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Abstract: The coronavirus disease 2019 (COVID-19) pandemic has affected hundreds of millions of
individuals and caused millions of deaths worldwide. Predicting the clinical course of the disease is
of pivotal importance to manage patients. Several studies have found hematochemical alterations
in COVID-19 patients, such as inflammatory markers. We retrospectively analyzed the anamnestic
data and laboratory parameters of 303 patients diagnosed with COVID-19 who were admitted to the
Polyclinic Hospital of Bari during the first phase of the COVID-19 global pandemic. After the pre-
processing phase, we performed a survival analysis with Kaplan-Meier curves and Cox Regression,
with the aim to discover the most unfavorable predictors. The target outcomes were mortality or
admission to the intensive care unit (ICU). Different machine learning models were also compared to
realize a robust classifier relying on a low number of strongly significant factors to estimate the risk of
death or admission to ICU. From the survival analysis, it emerged that the most significant laboratory
parameters for both outcomes was C-reactive protein min; HR = 17.963 (95% CI 6.548-49.277, p <
0.001) for death, HR = 1.789 (95% CI 1.000-3.200, p = 0.050) for admission to ICU. The second most
important parameter was Erythrocytes max; HR = 1.765 (95% CI 1.141-2.729, p < 0.05) for death,
HR = 1.481 (95% CI 0.895-2.452, p = 0.127) for admission to ICU. The best model for predicting
the risk of death was the decision tree, which resulted in ROC-AUC of 89.66%, whereas the best
model for predicting the admission to ICU was support vector machine, which had ROC-AUC of
95.07%. The hematochemical predictors identified in this study can be utilized as a strong prognostic
signature to characterize the severity of the disease in COVID-19 patients.

Keywords: COVID-19; machine learning; Kaplan-Meier; Cox regression; hematochemical parame-
ters; prognostic markers
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1. Introduction

In December 2019, in Wuhan, province of Hubei (China), several local health facilities
reported cases of pneumonia of unknown origin, which have been identified as the first
human cases of COVID-19 [1,2]. The SARS-CoV-2 virus pandemic has caused more than
5,000,000 deaths and a total of over 250,000,000 confirmed cases, globally, as of November
2021 [3,4].

Most patients have mild, self-limiting respiratory infections, with symptoms such as
fever, headache, dry cough, fatigue, and muscle pain, but some may rapidly develop fatal
complications, including acute respiratory distress syndrome (ARDS) or respiratory failure,
multiple organ dysfunction, and septic shock that imposes hospitalization and could lead
to the death of the patient [1,5].

This pandemic has put a strain on all global health systems and represents a formidable
opportunity to highlight the value of laboratory medicine and to focus on new methods
to support and speed up the identification of patients with higher risks of progression to
severe stages of the disease.

Accurate prediction of COVID-19 mortality and the identification of factors related
to the severity of the disease would allow for targeted strategies in those patients with
higher risk of death or developing severe disease; thus, reducing the burden of unnecessary
hospitalizations and the health system overload [6].

A better (and clearer) understanding of predictive factors for COVID-19 is crucial for
the development of clinical decision support systems that can accurately and rapidly detect
the patients with increased risk of worsening conditions [7].

Towards this aim, we retrospectively analyzed data from a cohort of 303 patients
with reverse transcription-polymerase chain reaction (RT-PCR) confirmed COVID-19, hos-
pitalized at Polyclinic Hospital of Bari, during the first phase of the COVID-19 global
pandemic from 14 March to 10 September 2020. Statistical methods and survival analysis,
together with the development of machine learning classifiers, were carried out on these
data, with the purpose of identifying hematochemical parameters that better reflect and
contribute to the risk assessment.

The paper is structured as follows. Section 2 summarizes the relevant literature on
the predictive models for COVID-19. Section 3 describes the details of the data collection
process, the patient cohort, and the analysis framework. Section 4 details the methods
exploited for carrying out the analysis, and explains the feature selection process and the
development of machine learning (ML) classifiers for the risk assessment, considering both
the death and the admission to the intensive care unit (ICU) as target outcomes. As for
the admission to the ICU, we included patients who were admitted at the start to the ICU
or were transferred to the ICU from the other COVID Units. In Section 5, we present and
discuss the obtained results. Lastly, in Section 6, we summarize the findings of this research.

2. Related Works

Different authors considered the task of performing statistical analysis or developing
ML models to predict the severity of COVID-19 disease [8-18]. Tjendra et al. [12] performed
a meta-analysis, which summarize 72 papers on the predictive role of different biomarkers
in COVID-19 patients. According to them, white blood cells, lymphocyte and platelet
counts, C-reactive protein (CRP), ferritin, and interleukin-6 were found to be potential
prognostic markers of evolution of the disease to a severe form.

Yoshida et al. [8] discovered sex disparities in clinical and biological parameters of
severe outcomes in 776 adults with COVID-19, hospitalized in a U.S. healthcare system.
The data from the cohort were acquired in New Orleans, LA, between 27 February and
15 July 2020.

Nachtigall et al. [9] retrospectively analyzed 1904 patients admitted to a national
network of hospitals in Germany. The authors considered demographic data, comorbidities,
and clinical outcomes, and revealed that the most important risk factors for death were
older age, precedent lung disease, and male sex.
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Banoei et al. [10] performed a multivariate predictive analysis on a subset of 108
out of 250 features, encompassing comorbidities, blood markers, and clinical features.
The features considered were those captured at the admission time from a cohort of
250 hospitalized patients with COVID-19. The strongest mortality predictors were diabetes,
coronary artery disease, altered mental status, dementia and age greater than 65 years.
Among the biochemical markers, the most relevant were CRP, lactate, and prothrombin.

