,
and they were classified either as purely spatial approaches [18–22] or as purely temporal
ones [23]. Despite the incorporation of the kronecker CS framewok, the standard resolution
of CS is still formulated in vector form [15,16,24–26]. Moreover, tools from linear algebra
are still needed in order to reformulate the data matrix into the vector form. Without the
need of computing an adaptive sparsifying basis, MC has recently emerged using another
type of structural sparsity (a low-rank matrix holds singular values composing a sparse
spectrum) [27], which is the matrix low rank property [1]. Because it treats the data matrix
as a genuine matrix, MC can take advantage of the correlation in its two dimensions and
capture more information. In [28], the authors have found that the data reconstruction
performance of the MC depends on the compression ratio. In our previous work [29], we
have illustrated that a simple MC-based approach requires a smaller fraction of sensor
node readings. In [30], a state-of-the-art of MC-based algorithm for compressive data
gathering has introduced the short-term stability with the low-rank feature. The considered
feature was used not only to reduce the recovery error, but also to recover the likely empty
columns appearing in the received data matrix. The existence of the empty columns was
possible, since the readings were forwarded according to a presence probability. Differently,
Zhou et al. in [31], have taken advantage of the temporal stability feature and a MC method
based on the Bayesian inference to interpolate the missing data. Furthermore, the authors,
in [32], addressed joint CS and MC. They have used the CS to compress the sensor node
readings and then the MC to recover the non-sampled or lost information. However,
this approach has not been compared to other state-of-the-art approaches to show its real
contribution. In addition, they have not taken advantage of the space-time correlation
of the signal as it should be, since they have used standard compression and sparsifying
matrices for the CS. Different from [32], Wang et al. in [33], explored the graph based
transform sparsity of the sensed data and considered it as a penalty term in the resolution
of the MC problem. Similarly, Ref. [34] combined the sparsity and the low-rank feature in
the decoding part, and, as in [33], has used the alternating direction method of multipliers
to solve the constrained optimization problem. However, the authors have focused on
vector-valued signals when sampling. In [35], the authors introduced an active sparse
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mobile crowd sensing approach that is based on MC with the intention to reduce the data
acquisition cost, while inferring the non-sampled data readings. Because adaptability and
efficiency are two very important issues in WSNs data gathering, Ref. [36] has proposed
an adaptive and online data gathering scheme for weather data, purely based on MC
requirements. In contrast to our proposed approach, this paper has addressed the sampling
side differently. Indeed, they have focused on the sampled data locations in the received
data matrix, whereas we have considered the sampled data locations in the network area.

The authors of [6] have focused on the case of MC recovery with the existence of
successive data missing or corruption, which is referred to as structure faults. Indeed, they
have considered that successive data may be missing or corrupted due to channel fading
or sensor node failures, which creates successive missing data on rows and/or on columns.
However, treating a significant number of totally missing rows was out of the scope of
their paper. In this paper, we investigate how to solve a challenging problem in the WSNs:
how to omit a considerable number of sensor nodes from the monitoring field and estimate
their readings from the partially reported readings of the representative sensor nodes using
a MC-based approach. It is worth mentioning that efficiently identifying the clusters, their
representative nodes, as well as the data transmission schedule significantly affect the
recovery accuracy.

3. Preliminary and Problem Formulation
3.1. Overview of Matrix Completion

As an extension of CS, the MC technique has emerged recently to benefit from the
signal low-rank feature in order to recover the missing data from a substantially limited
number of matrix entries [1]. That is, a partially unknown matrix M ∈ IRN×T of rank
r � min{N, T} can be entirely reconstructed if a subset of its sampled elements Mij as
well as their indices (i, j) ∈ Ω are available at the receiver side. The entry-wise partial
observation operator PΩ : IRN×T → IRN×T is defined by the following expression:

[PΩ(X)]ij =

{
Xij (i, j) ∈ Ω
0 otherwise.

(1)

Roughly speaking, the goal of the MC is to find a low-rank matrix X that is con-
sistent with the observed measurements Mij. According to [1], if Ω contains enough
information and if M ∈ IRN×T is a low rank matrix (to check whether the data matrix
has a low-rank or approximately low-rank structure, one can perform the Singular Value
Decomposition method [37]), we can fill the unknown entries by solving the following
rank minimization problem:

minimize rank(X) s.t PΩ(X) = PΩ(M). (2)

Yet, problem (2) is not convex, and algorithms solving it are doubly exponential.
Fortunately, the nuclear norm ‖ X ‖∗ minimization problem, which is a convex relaxation,
can be solved. In fact, it is deployed as an alternative to the NP-hard rank minimization
problem [38]. Thus, we have:

minimize ‖ X ‖∗=
r

∑
i=1

τi(X) s.t PΩ(X) = PΩ(M). (3)

‖ X ‖∗, which is also referred as the trace norm of X, denotes the sum of its sin-
gular values τi ≥ 0. In the literature, various efficient solvers for this type of systems
have been suggested. For example, the Singular Value Thresholding (SVT) optimizes an
approximation of (3) by adding a Frobenius-norm term to the objective function [39]:

minimize τ ‖ X ‖∗ +
1
2
‖ X ‖2

F s.t PΩ(X) = PΩ(M). (4)
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Different from (3), another method has been proposed to approximate (2) rather than
the nuclear norm, which is the matrix factorization. Low rank matrix fitting (LMaFit) [40],
Sparsity Regularized SVD (SRSVD), and Sparsity Regularized Matrix Factorization
(SRMF) [27] are among the approaches that use the matrix factorization method. These
approaches are based on the fact that any matrix X ∈ IRN×T of a rank up to r can be
explicitly written as the product of two matrices with the form X = LRtr, where L ∈ IRN×r

and R ∈ IRT×r. Hence, the goal here is to search over the set of rank-r matrices and find a
point LRtr that is closest to the set of matrices, which meets M at all known entries. In order
to solve the problem, an alternating minimization scheme is used by fixing one of L and R
and making the other one as the optimization variable.

