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Abstract: Accurately predicting driving behavior can help to avoid potential improper maneuvers of
human drivers, thus guaranteeing safe driving for intelligent vehicles. In this paper, we propose a
novel deep belief network (DBN), called MSR-DBN, by integrating a multi-target sigmoid regression
(MSR) layer with DBN to predict the front wheel angle and speed of the ego vehicle. Precisely, the
MSR-DBN consists of two sub-networks: one is for the front wheel angle, and the other one is for
speed. This MSR-DBN model allows ones to optimize lateral and longitudinal behavior predictions
through a systematic testing method. In addition, we consider the historical states of the ego vehicle
and surrounding vehicles and the driver’s operations as inputs to predict driving behaviors in a
real-world environment. Comparison of the prediction results of MSR-DBN with a general DBN
model, back propagation (BP) neural network, support vector regression (SVR), and radical basis
function (RBF) neural network, demonstrates that the proposed MSR-DBN outperforms the others in
terms of accuracy and robustness.

Keywords: driving behavior prediction; deep belief network; intelligent vehicles

1. Introduction

Intelligent transportation systems aim to improve traffic efficiency, safety, and driver
comfort in various situations [1–3]. As an essential element of intelligent transportation
systems, intelligent vehicles have potentials to help traffic participants make effective
decisions for driving safely and efficiently. Most driver assistance systems are developed
to ensure and improve driving safety in specific critical environments [1], which requires
a clear and comprehensive understanding of driving behavior to achieve a high level
of intelligence [4]. An accurate driving behavior prediction can leave sufficient time for
driver assistance systems to deliver a warning to the driver or for autonomous systems to
directly take over the vehicle to ensure traffic safety [1]. Many researchers focus on driving
behavior prediction regarding elements, such as motion, gaze behavior, and intention [5–8].
Ref. [9] proposed a new evolving fuzzy systems method based on adaptive fuzzy pattern
classification for the detecting the lane-change intention of a driver. Ref. [10] applied
non-linear polynomial regression and recurrent hidden semi-Markov model to realize
the recognition of driver lane-change intention. Here, we focus on predicting driving
behaviors such as lateral and longitudinal behaviors. Some mature model-based methods
have been used for prediction such as dynamic Bayesian networks, support vector machine,
and hidden Markov models [11–14]. For example, Kumagai presents a driving behavior
prediction method based on dynamic Bayesian networks and shows good prediction results
for stop behavior [15]. A prediction approach based on a dynamic Bayesian network is
proposed for lane-change maneuvers and also shows good accuracy [16]. Ref. [17] develops
a prediction method for lane-change maneuver of the vehicle ahead by using a hidden
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Markov model, and result shows that the model can achieve a high accuracy rate. However,
model-based methods cannot adapt to the infinite complexity of driving behaviors.

Fortunately, the data-driven methods, such as artificial neural networks (ANNs), have
been widely used for driving behavior prediction because of their flexible structures and
powerful capability to describe non-linearity [18–21]. For instance, ref. [19] used three
variables (safe speed, workload, and yaw rate) as the inputs to predict a safe speed in
curve negotiation based on a two-layer back propagation (BP) neural network. In addition,
the ANNs were also used to predict upcoming lane change behavior by considering
three phases including lane change intention, preparation, and action [20]. Although
significant achievements have been made, the existing ANN-based methods, such as BP
and Radial Basis Function (RBF) neural network showed a limited accuracy in driving
behavior learning and prediction because of their shallow architecture and manually-
selected features [19,22,23].

The advanced on-board sensors allow obtaining plentiful data, which enables some
data-hungry techniques to be practicable such as deep learning. Deep learning has at-
tracted full attention because of its capability to automatically and genuinely extract
features [24–27]. Many recent works on driving behavior prediction are primarily based
on the image or video data from cameras [28–31]. For instance, researchers of [1,32] used
raw images and human driving videos from camera to predict different driver actions
including steering and braking/acceleration based on a recurrent neural network (RNN).
Ref. [33] exploited a convolutional neural network (CNN) to extract features in a scene
understanding subsystem for decision-making with considering the features from images.
Ref. [34] proposed a novel method to predict lane-change maneuvers in highway scenarios
by using deep learning and visual representations of the traffic scene. Additionally, some
scholars studied driving behavior using mobile-based signals, for example, ref. [35–37].
However, the majority research above relied on image data rather than focused on the
deep end-to-end network based on the data from on-board sensors for driving behavior
prediction. CNN is also widely used in a wide range of image-related research work due
to its powerful convolution structure in image feature extraction and recognition. It is
suitable for dealing with 2-D data such as image data, but not suitable for working on the
data obtained from on-board sensors [38].