Zuccaro et al. [11] considered a cohort of 426 consecutive hospitalized patients from a
hospital in Lombardy, Italy, in the period 12 February—30 March 2020. They concluded that
male sex, older age, hospital admission after 4 March, and number of comorbidities were
independent risk factors related to in-hospital mortality.

Zhou et al. [13] retrospectively analyzed 116 patients admitted to Chongging Public
Health Medical Center, China, in the period 24 January—7 February, 2020, with a diagnosis
of mild or moderate COVID-19. According to the authors, three factors were found to be
independent predictors of progression to severe disease, during two weeks after admission:
high value of creatine kinase, low value of CD4+ T-cell count, and age higher than 65 years.

Niu et al. [14] included a cohort of 150 patients diagnosed with COVID-19 from
Huanggang Central Hospital in the period 23 January-5 March, 2020. By exploiting
univariate and multivariate logistic regression, the authors explored which were the most
relevant risk factors associated with in-hospital death. This analysis allowed concluding
that diabetes, high value of lactate dehydrogenase on admission, and higher sequential
organ failure assessment score increased the odds of in-hospital death. A summary of the
related works is available in Table 1.

Deep learning (DL) approaches are becoming more relevant in the biomedical and
health domains, and literature already exists for what concerns the COVID-19 pandemic [19].
Even though most of the literature focuses on tasks, such as medical image analysis, biomed-
ical signal processing, and natural language processing, which are domains different from
ours, there is a recent trend in exploiting DL models for irregularly sampled time series
(ISTS) data. Sun et al. performed a review of the DL methods for addressing the issues
arising from ISTS data [20]. They also consider a COVID-19 dataset, coming from the work
of Yan et al. [21], for which they discover that, for mortality prediction, T-LSTM [22] and
GRU-D [23] are the top performing models. With respect to DL approaches, the statisti-
cal and machine learning framework developed in this paper more easily allows one to
interpret the results, also from a clinical significance point of view.

Most of the available works in the literature are considered demographic data, comor-
bidities, and blood markers. In this work, our purpose was to realize a predictive model
based on hematochemical parameters. Unlike what was done in previous works, as Ba-
noei et al. [10], which considered blood markers at admission time, we included time series
data for hematochemical factors, allowing the construction of a more reliable predictive
model. Niu et al. [14] considered the evolution of parameters over time, but based their
conclusions on a cohort smaller than ours, being composed of only 150 patients. As pre-
dictive models, they mainly considered univariate and multivariate logistic regression,
whereas we compared a wide variety of methods: Decision tree (DT), random forest (RF),
Gaussian naive Bayes (GNB), support vector machines (SVM), K-nearest neighbors (KNN),
and adaptive boosting. Finally, other authors, as Nachtigall et al. [9], did not consider
blood parameters in their analyses. Therefore, our paper can be considered a contribution
over the existing literature, especially because we performed, in a cohort of 303 patients,
statistical and survival analyses and systematic comparison of predictive models over time
series of hematochemical parameters.
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Table 1. Summary of materials and methods exploited in related works.

Materials Methods
Authors - : - - -
Sample Size Location Period Predictors Outcomes Techniques
. . 27 February— Demograp}.ucs, comorbidities, ICU admission, invasive mechanical Chl—squa.re test, F1schf3r S .exact
Yoshida et al. 776 patients ~ New Orleans, LA presenting symptoms, e . test, two tailed t test; univariate and
15 July 2020 ventilation, in-hospital death . e .
laboratory results multivariate logistic regression.
. . Network of 12 February— . g ICU admission, invasive mechanical Desc.:rlptlve .Stat.lStICS; surv1\.7al
Nachtigall etal. 1904 patients . Demographics, comorbidities R ) analysis, multivariate proportional
Germany Hospitals 12 June 2020 ventilation, in-hospital death
hazard models.
SIMPLS (statistically inspired
. . .. . Clinical features, comorbidities, . modification of partial least
Banoei et al. 250 patients Miami, FL, USA since June 2020 blood markers In-hospital death square), PCA, Clustering,
Latent class analysis (LCA)
21 Februarv— Demographics, comorbidities, Student t test, Mann-Whitney U
Zuccaro et al. 426 patients Lombardy, Italy y blood markers, treatment, In-hospital death, discharge test, Chi-square test, DeLong
30 March 2020 . . . .
time of hospital admission method; Fine and Gray model
24 January— Demographics, epidemiological Disease progression from milder Chi-square test, Fischer’s exact test,
Zhou et al. 116 patients ~ Chonggqing, China Y information, clinical manifestation, Prog Mann-Whitney U test; Kaplan-
7 February 2020 to severe COVID-19 . .
laboratory test results Meier; Cox regression.
Epidemiological and demographic
23 January— characteristics, underlying Chi-square test, Fischer’s exact test,
Niu et al. 150 patients =~ Huanggang, China 5 March 28’2 0 diseases,clinical manifestations, In-hospital death Mann-Whitney U test; multivariate

laboratory findings, chest
computed tomography (CT) imaging

logistic analysis; nomogram.
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3. Materials
3.1. Data Collection

The demographic and anamnestic data were collected by clinicians and specialists
from four different COVID-Units of the Polyclinic Hospital of Bari (Apulia, Southern Italy):
Intensive Care Unit (41 patients), Infectious Disease Unit (224 patients), Pneumology Unit
(122 patients), and Internal Medicine Unit (324 patients). In total, data of 434 patients were
collected. Laboratory tests were performed by specialists from the Clinic Pathology Unit
of the aforementioned Hospital, providing data of 367 patients. The intersection among
demographic, clinical, and laboratory data resulted in a dataset of 303 patients.