3.2. Problem Formulation

Consider a WSN that is composed of a set N = {1, . . . , N} of N sensor nodes. Let
X ∈ IRN×T denote the data matrix that contains measurements that are collected by the set
N during a sensing period of length T time slots. Precisely, the entry in the ith row and tth

column of X, xi,t represents the tth data reading (t ∈ [1, T]) sensed by the ith node (i ∈ N ).
Both of the considered scenarios aim to estimate the full sensor nodes’ readings, X, through
the use of a small subset Nrep = {1, . . . , Nrep � N} of active sensors, being denoted by
representative sensor nodes. It is worth mentioning that the number of active sensors is
relatively small when compared to the number of inactive/inexistent ones. Specifically,
decreasing the number of active sensors can likely generate a set of absent sensors that also
have all their neighbors absent. We call them isolated (IS) sensor nodes.

We propose grouping together sensor nodes having similar readings in the same
cluster while using a spectral clustering technique. In fact, the whole network is organized,
as follows: N =

⋃J
j=1 CLj and N = ∑J

j=1 clj, where clj is the number of sensor nodes that
belong to CLj (clj = card(CLj)), J is the number of detected clusters and CLj is the cluster j.
Note that sensor nodes should capture enough information to be chosen as active. In the
following, we define the node selection criterion, i.e., determine the nodes having the best
presentation of the whole network. It will be shown in the sequel that the representative
node selection as well as the data transmission schedule depend on the detected clusters.

To further reduce energy consumption, the representative sensors do not transmit their
raw data to the sink. Instead, they trade on the data sensing along the T time instants and
deliver a part of their readings according to a given compression ratio, which is, m < Nrep
readings rather than Nrep readings per time slot. Consequently, the received data matrix
M ∈ IRN×T is composed of Nrep partially empty data rows and (N − Nrep) completely
empty data rows. Note that, to replace any missing entry in M, we set a “zero” as a place-
holder. We use a binary sample matrix ΩM ∈ IRN×T that we call sensing and transmitting
schedule to indicate, in each time slots t, which nodes sense and transmit its measurements.
That is, ΩM(i,t) = 1 if xi,t is available and 0 otherwise. Hence, the incomplete delivered
data matrix M can be represented as the Hadamard product between ΩM and X.

The first aim of our work is to well identify the matrix ΩM, as it represents the
sampling schedule, which is of prime importance in the recovery performance.

The second aim of our work is to successfully recover all of the missing entries using
a limited number of received readings. Therefore, we opted for the MC technique because
of its numerous aforementioned benefits. Yet, the application of MC with the existence of a
significant number of empty rows is still a challenging task to tackle, since the presence of
empty rows or columns impedes the MC reconstruction. Thereby, in this paper we propose
a novel interpolation technique that will be annexed to the MC one in order to recover the
empty rows. It is noteworthy that the MC, as the first step in the reconstruction operation,
is an important part since the performance of the subsequent proposed interpolation
technique depends on the recovery accuracy of the MC.

Figure 1 illustrates an example of a WSN that consists of N = 16 sensor nodes,
among which Nrep = 6 sensor nodes are selected to be active. The proposed combined
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reconstruction approach targets filling all of the missing entries corresponding to the
non-transmitted readings.

Figure 1. An illustrative miniature Wireless Sensor Network (WSN) with the resulting transmitted
data matrix M.

4. Signal Model

In this section, we investigate the generation of a synthetic signal that is composed of
different Gaussians, each of which presents a portion of the whole monitored geographic
area. Because structure and redundancy in data are often synonymous with sparsity,
which is analogous to low-rank [27], each portion of the signal is correlated in space and
time, where the spatial correlation as well as the temporal correlation parameters differ
from one Gaussian to another. These parameters can be separately adjusted because the
corresponding functions are independent [41].

The proposed signal model is inspired from [41] that has introduced the solution of
reproducing a signal retaining the behavior of a given real world data by adjusting the
correlation parameters. In their model, all of the generated samples of the whole signal
are Gaussian random variables with zero mean and unit variance. However, in this paper,
we consider heterogeneous fields that are divided into a number of regions. Each one is
modeled by a specific Gaussian (mean, variance) and different correlation characteristic.
The number of different Gaussians as well as their distribution on the field can be fixed or
defined according to the kind of signal that one wants to reproduce. This method represents
an effective alternative to the real world signals.

In order to generate the signal of interest, we suppose that D = [−xD, xD]× [−yD, yD]
is the space domain, where x and y are the space coordinates. Consider that we have H
different regions, where Dh is the space domain of region h = 1, 2, . . . , H, and D =

⋃H
h=1 Dh.

Likewise, we suppose that the time is slotted into equal time slots t = 1, 2, . . . ., T. Without a
loss of generality, in Algorithm 1 we describe how to generate a correlated portion of the
signal zx(ph, t) : Dh × T → IR representing one region, where T is the time domain and ph
is a point in (x, y) plane that corresponds to region h. The signal of the whole area is the
combination of all the generated portions.

In order to obtain a spatially correlated signal, we apply to the signal, to be generated,
a 2D filtering procedure using a specific correlation function rs(p), where p = (x, y).
Among the numerous existing models in the literature, we generate the signal using the
Gaussian filtering, as used in ([15] Equation (2)), which can be controlled by the parameter
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γ > 0 (the Power Exponential model [41], when ν is equal to 2). The coloration of the signal
with rs(p) has to be done in the frequency domain. Hence, before modeling the spatial
correlation, a Fourier transformation is performed. Regarding the temporal correlation,
the authors of [41] have used an autoregressive filter to enforce the temporal correlation in
the signal model. Because the time is slotted into equal time slots, they only consider the
one-step time correlation and use a simple coefficient ρ ∈ [0, 1].

Algorithm 1 Model for generating a portion of the signal
Input: the generated field for t = 1 : wx(ph, t), the temporal correlation parameter

ρh, the spatial correlation parameter γh, the spatial correlation function computed in the
frequency domain Rs(ωh) = F(rs(ph)).

1: for t = 1 to T do

2: if (t == 1) then

3: wy(ph, t) = wx(ph, t)− ηh.

4: else

5: wy(ph, t) = ρh × wy(ph, t − 1) +
√

1− ρ2
h × ε(ph, t), where ε(ph, t) is a N (0,1)

i.i.d random Gaussian noise.

6: end if

7: Wy(ωh, t) = F(wy(ph, t)).