Some existing works used the real-time and historical data collected from on-board
sensors to predict driving behaviors [39]. For example, ref. [26] took road geometry, his-
torical traffic information, and driver specific speed as inputs of a deep network stacked
autoencoder to predict current vehicle speed. Based on the historical sensory data collected
from natural driving, the structural RNN can predict the forthcoming lane-change behav-
iors of surrounding vehicles in 1∼3 s ahead [27]. Ref. [40] proposed a new model to predict
the lane-change maneuvers by considering the historical information and neighbor vehicles’
information. Driving behavior prediction should be not only based on the understanding
of traffic information but also based on the learning of driving control behavior of human
drivers to realize a high level of intelligence. However, the research above did not take
both human driver actions and environmental behaviors into consideration to predict the
future behavior of the ego vehicle.

Although the deep learning models can extract more features than shallow ones,
the above existing methods only separately predict longitudinal and lateral behaviors.
For example, ref. [26] focuses on the longitudinal while [27] focuses on lane change
behavior. Ref. [1] predicted lane change, steering, acceleration, and braking, but the
predictions of longitudinal and lateral behaviors are conducted regardless of their mutual
relationship. Among all deep learning methods, the deep belief network (DBN) is relatively
effective [41], and most of the applications based on DBN were classification [42]. Then,
researchers applied DBN into traffic flow prediction [43]. For example, ref. [41] predicted
the traffic flow using DBN with multitask learning, which proves the deep model can
achieve much high prediction accuracy for traffic flow. Considering the ability of DBN to
encode network with multiple layers and avoid over-fitting and local minimum [26,41,44],
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this paper attempts to develop a deep structure to predict longitudinal and lateral driving
behaviors simultaneously.

In addition, the driving action implemented by the driver does depend on the states
of surrounding vehicles. However, the future states of surrounding vehicles are unavail-
able when predicting the driver’s forthcoming behavior of the ego vehicle. Therefore,
most behavior prediction methods are based on historical data without considering the
future states of surrounding vehicles [1,32,33]. In this paper, we predict future states of
surrounding vehicles by utilizing corresponding historical states. Then, we predict the
future maneuver of the ego vehicle based on predicted states of surrounding vehicles and
historical multi-sensor data including the states of surrounding vehicles, the ego vehicle,
and driver control.

Tackling the problem of behavior prediction can simplify the problem of trajectory
prediction and contribute to the decision-making of the vehicle [27]. From this perspective,
this paper demonstrates that the deep learning model based on DBN can extract features
to predict and understand the driving behavior and then utilizes the DBN to predict the
lateral and longitudinal behaviors of an ego vehicle.

Figure 1 illustrates our proposed driving behavior prediction system, which consists
of four modules: data acquisition, data preprocessing, DBN prediction, and result analysis.
The main contributions of this paper are in three-fold:

• Developing a general prediction system, which allows us to consider real-world data
including states of surrounding vehicles and the ego vehicle and the driver’s control
inputs simultaneously to predict the driving behavior in an end-to-end way;

• Proposing a systematic testing method to obtain optimal parameters of the prediction
model;

• Proposing an MSR-DBN prediction model with a multi-target sigmoid regression
layer to realize coupled optimization for lateral and longitudinal behavior prediction.

(c) DBN prediction(d) Result analysis

(a) Data acquisition (b) Data preprocessing

The ego vehicle

Surrounding vehicle

Driver control

RBM training

Fine tuning

Behavior predictionPrediction accuracy

Data filtering 

Normalization

Training data

Testing data

Figure 1. Proposed driving behavior prediction system.

The remainder of the paper is organized as follows. Section 2 presents the DBN
prediction architecture and proposes the MSR-DBN prediction model. Section 3 presents
the data collection and data pre-training for the experiment. Section 4 shows the experiment
process of determining the optimal structure of our proposed model. Then, the prediction
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results based on MSR-DBN and comparison results are analyzed. Section 5 gives further
discussion and conclusion.