Specifically, demographic data included variables, such as age and sex, the clini-
cal characteristics examined were date of hospitalization, record the date of transfer to
ICU, date of discharge from all COVID units including the ICU, date of death, days of
hospitalization; as for laboratory tests, a total of 69 hematochemical parameters were
analyzed. The full list of hematochemical parameters considered for the study is available
in supplementary materials.

The target outcomes were in-hospital death and admission to ICU. Events were
considered to have occurred only if they happened within the follow-up period.

A workflow of the process followed for carrying out this study, from the data collection
to results, is depicted in Figure 1.

Infectious Diseases Intensive Care Pneumology Internal Medicine Clinic Pathology
Unit (1 =224) Unit (7 =41) Unit (n=122) Unit (7 =324) Unit (n=367)
[ I [ ] l
¥
COVID-19 -
Hospital Features Hematochemical
(n=434) Extraction [« Parameters
[ I 1 (p=345) (»=69)
Clinical Data Demographics Data Outcomes
p=5) r=2 (k=2)
Dataset

(n=303,p=347,k=2)
1

Survival L BICRESaIn e Statistical

analysis ¥ analysis
+ == ll ML Classifiers ;—‘—g

plan- _

Cox . Meier D —— Chi-Squared \2411&21“
Regression C — Tests itney
Aurves Training data U-Tests

(n=242)
1
Features Selection | Test data Models
(p=06) (n=61) Assessment

Figure 1. Data Processing Workflow. The figure shows the study workflow, starting from the data
collection step until the development and assessment of the different predictive models. ML stands
for machine learning. Considered ML classifiers include decision trees, random forests, support
vector machines, Gaussian naive Bayes, AdaBoost, and K-nearest neighbors.

3.2. Cohort of Study

Overall, 303 patients with COVID-19 were enrolled in the study, of which 184 (60.7%)
were male and 119 (39.3%) were female.

The following data are reported as mean + standard deviation. The age of the study co-
hort was 64.2 = 17.7 years (range 19-99 years). The hospitalization time was 22.3 + 17.1 days
(range 0-126 days) and the ICU staying time was 3.7 = 10.5 days (range 0-94 days).

During the time of hospitalization, 218/303 (71.9%) patients were discharged alive,
85/303 (28.1%) died before discharged, and 74/303 (24.4%) were admitted to the ICU.
Among the ICU patients, 49/74 (66.2%) died and 25/74 (33.8%) survived.
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On the total of 184 male patients, 54 (29.3%) died, 130 (70.7%) were discharged alive,
and 53 (28.8%) were admitted to the ICU, whereas of the 119 female patients, 31 (26.1%)
died, 88 (73.9%) were discharged alive, and 21 (17.6%) needed admission to the ICU
(Table 2).

The mean age of the dead patients was 74.08 + 13.15 years, whereas the mean age of
the survived patients was 60.36 + 17.81 years.

In the following, four age classes were considered: under 55 years old, between 55
and 65 years old, between 65 and 80 years old and over 80 years old.

As shown in Table 2, the highest mortality rate was observed in the two oldest age
groups (65-80 years and over 80 years), whereas the highest rate of admission or transfer
to the ICU was found among patients between 65 and 80 years of age. Patients younger
than 55 years and older than 80 years were less likely to be admitted to the ICU.

Table 2. Demographic characteristics of the patient cohort. The table displays the demographic
characteristics presented as absolute frequency (percentage frequency) of all the patients enrolled in
the study.

Admitted p-value  p-value

Total Deceased Survived to the ICU (mortality)  (ICU)
Patients 303 85(28.1) 218(71.9) 74(24.4)

Sex 0.6220 0.0384
Male 184 (60.7) 54(29.3) 130(70.7)  53(28.8)
Female 119 (39.3) 31(26.1) 88(73.9) 21 (17.6)

Age Classes <0.001 <0.001
Under 55 90(29.7) 10(11.1)  80(88.9) 13 (14.4)
55-65 72(23.8) 10(13.9) 62 (86.1) 19 (26.4)
65-80 74 (24.4) 36(48.6) 38 (51.4) 34 (45.9)
Over 80 67(22.1) 29(43.3) 38 (56.7) 8(11.9)

3.3. Analysis Framework

The analysis performed in this study was carried out in the Python 3 programming
language. The frameworks exploited included Pandas (for data handling), Scikit-Learn
(for training and validating machine learning algorithms), SciPy (to perform the statistical
analysis), Seaborn and Matplotlib (to visualize the data).

4. Methods
4.1. Data Pre-Processing and Data Cleaning

The data collected from the different units were merged into a unique dataset, which
we exploited for the following of the study. The obtained dataset contained both (a)
demographic and clinical data and (b) hematochemical parameters of the patient cohort.
Since, for many laboratory tests examined, there were available time series data, which can
allow to understand the time progression of the clinical state, five features were extracted:
minimum, maximum, mean, first, and last values [24].

Outlier removal was performed, considering only the 99.75th percentile values, ex-
cluding the remaining 0.25th percentile values, both from upper and lower sides.