8: Zy(ωh, t) = Wy(ωh, t)× Rs(ωh)
1/2.

9: zy(ph, t) = F−1(Zy(ωh, t)).

10: zx(ph, t) = zy(ph, t) + ηh.

11: end for

Output: the space–time correlated signal portion zx(ph, t) of zone Dh.

To start the signal generation process, for t = 1, we define wx(ph, t) : Dh × T → IR
to be an i.i.d random Gaussian. That is, for any specific position ph(x, y), wx(ph, t) is a
Gaussian random variable with mean ηh ∈ IR and unit variance. Algorithm 1 describes how
to produce a portion of the whole signal zx(p, t) : D× T → IR, which represents the (x, y)
signal. By construction, zx(p, t) is a three-dimensional (3D) matrix of size (2yD × 2xD × T).
The data matrix of interest, X, denotes the two-dimensional (2D) signal that is discretized
by the N sensor nodes along the T time slots.

Figure 2 illustrates an example of an area of size 100m× 100m that is monitored by
N = 50 sensor nodes. We can notice, through the colors, that this field is divided into three
different regions (H = 3) that are presented by three different Gaussians.
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Figure 2. An example of a monitored area composed of three portions, each of which is presented by
a different Gaussian.

5. Clusters Detection

In this section, we investigate the partition of the deployed sensor nodes into J clusters.
The main reason for partitioning the nodes is to involve all of the detected clusters in the
data sensing and transmission. It is well-known, in the conventional MC, that transmitting
sensors are selected in a random way during the T time slots. This kind of selection can
disregard sensors that belong to the small clusters, which deteriorates the recovery process.
However, if we make all of the clusters contribute in the data transmission process, then
we fortify the diversity in the delivered data set. Therefore, for each t, according to a
given compression ratio and using the same percentage, a set of sensor nodes is picked
from each cluster to form the sampling and transmission schedule. It will be shown,
in the simulation section, that taking the detected clusters during the sampling process
into account significantly enhances the data recovery performance, especially for the high
compression ratios. Indeed, our aim is to partition the sensor nodes into different clusters
in such a way that we attempt to maximize the intra-cluster similarities and minimize
the inter-cluster similarities. Such a successful grouping can be achieved while using the
Normalized Spectral Clustering

Usually, sensor nodes, which are situated spatially close to each other, have similar
readings. Nevertheless, there are some cases, where nearby nodes are separated by a
certain barrier and they have readings relatively different from each other. Given the
example of sensor nodes deployed in a city to monitor the air pollution. Suppose that we
have a public garden located next to a road. Hence, the nearby nodes, which are placed on
different sides of the borders, do not necessarily have similar readings. Therefore, to cluster
the nodes, the sink relies on their delivered readings (at the initialization, we let all of the
sensor nodes send their information during a short learning period Tlp � T) and considers
the set of data vectors, χlp = {xtr

lp 1, xtr
lp 2, . . . , xtr

lp N}, which we want to partition into J

clusters. xlp i ∈ IR1×Tlp , viewed as a Tlp-dimensional data points, holds the readings that
are sent by the sensor node i during the learning period. The spectral clustering technique
performs data clustering and treats it as a graph partitioning problem without setting any
assumption on the clusters form. It transforms the given set χlp into a weighted graph
G = (V, E) while using some notion of symmetric similarity matrix A ∈ IRN×N , where
each vertex vi represents xlp i, and each edge between two vertices vj and vi represents
the similarity aj,i ≥ 0. It is recommended to use the Normalized Spectral Clustering, as
mentioned above. Hence, we implemented the NJW algorithm [42] (the algorithm name,
NJW, is attributed according to the authors’ names, which is, Ng, Jordan, and Weiss), which
is detailed in Algorithm 2.

Commonly, identifying the number of clusters J in an optimal manner is the main
concern of all clustering algorithms. Generally, with spectral clustering, we find the
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number J by analyzing the Laplacian matrix eigenvalues that are computed using A and
according to the chosen clustering method. In this work, we choose to apply the eigengap
heuristic [43], which defines J by finding a drop in the magnitude of Laplacian eigenvalues,
{λ1, λ2, . . . , λN}, sorted in increasing order. That is:

J = arg max
i

(λi+1 − λi). (5)

The idea here is to pick the number J in such a way that all of the Laplacian eigenvalues
λ1, . . . , λJ are very small when compared to λJ+1, which marks relatively a large value.

Regarding the similarity matrix A, we opted for the Gaussian kernel to measure the
similarity between the data points {xlp i} [42], where σ is a scaling parameter that controls
the neighborhoods width:

ai,j = exp(−
‖xlp i − xlp j‖2

2σ2 ). (6)

According to ([42] Theorem 2), an appropriate σ can be automatically fixed after
repeatedly running the algorithm while using a number of values and choosing the one
that forms the least distorted partition in the spectral representation space. In order
to determine the appropriate parameter σ, in ([43] Section 8), the authors had provided
several rules of thumb that are frequently used. As an example, the method that we have
used states that σ can be chosen to be in the order of nearly the mean distance of a point to
its kth

m nearest neighbor, where km ∼ log(N) + 1.

Algorithm 2 The Ng, Jordan, and Weiss (NJW) Spectral Clustering algorithm

Input: The set of data vectors χlp = {xtr
lp 1, xtr

lp 2, . . . , xtr
lp N}, the number J of clusters to

detect according to (5).

Pre-processing:

1: Calculate the similarity matrix A according to (6).

2: Calculate the degree matrix D, which is a diagonal matrix defined by : di,i = ∑N
j=1 ai,j.

Spectral representation:

3: Compute the normalized graph Laplacian matrix Lsym = D−1/2(D− A)D−1/2.

4: Proceed the eigenvalues decomposition of Lsym and find the J eigenvectors correspond-

ing to the smallest eigenvalues, arranged in increasing order.

5: Form the matrix U by stacking the J eigenvectors in columns: U = [u1, . . . , uJ ] ∈ IRN×J .

6: Normalize the U’s rows to norm 1 in order to get the matrix Un ∈ IRN×J , that is,

Uni,j = ui,j/(∑j u2
i,j)

1/2.

Clustering:

7: Treat each row of Un, (uni )i=1,. . . ,N , as a data point in IRJ , then partition them into J

subgroups, Q1, . . . , QJ , using k-means algorithm.

8: Attribute the original points xlp i to cluster j if and only if row i of the matrix Un was

attributed to cluster j.

Output: Clusters CL1, . . . , CLJ with CLj =
{

i
∣∣ uni ∈ Qj

}
.

Figure 3 plots the sorted eigenvalues of the normalized Laplacian matrix that is
computed from the generated signal of the example of Section 4 while using the first four
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steps of the aforementioned clustering algorithm. Clearly, there is a relatively large gap
between the 3rd and 4th eigenvalue of this trace. According to metric (5), the data set
contains three clusters, which is well approved.

Figure 3. The Laplacian matrix eigenvalues of a signal that is sensed from the monitored area
of Figure 2.

6. Sampling Pattern

In this section, we determine how the correlation criteria can be considered to select
the representative sensor nodes and how we take the detected clusters in the selection
process as well as in the sensing and transmission schedule into account. Unlike our
previous work [2], where the set Nrep of representative sensor nodes is randomly chosen,
in this paper Nrep must hold enough information towards the other nodes to be chosen as
representative of the network. Relying on the Enhanced Correlation Based Deterministic
Node Selection (ECB-DNS) procedure, which was used in previous works [15,16], the active
sensor nodes selection is achieved by considering the inter-spatial correlation, which is
computed through the conditional variances of the sensor nodes. This technique enables
selecting the sensor node g∗ holding the maximum informative value m′ with respect to
the set S1 of sensor nodes that are not selected yet. Namely:

g∗ = arg max
g∈S1

(m′g), where m′g = ∑
i∈S1

σ2
ig

σ2
g

. (7)

In (7), σig represents the covariance between the reading xi of sensor i and the reading
xg of sensor g, whereas σ2

g presents the variance of xg. It is noteworthy that the way of
exploiting this technique in our approach is different to that in [15]. According to their
scenario, all of the N nodes contribute to the data sensing and transmission over the T time
slots, while, in this approach, only Nrep � N nodes are selected to be active and represent
the J detected clusters. In order to cover all of the clusters, the set Nrep consists of the
combination of J subsets, (Nrepj)j=1,. . . ,J , where Nrepj includes Nrepj representative nodes
picked from cluster CLj while using the same shared percentage pctNrep. That is:

Nrep =
J

∑
j=1

Nrepj , where Nrepj = pctNrep%× clj. (8)

In (8), if pctNrep%× clj is not an integer, we round Nrepj to the nearest integer greater
than or equal to the value of that element. Here, the selection of the sets Nrepj of clusters’
representative nodes is independent from one cluster to another. Hence, the set S1 that
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appears in expression (7) is replaced by the set Sj
1, which represents the sensor nodes of the

cluster CLj that are not yet selected. Thus, we have:

g∗ = arg max
g∈Sj

1

(m′g), where m′g = ∑
i∈Sj

1

σ2
ig

σ2
g

. (9)

The selection process is the same for the J sets Nrepj . Thus, for each cluster CLj,
according to (9), at each iteration n ∈ {1, . . . , Nrepj}, a sensor node g∗(n) is selected and

moved from set Sj
1 to set Sj

2. Note that Sj
2 represents the set of nodes of cluster CLj that are

already chosen during the previous iterations. Once a sensor g∗(n) is put in Sj
2, the metric

m′ of the remaining sensors of set Sj
1 should be recomputed in order to prepare the selection

of the next sensor node g∗(n + 1). Here, by removing g∗(n) from Sj
1, we cancel its impact

on the rest of the nodes in Sj
1. Hence, the selection of the sensor node g∗(n + 1) will be

achieved as if the sensor node g∗(n) did not exist in the network. The node selection
process, especially the manner in how we remove the correlation effect of node g∗(n) from
Sj

1, follows the steps that are outlined in Algorithm 3. For the initialization, we define
the data matrix sent during the learning period Xlp = [xtr

lp 1, xtr
lp 2, . . . , xtr

lp N ]
tr ∈ IRN×Tlp

that we partition into J sub-matrices X j
lp ∈ IRclj×Tlp , where X j

lp holds data sent by nodes
belonging to CLj. Besides, we assume that the spatial correlation feature inherent in Xlp
reflects that in X. By analogy with [15], the computational complexity of selecting Nrepj

representative nodes from CLj is O(Nrepj clj). However, different from [15], where in each
time slot t, a new and a different set of active transmitting source nodes should be found
using the node selection metric, in this work, the selection of the representative nodes’ set
is performed only once, at the beginning of the sensing period T.

Given the example of Figure 1, we can note the existence of three detected clusters
within the network. We suppose that pctNrep = 30. Thus, 30% of nodes will be selected
from each cluster to be active. That is to say that we should pick Nrep1 = 2 sensors
from CL1, Nrep2 = 1 sensor from CL2 and Nrep3 = 3 sensors from CL3. That is, in total
Nrep = 6 representative sensors. Based on the correlation among the sensor nodes and
using Algorithm 3, the obtained subsets are as follows: Nrep1 = {13, 1}, Nrep2 = {9} and
Nrep3 = {12, 6, 16}.

Once the set Nrep of representative sensor nodes is defined, the sink focuses on the
sensing and transmitting schedule, ΩM, by assigning m transmitting nodes for each time
instant t. Obviously, these nodes are picked from the set Nrep. As has been stated in the
previous section, in order to ensure the diversity in the delivered data, the m transmitting
nodes are chosen in such a way that we randomly pick, with the same shared percentage
pctm, mj nodes from each subset Nrepj corresponding to cluster CLj. Likewise (8), we have:

m =
J

∑
j=1

mj, where mj = pctm%× Nrepj . (10)

Let us focus again on the example of Figure 1, we suppose that pctm = 20. Thus,
for each t, 20% of sensors from each subset Nrepj are randomly designated to deliver their
data to the sink. Because the used number N of this example is very small, we end with
mj = 1 transmitting sensor from each cluster for each t.

To conclude, rather than selecting, in a purely random way, the measurement locations,
as usually used in the conventional MC method, in this section we presented how to
intelligently assign transmitting sensor nodes that can well represent the network relying
on their correlations.
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Algorithm 3 A cluster representative sensor nodes selection process

Input: For j = 1, . . . , J, Sj
1 = CLj, Sj

2 = {∅}, Nrepj = {∅}, X j
1 = X j

lp, a zero-vector

X j
2 ∈ IR1×Tlp , n = 1.