For the machine learning predictive models, in order to handle missing values, impu-
tation with the KNNImputer algorithm was performed. It exploits the Euclidean distance to
find the nearest neighbors and imputes the missing values with the uniformly averaged
values from the specified number of neighbors [25].

Lastly, the data were rescaled into the range [0, 1]. This process is useful for features
that are not normally distributed and preserves zero entries in sparse data.

According to the literature, the application of these algorithms should lead to an
increase of the machine learning classifiers performance [26].
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4.2. Statistical Analysis

The variables of interest were divided into quantitative variables, i.e., continuous
variables that contain numerical values, such as age, and the minimum, average, maximum,
first and last values of each hematochemical parameter examined, and qualitative variables,
i.e., variables describing the patient’s status as sex, death, or admission to the ICU.

Descriptive statistics. Regarding categorical variables, absolute and relative frequen-
cies have been considered. While, regarding continuous variables, mean, median, first
quartile, second quartile, third quartile, and interquartile range have been extracted.

Inferential statistics. Inferential statistics was carried out using the Chi-squared test
for the categorical variables and the Mann—-Whitney U test for the continuous variables.
For both kind of tests, the significance threshold was set to 0.05. Even though some debate
exists about thresholds for p-value [27], 0.05 is the historical and the most widely adopted
threshold for testing statistical significance. In order to make our work comparable with
the majority of existing literature, we decided to adopt the same threshold.

4.3. Survival Analysis

Survival analysis corresponds to a set of statistical methodologies used to model and
analyze temporal data, in order to investigate the time required for the occurrence of the
event under study.

In this study, the Kaplan—-Meier method has been exploited for categorical variables
(i.e., age classes and sex) to estimate the survival time and generate survival curves, which
were obtained by plotting the survival probabilities in relation to the hospitalization days
for both outcomes, i.e., in-hospital mortality and admission to ICU [28].

Instead, Cox regression was applied for the blood parameters, considering the labora-
tory normality ranges. It is a powerful technique to study the impact of several risk factors
on patients’ survival at the same time.

In Cox regression, the dependent variable is the incidence rate of a given event
considered as the number of events per person in the time between the entry into the study
and the date of the last observation [29]. The events under consideration were death and
admission to the ICU.

4.4. Feature Selection

The feature selection process consists of choosing a subset of relevant features in order
to use machine learning methods effectively, speeding up the algorithms, increasing the
prediction accuracy and the comprehensibility of the data [30].

For the features selection step, coefficients resulting from a multivariate logistic regres-
sion applied to the two different outcomes were exploited [31].

Considering the logistic regression in Equation (1):

1
P= 1 + e~ (Botprx1+paxz+...+Prxi)

)

where k is the number of predictors. The features are preserved only if their respective
coefficients meet the criteria in Equation (2):

|Bi| > [mean([B1,...,Bx])| +std([B1,---,Bk]) 2)

where |B;] is the absolute value of the i-th coefficient §;, mean([B1, ..., Bx]) is the mean of
the coefficients and std([B1, ..., Bx]) is the standard deviation of the coefficients. In this
way, only the features mostly related to the patient’s outcome have been retained.

4.5. Predictive Models and Machine Learning Techniques

Splitting of the data. After the pre-processing stage, the dataset resulted in 303 pa-
tients and 347 predictors, composed of the five features for each of the 69 hematochemical
parameters plus age and sex information. In order to reduce the number of features,
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a selection has been carried out as described in Section 5.2, resulting in a subset of only
six predictors. This dataset has been divided in two subsets, using an 80/20 split, resulting
in a training set composed of 242 patients, and a test set composed of 61 patients.

Predictive models. In order to analyze the predictive capacity of the selected variables,
it was decided to compare different machine learning models. The following six classifiers
have been considered:

Decision tree [32,33];

Random forest [34,35];

Gaussian naive Bayes [36];

Support vector machines [37];
K-nearest neighbors [38];

Adaptive boosting or AdaBoost [39,40].

SARNLI N

Models evaluation and settings. In order to evaluate the models during the hyper-
parameters exploration, the exhaustive grid search with k-fold cross-validation has been
implemented [41]. Final models have been assessed on the hold-out test set. As shown by
the literature, this method is used also to improve the classification accuracy [42]. Details
about the tuning of hyperparameters with grid search are provided in Appendix A.

The k-fold cross validation has been implemented directly in the grid search and has
the advantage of providing a precise estimation of the accuracy of the model and using
more data to validate the model [43].

In order to assess the performances of the different models, receiver operating charac-
teristic (ROC) curves and confusion matrices have been exploited.

5. Results
5.1. Statistical and Survival Analyses

Statistically significant differences in the risk of death, as well as in the risk of ad-
mission to the ICU, were found among the age groups, according to the p-value < 0.001.
Mortality risk was similar for male and female subjects (p-value 0.622), whereas statistically
significant differences were observed in the risk of admission to the ICU (p-value 0.032),
with the men more likely to be admitted to the ICU than women. These results are reported
in Table 1.

The Kaplan-Meier survival curves showed a similar survival pattern for males and
females (Figure 2A,B). Instead, as shown in Figure 2C,D, divergences in mortality were
observed between the younger and the older age groups.

5.2. Hematochemical Parameters Analysis

The results of the feature selection process are shown in Tables 3 and 4, together with
the logistic regression coefficients, indicated in the column “Logit coeff”. Only features
that satisfied Equation (2) have been reported, i.e., features with coefficients higher than the
thresholds 2.772 and 3.911, respectively, for mortality and admission to the ICU. From this
analysis, 32 features resulted significant for the mortality and 28 features for the admission
to the ICU.