1: for n = 1 to Nrepj do

2: if (n == 1) then

3: Compute the covariance matrix Σj ∈ IRclj×clj of X j
lp.

4: According to (9) and using Σj, compute the metrics m′ then select g∗(n).

5: Remove the reading xj
lp g∗(n) of node g∗(n) from X j

1 so that it becomes X j
1 =

[xj
lp 1, xj

lp 2, . . . , xj
lp g∗(n)−1, xj

lp g∗(n)+1, ..., xj
lp clj

] ∈ IRclj−n×Tlp and X j
2 takes the values of

node g∗(n) so that X j
2 = xj

lp g∗(n).

6: Following that removal, Σj can be written as:

Σj =

Σj
1,1 Σj

1,2

Σj
2,1 Σj

2,2

,

where Σj
1,1 ∈ IRclj−n×clj−n is the covariance matrix of X j

1, Σj
1,2 = Σjtr

2,1 ∈ IRclj−n×1 is the

covariance vector between X j
2 and X j

1, and Σj
2,2 is the variance of X j

2.

7: else if (n ≥ 2) then

8: Following the removal of node g∗(n− 1) from Sj
1, re-compute the conditional

covariance matrix of X j
1 knowing X j

2 = xj
lp g∗(n−1); Σj

1,1|2 ∈ IRclj−(n−1)×clj−(n−1) where:

Σj
1,1|2 = Σj

1,1 − Σj
1,2(Σ

j
2,2)
−1Σj

2,1.

9: According to (9) and using Σj
1,1|2, re-compute the metrics m′ then select g∗(n).

10: Σj takes the values of Σj
1,1|2.

11: Perform step 5 then step 6.

12: end if

13: Sj
1 = CLj \ {g∗(n)} and g∗(n) ∈ Sj

2.

14: end for

Output: Nrepj = Sj
2.

7. Reconstruction Pattern

After revealing in detail how to select the Nrep representative sensor nodes and how
to schedule their participation in the data sensing and transmission, in this section we
focus on how to approximate the entire N × T data matrix X based on the limited amount
of reported readings. Isolating (N − Nrep) inactive sensor nodes from the sampling and
transmission schedule entails the existence of (N − Nrep) fully empty rows in the received
data matrix M ∈ IRN×T , which impedes the MC technique that is completely unable to
estimate the original matrix. Therefore, the use of other complementary interpolation
techniques becomes needed. In this context, we develop a structured MC-based recovery
algorithm that is able to ensure the reconstruction of the entire N × T data matrix X.
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Stage 1: obviously, it is not feasible to directly apply the MC technique with the
existence of (N − Nrep) fully empty rows. Therefore, we have to remove these rows from
M. We denote the resultant matrix as MMC ∈ IRNrep×T , containing the partially delivered
readings of the representative sensor nodes. We carry on with the same removal from ΩM
to obtain ΩMC ∈ IRNrep×T . Subsequently, making use of the solution introduced in (4) or
any other method proposed for the MC resolution, we fill the missing entries of MMC that
correspond to the non-transmitted data readings of the Nrep sensor nodes. The threshold
parameter τ roughly equals 100 times the largest singular value of MMC, as has been
introduced in [39]. We denote X′ ∈ IRNrep×T as the combination of the MC based estimation
and directly observed data. Finally, we update X′ ∈ IRN×T by adding the (N−Nrep) empty
rows and then placing them in their proper corresponding locations of M.

Stage 2: after filling the random missing readings, leave the (N − Nrep) completely
missing rows that correspond to the inactive sensor nodes. In this phase, we carried on
with the spatial pre-interpolation technique of [6], which rebuilds the data of an empty
row relying on the available data of the neighboring sensor nodes. To apply this method,
they used a kind of an N × N binary symmetric matrix Y that they called a 1-hop topology
matrix, where both of the columns and rows denote the sensor nodes. The sink assigns
1 to Y(i, j) and Y(j, i) if it finds that sensor node i and sensor node j are 1-hop neighbors.
However, according to the signals nature that we consider, and to avoid untrustworthy
data reconstruction, we consider that, even though two sensor nodes are geographically
close to each other, if they do not belong to the same cluster, then they are not considered
to be neighbors.

The number Nrep of the active sensor nodes is very small when compared the total
number N, which means that the (N − Nrep) inactive sensor nodes constitute the prepon-
derant portion of the network, as mentioned before. Consequently, there are several IS
nodes in the network (having all of their neighbors absent). Hence, with the use of the
stated topology matrix Y, this interpolation technique can achieve the data reconstruction
only for the absent sensor nodes that have neighbors that belong to Nrep. We suppose that
the network distribution contains NIs isolated sensor nodes. Subsequently, the resulting
data matrix X′′ ∈ IRN×T , obtained at the end of this stage, still holds NIs empty rows
to be recovered (NIs all-zeros rows). For the detailed steps of the above interpolation
method, the reader may refer to ([6] Section VI) (As for the complexity of the used spatial
pre-interpolation, according to [6], it is estimated to be very low, since this technique is
based on simple matrix multiplication with neighbor information).

Stage 3: since the above interpolation technique is limited to recover only a part of the
total empty rows (absent nodes), we resort to a second spatial interpolation to rebuild the
remaining part of the empty rows (isolated nodes). Benefiting once again from the spatial
dependency among the sensor nodes, we fill the remaining empty rows while using the
following minimization problem:

minimize ( f ac1 × ‖X̂(ΩIS, :)− X′′(ΩIS, :)‖2
F + f ac2 × ‖S× X̂‖2

F), (11)

where ΩIS denotes the set of indexes of the non isolated nodes, i.e., the representative
nodes and the absent ones. S represents the spatial constraint matrix, whose computation
steps will be detailed hereafter, f ac1 and f ac2 are two tuning parameters, and X̂ ∈ IRN×T is
the final reconstructed data matrix. It is noteworthy that the above proposed minimization-
based interpolation technique has been updated when compared to the one of our previous
works ([2] Equation (8)) and ([4] Equation (5)), and, through simulations, we found out
that the updated minimization significantly enhances the data reconstruction quality of
the isolated nodes. Note that the resolution of this optimization problem can be easily
accomplished while using the semidefinite programming (SDP). We opted for the CVX
package [44], implemented in Matlab, as an advanced convex programming solver, in order
to solve (11) and obtain X̂.