In order to extract a unique feature subset, only the features that were found to be
significant for both outcomes were retained. They were lonized calcium max, CRP mean, CRP
min, Total bilirubin min, Erythrocyte max, Aspartate aminotransferase (AST) min.

The subset obtained was analyzed using the Mann-Whitney U test to check the
statistical significance of each feature; among the six features, three resulted in having a
high statistical significance for both outcomes with a p-value < 0.05: CRP mean, CRP min,
Total bilirubin min.
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Figure 2. Kaplan-Meier survival curves. (A) Kaplan-Meier curves for death as a function of
hospitalization days stratified by sex. (B) Kaplan-Meier curves for the admission to ICU as a function
of hospitalization days before the admission stratified by sex. (C) Kaplan-Meier curves for death as a
function of hospitalization days stratified by age. (D) Kaplan—Meier curves for the admission to ICU
as a function of hospitalization days before the admission stratified by age.

We also investigated if the considered feature sets, both the starting one with all the
features and the other one with the selected prognostic signatures, were discriminative
in an embedding scatter plot at reduced dimensionality, exploiting principal component
analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) [44] techniques.
Two plots have been made, one for survived and deceased patients, in Figure 3, and the
other one for patients who were or not transferred to the ICU, Figure 4.

Violin plots that depict the distribution differences between the conditions, both for
death and admission to the ICU, are reported in Figures 5 and 6.

Table 5 shows the results of Cox regression analysis used to estimate the relationship
between the risk predictive factors, i.e., all the six significant hematochemical features
examined, and the mortality rate or the rate of the admission to ICU.

Regarding mortality risk, HR higher than 1 was found for all the six features meaning
that patients who had values of the features outside the normality range are at increased
risk of mortality. Nonetheless, only the features CRP min and erythrocytes max were
statistically significant, with p < 0.001 and p < 0.05, respectively. It has to be noted that,
when we performed the Cox regression analysis, the HR for CRP mean was = 3.11 x 10°
with a 95% CI for log(HR), which spanned from —5020 to 5050, because this feature
was overrange in almost every hospitalized patients and 100% of dead patients. In fact
the associated p-value was 0.995, meaning that its HR was not statistically significant.
Therefore, we repeated the Cox regression analysis without this parameter, before reporting
the results in Table 5.

Regarding the admission to ICU, HR greater than 1 was observed for all the features,
except for Ionized calcium max. However, in this case, no feature was statistically significant
(p < 0.05). The most important predictor was CRP min, with HR = 1.789 (95% CI 1.000-
3.200, p = 0.050).

Thus, CRP min can be considered the most important risk factor for both outcomes.
A medical discussion about these features is provided in Section 5.4.

The hazard ratio with the 95% confidence interval for all features is plotted in the
logarithmic scale in Figure 7.
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Figure 3. Scatter plot of low dimensionality feature embedding (death outcome). A 2D visualiza-
tion of hematochemical parameters with PCA and t-SNE. Different colors are used for survived and
deceased patients. (Top left) PCA starting from the selected features; (top right) t-SNE from the
selected features; (bottom left) PCA starting from all features; (bottom right) t-SNE starting from

all features.
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Figure 4. Scatter plot of low dimensionality features embeddings (admission to ICU outcome).
A 2D visualization of hematochemical parameters with PCA and t-SNE. Different colors are used for
patients, who were (or not) transferred to the ICU. (Top left) PCA starting from the selected features;
(top right) t-SNE from the selected features; (bottom left) PCA starting from all features; (bottom
right) t-SNE starting from all features.
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Figure 5. Violin plots of the distribution of the selected laboratory features considering mortality
as outcome. C-reactive protein (CRP) mean, CRP min, Total bilirubin min, Erythrocyte max, AST min
proved to be statistically significant according to the Mann-Whitney U test.
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Figure 6. Violin plots of the distribution of the selected laboratory features considering the ad-
mission to ICU as outcome. lonized calcium max, CRP mean, CRP min, Total bilirubin min proved to be
statistically significant, according to the Mann-Whitney U test.
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Figure 7. Cox regression coefficients for mortality risk (top) and risk of admission to ICU (bot-
tom). Hazard ratio (HR) is plotted with the 95% confidence interval (CI).
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Table 3. Blood parameters. Data are reported as absolute frequency (percentage frequency).

Hematochemical Test Survived Deceased Not Admitted to ICU Admitted to ICU
<4.6 mg/dL 170 (90.4) 66 (82.5) 185 (94.9) 51 (69.9)
Tonized calcim max 4.6-5.3 mg/dL 17(9.0) 13 (16.2) 9 (4.6) 21 (28.8)
>5.3mg/dL 1(0.5) 1(1.2) 1(0.5) 1(1.4)
188 80 195 73
<29mg/L 18 (8.3) 0 (0.0) 17 (7.5) 1(1.4)
CRP mean >2.9 mg/L 199 (91.7) 84 (100.0) 211 (92.5) 72 (98.6)
217 84 228 73
<29mg/L 127 (585) 3 (3.6) 113 (49.6) 17 (23.3)
CRP min >2.9 mg/L 90 (41.5) 81 (96.4) 115 (50.4) 56 (76.7)
217 84 228 73
<0.20 mg/dL 4(1.9) 0 (0.0) 4(1.8) 0 (0.0)
e 0.20-1.00 mg/dL 206 (97.2) 76 (90.5) 213 (95.5) 69 (94.5)
Total bilirubin min >1.00 mg/gdL 2(0.9) 8 (9.5) 6(2.7) 4 (5.5)
212 84 223 73
<4.54 x10°/uL (M)
<3.85 ><106/uL (F) 52 (23.9) 38 (45.2) 60 (26.2) 30 (41.1)
4.54-5.78 x10°/uL (M)
Erythrocytes max  3.85-516 x 2 0/ L. (B) 155 (71.1) 39 (46.4) 154 (67.2) 40 (54.8)
>5.78 x10°/uL (M)
55.16 ><106/pL (F) 11 (5.0) 7 (8.3) 15 (6.6) 3(4.1)
218 84 229 73
<15U/L 37(17.1) 7 (83) 31 (13.7) 13 (17.8)
AST min 15-37 U/L 160 (74.1) 47 (56.0) 164 (72.2) 43 (58.9)
>37 U/L 19 (8.8)  30(35.7) 32 (14.1) 17 (23.3)
216 84 227 73