In this equation, the matrix S ∈ IRN×N relatively reflects our knowledge regarding
the spatial structure inherent in the data, since it is computed based on the learning data
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matrix Xlp ∈ IRN×Tlp . This spatial matrix expresses the similarities between the sensor
nodes’ readings. Suitably, we use the Euclidean distance as a distance function in the data
domain of the sensor nodes to model the similarity between the rows of Xlp, whereby the
smaller the distance between two rows, the closer they are. Below are the steps to obtain S:

1—We initiate these steps with an all-zeros matrix S.
2—The similarity between the rows in Xlp is not evident as the ordering of the sensor

nodes’ indexes in Xlp is arbitrary. Thus, for each row i of Xlp, we search for the set j′i of
indexes of the K closest rows to i, which is, j′i = {jk 6= i | k = 1, ..., K}.

3—Assuming that the row i can be approximated through the linear combination
of the rows of set j′i , we perform the linear regression to compute the weight vector
W = [w(1), . . . , w(K)] ∈ IR1×K through the following equation:

W = Xlp(i, :)× Xlp(j′i , :)tr × [Xlp(j′i , :)× Xlp(j′i , :)tr]−1. (12)

4—Finally, we assign 1 to S(i, i) and −w(k) to S(i, jk).
As soon as these steps have been carried out for all the rows i, we obtain the matrix S,

with which we interpolate X̂, as in (11) (here, since, for each row of Xlp, we search for the set
j′i , while using a simple Euclidean distance, the complexity is O(N). Moreover, performing
the linear regression in (12) to compute the weight vector W is basically dominated by
simple multiplication and division operations of matrix, which makes the complexity low).

Now, there remains the last adjustment to realize, that is, the scaling of the two param-
eters, f ac1 and f ac2 of (11). The regularization parameters f ac1 and f ac2 are introduced
in order to establish a trade-off between a close fit to the matrix X′′ and the intention of
fulfilling the NIs remaining empty rows while using S. Through several simulations, we
found that adjusting these parameters nicely improves the reconstruction performance,
and the found values of f ac1 and f ac2 are independent of the size of the matrix (N and T)
as well as the Gaussians’ values composing the synthetic signal.

Let us focus again on the example shown in Figure 1. The dotted lines refer to the
neighborhood relation between sensors. As we can see, the sensors {5, 8, 10, 11, 14} are each
linked at least to a representative sensor. Thus, their data readings can be easily recovered
through the spatial pre-interpolation method of stage 2. Whereas, the data readings of the
sensors {2, 3, 4, 7, 15} are recovered thanks to the minimization (11) of stage 3.

8. Numerical Results

In this section, we first evaluate our proposed structured approach with the variation
of the tuning parameter f ac1 of the minimization (11) of stage 3, while fixing f ac2, in order
to measure the data reconstruction error ratio with respect to the different simulated values
of f ac1 and choose the appropriate one that gives the lowest data recovery error. Secondly,
we compare the performance of our proposed structured approach, with the fixed tuning
parameter f ac1, to that of a benchmark scheme, which was designed basically on what
was proposed in [6] and in line with our scenarios’ requirements. Indeed, at the end of
their work, Xie et al. considered, in [6], that there is a small number of empty rows in
M, which is, for N = 196, 14 data rows were missing, namely 7% of N (i.e., 93% of N of
representative sensors). As we have already stated at the beginning of this paper, treating
an important number of missing rows has not been the main focus of their work. Thus, their
proposed approach has not taken the existence of the isolated nodes in the network into
account. In fact, they basically focused on the existence of successive missing or corrupted
entries in the received data matrix M. However, to the best of our knowledge, this is the
unique paper that has treated a similar case using MC, and with which we can compare
our approach in the first part of this section. Subsequently, in the second part, we try to
separately evaluate the benefits of each building block of the proposed approach, namely:

• Involving all of the detected clusters equitably in the sampling process.
• Selecting the representative sensor nodes using Algorithm 3.
• Adding the minimization (11) to the reconstruction pattern.
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Making use of the generated signal of the example of Section 4, we perform our
structured approach over different scenarios to illustrate the impact of these aforementioned
techniques on the interpolation accuracy of the data matrix. To measure the reconstruction
error, we opted for the following metrics, where X and X̂ represent, respectively, the initial
raw data matrix and the reconstructed one:

1—NMAEtot: the Normalized Mean Absolute Error on all missing entries:

NMAEtot =
∑i,t:ΩM(i,t)=0 |X(i, t)− X̂(i, t)|

∑i,t:ΩM(i,t)=0 |X(i, t)| . (13)

2—NMAEMC: the Normalized Mean Absolute Error on the partially missing entries,
which correspond to the non-transmitted readings of the representative nodes:

NMAEMC =
∑i,t:(i,t)∈Ωmc |X(i, t)− X̂(i, t)|

∑i,t:(i,t)∈Ωmc |X(i, t)| , (14)

where Ωmc is the set of indexes of the partially missing entries, as found in the received
data matrix M ∈ IRN×T .

3—NMAEER: the Normalized Mean Absolute Error on the missing entries of the fully
empty rows, which correspond to the inactive sensor nodes’ readings:

NMAEER =
∑i,t:i∈ΩER

|X(i, t)− X̂(i, t)|
∑i,t:i∈ΩER

|X(i, t)| , (15)

where ΩER is the set of indexes of the (N − Nrep) empty rows, found in the received data
matrix M ∈ IRN×T .

4—CR: the Compression Ratio:

CR =
N × T − card(Ω)

N × T
, (16)

where Ω = {(i, t) | ΩM(i, t) = 1}. Hence, card(Ω) denotes the number of observed entries
in M.