5.3. Predictive Models

Regarding the predictive models, only the hematochemical parameters have been
considered. According to the feature selection stage, only hematochemical tests that
resulted significant for both outcomes were retained. They were lonized calcium max, C-
Reactive protein mean, and C-reactive protein min, erythrocytes max, Total bilirubin min and
aspartate aminotransferase min.

Machine learning algorithms considered for realizing the predictive models were
decision tree, random forest, Gaussian naive Bayes, support vector machines, K-nearest
neighbors and AdaBoost, using the exhaustive grid search cross validation to obtain the
highest possible accuracy. The performances of the different models are displayed in
Figures 8 and 9.

Decision tree is found to e the model with the highest ROC-AUC for the mortality
prediction task, whereas SVM is the best model for predicting admission to ICU. Figures
10 and 11 depict the ROC curves, showing the performances on both the train set and the
test set for the best models.
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Table 4. Feature selection results for death and admission to ICU. The table displays the statistical information of the
different features filtered according to the logit coefficient shown in the last column, and the p-value for both outcomes.

p-value

Hematochemical Test Mean + Std Median + IQR Min-Max N U test Logit Coeff
Overall 42 +04 41+03 32-77 268
Survived 42+03 41+03 3.2-54 188 0.304 —3.178

Ionized calcium max Deceased 42+05 42+05 3.5-7.7 80

Not admitted toICU  4.1+0.3 41+0.2 3.2-54 195 0.003 5.629
Admitted to ICU 44+05 43+04 3.6-7.7 73
Overall 66.9 + 69.7 425 +76.4 2.9-332.0 301

Survived 36.8 +329 30.2 + 38.8 29-1694 217 <0.001 4.670
CRP mean Deceased 144.7 £ 79.0 137.0 £ 94.9 3.9-332.0 84

Not admitted to ICU  47.3 + 53.0 31.4+49.8 29-332.0 228 <0.001 4.169
Admitted to ICU ~ 1281+799  119.5+923 29-3302 73

Overall 29.1 £52.5 46+199 2.9-301.0 301
Survived 8.0+15.2 29+39 29-142.0 217 <0.001 3.252
CRP min Deceased 834 +722 63.8+119.2 29-301.0 &4

Not admitted to ICU 19.4 +41.2 31+78 2.9-301.0 228 <0.001 7.854
Admitted to ICU 59.2 +70.2 19.8 £93.5 29-2950 73

Overall 0.47 £ 0.40 0.40 £ 0.20 0.10-5.90 296
Survived 0.41+0.20 040+020 0.10-1.60 212 <0.001 2.999

Total bilirubin min Deceased 0.62 = 0.66 0.50 £ 0.30 0.20-590 84
Not admitted to ICU  0.43 + 0.24 040+020 0.10-1.60 223 0.009 4.104

Admitted to ICU 0.58 + 0.69 0.40 +0.20 0.20-5.90 73

Overall 45+0.6 46+0.8 26-68 302
Survived 4605 4.6+0.6 3.1-6.6 218 0.005 2.908

Erythrocytes max Deceased 44+08 43+09 26-68 84
Not admitted to ICU 4.6+ 0.6 46+0.7 2.6-6.8 229 0.588 4.105

Admitted to ICU 45+0.6 45+0.8 33-62 73

Overall 26.8 +15.0 23.0+15.0 7.0-115.0 300
Survived 23.5+10.5 21.0+11.3 7.0-74.0 216 <0.001 3.313

AST min Deceased 35.3£20.7 31.0+223 8.0-1150 84
Not admitted to ICU  25.9 + 14.0 220+14.0 9.0-115.0 227 0.279 7.477

Admitted to ICU 294 +£17.6 24.0 +£20.0 7.0-89.0 73

Table 5. Risk factors for both outcomes: Cox regression analysis. For each feature, the first row refers to the mortality
risk, whereas the second row refers to the admission to ICU.

Hematochemical Test Normality Range log(HR) 95% CI log(HR) HR 95% CI HR p
Not significant
CRP mean <29 mg/L 1061  [-0957,3080] 2890 [0.384,21.757] 0303
. 2.888 [1.879,3.897]  17.963 [6.548,49.277] <0.001
CRP min <29 mg/L 0.582 [0.000, 1.163] 1789  [1.000,3.200]  0.050
_ 6
Erythrocytes max 04578 x10°/uL (M) 0568 [0.132, 1.004] 1765  [1.141,2.729]  0.011

3.85-5.16 x10/uL (F)  0.393 [—0.111,0.897] 1481  [0.895,2.452]  0.127

0.435 [—0.317,1.188] 1.545 [0.728, 3.279] 0.257

Total bilirubin min 0.20-1.00 mg/dL 0.321 [-0712,1.355] 1379  [0.491,3.876]  0.542
. 0.281 [—0.161,0.722]  1.324  [0.851,2.059]  0.213

AST min 1537 U/L 0.192 [-0.290,0.674] 1211  [0.748,1.962]  0.436
Tomized caleinm max 4653 mg/dL 0.098 [£0.497,0.692]  1.103  [0.609,1.998]  0.747

—1.293 [-1.843, -0.744] 0.274 [0.158,0.475]  <0.001
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Figure 8. Predictive model performances for mortality prediction. Model performances for the
mortality prediction displayed as bar plots for accuracy, precision, recall, and ROC-AUC.

Models Evaluation for ICU prediction on test-set

100.00 ]

90.00 I | I

80.00 I I

70.00

60.00

50.00

40.00

30.00

20.00

10.00

0.0 Gaussian Nai S Vi
Decision Tree aussian Raive upportA ector K-Nearest Neighbor Random Forest Adaboost
Bayes Machines
W Accuracy 85.25 80.33 90.16 90.16 86.89 88.52
M Precision 66.67 66.67 90.91 84.62 73.33 83.33
M Recall 80.00 40.00 66.67 73.33 73.33 66.67
W ROC-AUC 83.19 90.00 95.07 81.74 90.00 89.93
M Accuracy M Precision MRecall & ROC-AUC

Figure 9. Predictive model performances for ICU prediction. Models performances for the ICU
admission prediction displayed as bar plots for accuracy, precision, recall, and ROC-AUC.
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5.4. Discussion

These results permit identifying a subset of features that can be used to predict the
worsening state of COVID-19.

In the cohort under study, we observed that the patients who were dead or who were
admitted to ICU presented alterations of the values of some hematochemical tests that we
identify as most predictive factors.

Particularly, we found that the CRP min was overrange in 96.4% (41.5%) of the dead
(alive) patients and 76.7% (50.4%) of the patients admitted (not admitted) to the ICU,
resulting in the main predictor factor for mortality risk and, even not statistically significant,
for the risk of admission to the ICU. These data are in accordance with the literature, which
suggests that the CRP is strongly associated with mortality in patients with COVID-
19 [35,45,46]. On the other hand, it is well known that CRP is a marker for systemic
inflammation already associated with severe disease in bacteria or virus infections.

It has been reported that, compared to moderate cases, severe COVID-19 cases had
lower red blood cell counts and hemoglobin levels [47]. It has also been stated that COVID-
19 is associated to red blood cell (RBC) damage and that the virus negatively affects the
process of RBC formation; thus, being responsible for multiple organ damage [48]. Indeed,
the statistical analysis showed that, in the cohort of study, the percentage of patients with
under range values of erythrocytes max was 45.2% (23.9%) in deceased (alive) patients and
41.1% (26.2%) in patients admitted (not admitted) to the ICU [49]. However, the feature
was shown to be only statistically significant for mortality risk.

In our cohort, we also observed that dead patients and patients admitted to the ICU
had higher Total bilirubin min value compared, respectively, to the survived and patients
not admitted to the ICU. Thus, the hyper-bilirubin level can also be exploited as a predictor
of worsening conditions in COVID-19 patients. Accordingly, a pooled analysis reported
that patients with severe COVID-19 display higher bilirubin levels compared to those with
milder forms [50]. An elevated bilirubin level is regarded as a vital marker of altered liver
function, indicating a likely liver injury due to the infection [51]. However, hyper-bilirubin
levels may be also due to erythrocyte damage and an increased hemolysis rate.

As to the AST min value, it was found to be statistically significantly higher in deceased
subjects compared to those who were discharged alive. In fact, the extracted min feature
was over range, respectively, in 35.7% of dead and 8.8% of survived patients. Likewise
the hyper-bilirubin levels, increased AST values, may indicate liver injury due to the
SARS-CoV-2 infection and a poorer outcome [52,53].

Finally, the last feature extracted was lonized calcium max, which we found to be under
range in a high percentage of patients with COVID-19, irrespective of the severity of the
disease. No significant differences were in fact observed between dead and surviving
patients. A retrospective case-control study by Pal et al. analyzing 72 patients with non-
severe COVID-19 and an equal number of healthy controls reported that hypocalcemia
was highly prevalent, even in COVID-19 patients with non-severe disease. They suggest
that hypocalcemia may be intrinsic to the disease per se [54]. Cappellini et al. also found
a decrease in whole blood ionized calcium levels in COVID-19 versus non-COVID 19
subjects, with the difference being statistically significant [55]. Thus, the lower serum
calcium levels observed may be due to a viral direct action on the regulation of the normal
ion homeostasis, as shown by the other viruses.

The limitations of the present study are mainly: (a) the acquired cohort comes from a
single hospital; therefore, the generalization capability of the developed models—as well
as on other cohorts—need to be assessed; (b) only features extracted by time series data of
the blood parameters were considered, not the raw data.
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6. Conclusions and Future Works

Artificial Intelligence can play a pivotal role in processing and analyzing patient data
for efficient diagnosis and prognosis. In this paper, we retrospectively analyzed a cohort of
hospitalized patients with confirmed diagnoses of COVID, with the purpose of recognizing
and evaluating a set of hematochemical parameters, which can be strong predictors of the
disease severity, considering, as outcomes, the mortality rate and the rate of admission
to ICU.