We vary pctNrep from 10 to 80, and, for each given pctNrep, we vary pctm from 10 to
80, in order to assess the proposed approach under different CRs. It is obvious that the
range of the values of CR depends on the value assigned to pctNrep. The larger pctNrep,
the higher CR range can be used. Note that we are mainly interested in the small values of
pctNrep and pctm, since we are considering the high loss scenarios. Specifically, we consider
that N = 50 sensor nodes are randomly distributed in a square observation area of size 100
m × 100 m, and we monitor the WSN during T = 100 time slots.

To begin, we measure the data reconstruction error ratio NMAEtot of our proposed
structured approach with the variation of the regularization parameter f ac1. To do so,
we fix f ac2 to 1, then, we accordingly adjust f ac1, which vary from the value 1 to the
value 10−15. Note that we have used K = 5 during all of the simulations of this paper.
Figure 4 shows the effect of f ac1 on the data recovery performance of our approach.
For pctm = 20, we vary pctNrep and for each case the NMAEtot is calculated with respect
to f ac1. As we can note, the minimization (11) of stage 3 typically performs better for the
value f ac1 = 10−5 than the other values. For that reason, we retain this value and use it in
all of the next experiments.

In Section 7, the proposed minimization-based interpolation technique (11) of stage
3 has been investigated and then updated when compared to the one of our previous
works ([2] Equation (8)) and ([4] Equation (5)), as we have mentioned. Figure 5 illustrates
a performance comparison in terms of NMAEtot between the two methods for different
values of pctNrep and with respect to the regularization parameter f ac1. As we can clearly
notice through the simulations of Figure 5, for different values of f ac1, the data recovery
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performance is highly improved with the proposed minimization-based interpolation
technique of this paper compared to the one shown in our original papers.

Figure 4. NMAEtot for the proposed technique with respect to the regularization parameter f ac1 of the minimization (11).

In the third simulation, we implement a benchmark approach that is based on what
was proposed in [6]. The sampling pattern of this approach consists in choosing the set
Nrep of representative sensor nodes in a purely random way, which is exactly the same as
randomly selecting the empty rows. Likewise, for each time instant t, m nodes are uniformly
selected from the set Nrep to deliver their readings to the sink. Here, neither the selection
of the representative sensors nor the selection of the transmitting ones takes the detected
clusters into account. As for the reconstruction pattern, to obtain the final recovered
data matrix X̂, this approach performs the MC, and then the spatial pre-interpolation.
The temporal pre-interpolation was omitted, since we do not consider the existence of
empty columns in the observed data matrix M (This is not the case with our scenario,
since, at every t, we ensure the transmission of m readings sensed in different m locations).
In Figure 6, we have measured the NMAEtot with respect to the variation of CR, namely
pctm, for different values of pctNrep. Our approach distinctly outperforms the benchmark
one across the entire ranges of CR, as we can note from the plots. We are able to go up
to 90% of missing rows (pctNrep = 10) with an interesting reconstruction performance,
NMAEtot of about 0.008, while the benchmark technique yields an NMAEtot of [0.47, 0.5].

Figure 5. NMAEtot for the proposed technique and the one in [2,4].

Figure 6. NMAEtot for the proposed technique and for the Benchmark.
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Figures 7 and 8 illustrate the 3-D bar graph of, respectively, the NMAEMC and the
NMAEER values with the variation of pctNrep and pctm. For the convenience of comparison,
we have implemented the NMAEMC and NMAEER in order to separate the error ratios
and demonstrate the recovery performance enhancement that has been achieved by our
proposed approach on, respectively, the partially and fully missing readings.

Figure 7. NMAEMC for the proposed technique and for the Benchmark.

Note that the considered framework extremely reduces the overall network energy
consumption, since we only use a small set of representative sensors for the data trans-
mission. Furthermore, when compared to the benchmark approach, the proposed one
can further improve the sensors lifetime. In fact, for a given NMAEtot target of 0.02 and
pctNrep = 60, we compute the energy consumption during the T time instants for the both
compared approaches, depending on the number N of sensors. In this simulation, we
consider that two nodes i and j can directly communicate with each other, without the
need for relaying, only if the Euclidean distance dsti,j between them is within some trans-
mission radius (r) that scales with Θ(

√
logN/N) [21]. To route the data towards the sink

node, we perform the shortest path tree that was computed by the Dijkstra algorithm [16].
The following model is used in order to compute the energy consumption during data
transmission [45].

Figure 8. NMAEER for the proposed technique and for the Benchmark.

{
ETx(L, dsti,j) = Eelec × L + εamp × L× dst2

i,j
ERx(L) = Eelec × L,

(17)
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where ETx(L, dsti,j) and ERx(L) represent, respectively, the amount of energy that is con-
sumed by a specific node i, to deliver or receive an L-bit packet through a distance of length
dsti,j. In (17), Eelec is the energy that is required by the transceiver circuitry at the sender
or the receiver and εamp is the energy consumed by the transmitter’s amplifier. Regarding
the parameters setting, L = 120 bits [15], Eelec = 50 nJ/bit and εamp = 100 pJ/bit/m2 [45].
Figure 9 illustrates the energy consumption for the proposed framework as well as for
the benchmark one. Indeed, our approach requires far less sensor nodes’ readings, con-
sequently, much less energy consumption, in order to achieve the same reconstruction
performance.

Figure 9. Energy consumption for the proposed technique and for the Benchmark.

Let us now focus on the benefits of the clusters selection. We show that taking the
detected clusters during the representative nodes selection process as well as during the
assignment of the sensing and transmitting schedule into account significantly ameliorates
the data recovery performance. Thus, we compare our approach to another one, for which
we proceed, regardless the existence of the different clusters. The set Nrep of representative
sensor nodes is selected according to (7) instead of (9), i.e., the spatial correlation criteria
are present during the node selection process. Nevertheless, we do not have equitable
representation of the different regions that compose the whole network. Withal, for each t,
the m transmitting nodes are picked from the setNrep in a purely random way to sense then
deliver their data readings, i.e., m = pctm%× Nrep instead of (10). To recover the received
data matrix, both algorithms apply the 3-stage reconstruction pattern of Section 7. Figure 10
illustrates the 3-D bar graph of the NMAEtot values with the variation of pctNrep and pctm.
This simulation shows how curiously interesting the clusters consideration is. The barres
depict that our approach provides a considerable improvement in terms of NMAEtot when
compared to the algorithm of comparison, especially in the high compression ratios, i.e.,
when the number of transmitting sensor nodes is very limited. Note that without enforcing
the involvement of all the clusters in the data sensing and transmission process, sensor
nodes that belong to the small clusters could be totally ignored, which gravely deteriorates
the recovery process.