Starting from the data collection of 303 patients and 347 extracted features, considering
five features per each of the 69 hematochemical parameters, in addition to age and sex
information, through statistical feature selection techniques, the subset of predictors was
reduced to only six features for both target outcomes. They were the lonized calcium
max, CRP mean, CRP min, Total bilirubin min, Erythrocyte max, AST min. We showed that
modifications in the value of the six selected predictors are often present in the most severe
cases of the disease that are at high risk of deterioration [35,45,46,52,53,55-60], with CRP
min being the main predictor factor.

The best predictive model was the decision tree for the mortality prediction task,
with ROC-AUC of 89.66%, and the SVM for the ICU admission prediction, with ROC-AUC
of 95.07% confirming the possibility of utilizing these models for both outcome predictions.

In conclusion, the developed models can aid in the realization of a clinical decision sup-
port system, which can assist clinicians in the assessment of COVID-19 severity, increasing
the precision, accuracy, and velocity of the prediction.

Due to the reliability and accuracy of the developed models, it will be possible to
carry out a better stratification risk for COVID-19 hospitalized patients, allowing to reduce
severe cases of the disease and deaths.

Future works include the validation of these models on further groups of patients
that can allow to better understand the value of the identified predictors. Furthermore,
DL models, such as recurrent neural networks (RNNs) [61] or long short-term memory
(LSTM) [62], which are architectures designed for modeling temporal sequences, can be
exploited to obtain higher accuracy, although at the cost of results that are more difficult to
interpret [63].
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Abbreviations

The following abbreviations are used in this manuscript:

ARDS acute respiratory distress syndrome
AST aspartate aminotransferase

AUC area under the curve

CI confidence interval

COVID-19 Coronavirus disease 2019

CRP C-reactive protein

DL deep learning

DT decision tree

FN false negative

FP false positive

GNB Gaussian naive Bayes

GRU gated recurrent unit

HR hazard ratio

ICU intensive care unit

IOR interquartile range

ISTS irregularly sampled time series
KNN K-nearest neighbors

LSTM long short-term memory

ML machine learning

PCA principal component analysis

RBC red blood cells

RF random Forest

RNN recurrent neural network

ROC receiver operating characteristic
RT-PCR reverse transcription-polymerase chain reaction
SARS-CoV-2  Severe acute respiratory syndrome coronavirus 2
SVM Support vector machine

T-LSTM time aware long-short term memory
t-SNE t-distributed stochastic neighbor embedding
TN true negative

P true positive

Appendix A. Implementation Details

In regard to the architecture of the ML classifiers, the exhaustive grid search technique
has been implemented on a defined subset of the hyperparameters, each in a specific
range of possible values, in order to limit the searching time of the k-fold cross-validation
procedure (k = 10). The aim of this phase was to optimize the accuracy, resulting in a subset
of optimal hyperparameters for each classifier. Then, the classifiers were validated on the
hold-out test set, as described in Section 5.3. The setting of hyperparameters has been
performed twice, for the death outcome and the admission to ICU outcome.

The hyperparameters tuned for the DT were: the maximum depth of the tree (max_depth),
which has been optimized in a range from 1 to 8; the criteria used to measure the quality of
a split (criterion), which could be either gini or entropy; the strategy used to choose the
split at each node (splitter), which could be random or best.

The only hyperparameter tuned for the GNB classifier was the portion of the largest vari-
ance of all features that are added to variance for calculation of the stability (var_smoothing),
which was optimized in a range between 10~ and 10, with 10 steps.

The hyperparameters tuned for the SVM were: the regularization parameter (C),
chosen from the set {1,10,100,1000}; the kernel type used in the algorithm (kernel),
chosen from the set {linear, poly,rbf,sigmoid}; the kernel coefficient (gamma), which
could be either 1072 or 10~# (this parameter is set only when the kernel is not linear).

The hyperparameters tuned for the KNN were: the number of neighbors to use
(n_neighbors), in range from 1 to 10; the distance metric used by the tree (metric), tuned
from the set {euclidean, manhattan, chebyshev}.
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The hyperparameters tuned for the RF were: the criterion, as for the DT; the
max_depth, tuned in the range from 1 to 10; the bootstrap dichotomous value, to de-
cide if exploiting all the sample test data, or only the bootstrap sample.

The hyperparameters tuned for the AdaBoost were: the weights applied to each
classifier at each iteration (learning_rate), in a range from 10~# to 1; the maximum
number of estimators used (n_estimators), in a range from 10 to 100.

From our experiments, the optimal configuration of hyperparameters for each classifier
is as listed below.

e Death outcome best configuration:
— DT -criterion: gini; max_depth: 2; splitter: best.
—  GNB-var_smoothing: 0.001.
—  SVM -C: 1000; kernel: rbf; gamma: 0.001.
- KNN —metric: euclidean; n_neighbors: 5.
— RF -bootstrap: true; criterion: gini; max_depth: 7.
— AdaBoost — learning_rate: 0.01; n_estimators: 70.

e  Admission to ICU outcome best configuration:

— DT -criterion: entropy; max_depth: 2; splitter: best.
—  GNB - var_smoothing: 0.01.

—  SVM -C:1000; kernel: linear.

—  KNN -metric: euclidean; n_neighbors: 5.

—  RF -bootstrap: true; criterion: gini; max_depth: 7.

— AdaBoost — learning_rate: 0.1; n_estimators: 80.
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