In Figures 11 and 12, we have measured, respectively, the NMAEMC and the NMAEER
with respect to the variation of CR, namely pctm, for different values of pctNrep.
Figures 11 and 12 highlight the effect of the introduced block on the recovery of, respec-
tively, the representative nodes’ and the inactive nodes’ readings. Although both of the
techniques apply the same MC resolution method, the NMAEMC of our approach is much
lower than that of the benchmark. The NMAEER also seems to be heavily affected, despite
the fact that the clusters consideration, at the base, only targets the first stage of the recon-
struction pattern, which is the MC resolution. For example, with (pctNrep = 20, pctm = 10),
(pctNrep = 40, pctm = 10), and (pctNrep = 60, pctm = 10), we can reach an improvement
respectively of 93.88%, 87.87%, and 79.38%, when we enforce the involvement of all the
clusters in the data sensing and transmission.



Sensors 2021, 21, 1016 20 of 25

Figure 10. NMAEtot with and without clusters consideration.

Figure 11. NMAEMC with and without clusters consideration.

The next scenario aims to prove the importance of neatly selecting the Nrep represen-
tative nodes. Making use of the spatial correlation in the selection process, as detailed in
Algorithm 3, these nodes are selected under the criterion of having the best representation
of the whole network. We compare our algorithm to another one that selects its representa-
tive nodes randomly in order to investigate the efficiency of the proposed selection process.
However, in order to be comparable, this one takes the existing clusters when selecting
its representative nodes into account. Hence, the set Nrep of representative nodes consists
of the combination of J subsets, (Nrepj)j=1,. . . ,J , where Nrepj includes Nrepj representative
nodes selected randomly from cluster CLj while using the same shared percentage pctNrep,

where Nrep = ∑J
j=1 Nrepj and Nrepj = pctNrep% × clj. Both of algorithms design their

sensing and transmitting schedules, ΩM ∈ IRN×T , based on their selected sets Nrep of rep-
resentative nodes, as described in Section 6 and according to (10). To recover the received
data matrix, both of the performed algorithms apply the three-stage reconstruction pattern
of Section 7. Figures 13 and 14 depict the results of this simulation. Figure 13 illustrates the
NMAEtot. As we can see, when compared to the random selection process, the selection
scheme of Algorithm 3 provides a considerable improvement in terms of NMAEtot for
the high CRs. The gap between the two curves decreases as we increase the number Nrep
of representative nodes, namely pctNrep, since we decrease the probability of choosing
different sets Nrep.

Let us focus on Figure 14, which highlights the NMAEER to reveal the impact of
our selection process on the reconstruction performance of the empty rows. Expectedly,
we find that the NMAEER is sensitive to the used selection method, which confirms the
aforementioned hypothesis. That is, in order to guarantee an accurate reconstruction for
the inactive nodes missing data, great care must be taken when selecting the set Nrep.
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Figure 12. NMAEER with and without clusters consideration.

Figure 13. The impact of the representative node selection technique on the NMAEtot.

Figure 14. The impact of the representative node selection technique on the NMAEER.

The last simulation highlights the benefit of the 3rd stage of the proposed reconstruction
pattern. We compare our algorithm to the one that only uses the first two stages of Section 7 to
obtain its final recovered data matrix X̂. Following the same logic of the previous experiences,
in order to be comparable, we use the sampling pattern of Section 6 with both of the simulated
algorithms, which yields the same set Nrep of representative nodes and, consequently,
the same set of inactive nodes. Noticeably, we can detect a considerable gap in terms of
NMAEtot between the barres of Figure 15. This difference for all of the pctNrep values
comes from the non-reconstructed readings of the NIs isolated nodes with the algorithm of
comparison. Because we simulated the same network with the same sensor nodes neigh-
boring, the set of the NIs isolated nodes is the same for both of the compared algorithms.
Figure 16, which depicts the NMAEER for both approaches, illustrates that we can reduce
the reconstruction error of the empty rows up to 96.89% for (pctNrep = 10, pctm = 40),
96.08% for (pctNrep = 20, pctm = 40), 93.65% for (pctNrep = 30, pctm = 40) and 90.2%
for (pctNrep = 40, pctm = 40), when we apply the minimization (11). These results show
that the number of isolated nodes is important for a small pctNrep. Hence, adding a third
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interpolation technique, as our proposed minimization (11), becomes heavily needed.
Otherwise, we end with a data matrix, which is almost half built, even less.

Figure 15. The impact of spatial interpolation technique on the NMAEtot.

Figure 16. The impact of spatial interpolation technique on the NMAEER.
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9. Conclusions

In this paper, we have investigated an interesting challenge in the dense WSNs. In fact,
we have proposed letting a significant number of sensor nodes remain idle. Subsequently,
relying on a novel MC-based reconstruction framework, we recover their readings based
on the received ones. The strength of our approach lies in its integration or inclusivity for
both the compression and reconstruction patterns. For the sampling part, by making use
of the inter-spatial correlation feature, we have presented a strategy that neatly selects a
restricted number of representative sensor nodes under the criterion of having the best
representation of the whole network. Subsequently, for each cluster, we schedule where and
when to sense the field. As for the reconstruction part, by taking advantage of the readings
similarities in WSNs, we propose an optimization technique that is annexed to the MC
resolution. This method, which is positioned in the third stage of the recovery operation,
guarantees the reconstruction of all the empty rows corresponding to the omitted sensor
nodes. Altogether, these techniques succeed in handling the aforementioned high loss
scenario. We have obtained satisfactory results proving the efficiency and the robustness of
the proposed techniques as well as the whole unified approach. The results, which were
obtained with the multi-Gaussian generated signal, outperform all of the state of the art
techniques. They revealed that we are able to go up to 90% of missing rows (i.e. only 10%
of N of representative sensor nodes), while we still achieve an interesting reconstruction
performance by giving a NMAEtot of about 0.008 when compared to the benchmark one,
which is still within the range of [0.47, 0.5].
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