2. Driving Behavior Prediction Model
2.1. MSR-DBN Prediction Model

The DBN, as a deep learning approach, usually is composed of several restricted Boltz-
mann machines (RBMs) [45,46]. Figure 2 displays the typical DBN prediction architecture
with a multi-target sigmoid regression (MSR) layer as the predictor. The architecture is
composed of one input layer, n hidden layers (i.e., n RBMs), and one output layer. The input
layer is the first RBM (denoted as RBM1), which is observable.
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Figure 2. The typical DBN driving behavior prediction architecture.

Our goal is to predict the lateral and longitudinal behaviors of an ego vehicle such
as the front wheel angle and speed by considering the behaviors of surrounding vehicles.
To this end, we select three states as the model inputs, including the states of the ego
vehicle, the driver operations, and the states of surrounding vehicles. Specifically, we
denote the inputs as I = {IE, ID, IS}, i.e., the states of the ego vehicle (IE), driver control (ID),
and surrounding vehicles (IS), respectively. These three inputs are defined as

IE = v(t−N):t

ID = α(t−N):t

IS = [4x(t−N):(t+1),4y(t−N):(t+1),4v(t−N):(t+1)]

(1)

where t− N denotes the historical time t− N, t denotes the current moment, t + 1 denotes
the future moment; v(t−N):t and α(t−N):t are a series of data for speed and front wheel angle
of the ego vehicle from time t− N to t;4x(t−N):(t+1),4y(t−N):(t+1), and4v(t−N):(t+1) are
the relative lateral position, relative longitudinal position, and relative speed between the
ego vehicle and surrounding vehicles from time t− N to t + 1, respectively.

We conducted a series of experiments and found that traditional architecture in
Figure 2 cannot obtain an expected prediction performance for both front wheel angle and
speed simultaneously. One of the reason is that the model has an integrated structure,
and the same fixed layers and model parameters are obtained and used to predict lateral
and longitudinal behaviors simultaneously. However, these two behaviors are significantly
different from each other. To overcome this limitation, we modify the DBN structure by
adopting different sub-structures for front wheel angle (α) and speed (v) separately with
the same input and output (Figure 3). Our proposed model contains two sub-networks:
a four-layer sub-network for front wheel angle and a five-layer sub-network for speed,
to extract features and predict the front wheel angle and speed of the ego vehicle (i.e.,
Step 1 in Figure 3). This modification makes it tractable to optimize the couplings of the
lateral and longitudinal behaviors.

In order to improve the prediction efficiency, Layer #2 and Layer #3 share a sub-
network between the front wheel angle and speed in the new model, i.e., RBM1 and RBM2
share the RBMs to train model parameters for two sub-networks (see Step 1 and Step 2 in
Figure 3). The shared layers can not only simplify the model structure and reduce model
parameters but also contribute to reducing the redundant computing burden. The output
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layer in the front wheel angle sub-network and the Layer #4 and output layer in speed
sub-network are independent layers to extract further features and predict lateral and
longitudinal behaviors. We chosen 100 hidden nodes in the shared layers (Layers #2 and
#3) and Layer #4; see details in Section 4.

Training data
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Figure 3. Improved MSR-DBN prediction model.

2.2. Training Procedure

Figure 3 shows the training process of our model including two steps [41,47–49]:
pre-training and fine tuning. The algorithm of the proposed MSR-DBN prediction model is
summarized as:

• Initialization—Initialize the weights and biases and preprocess training and test-
ing data;

• Pre-training—Train the shared layers and independent layers for the feature extraction
to obtain the model parameters {w′, b′} based on two sub-networks (i.e., Step 1 in
Figure 3);

• Fine tuning—Obtain the initial prediction {α′, v′} based on a multi-target sigmoid
regression layer, and utilize a back propagation to fine tune the final prediction model
(i.e., Step 2 in Figure 3);

• Prediction—Predict driving behavior and output {α, v} for the ego vehicle.

In addition, the pre-training procedure can produce the initial model parameters
by the unsupervised learning, based on which the fine-tuning procedure operates the
unsupervised learning to obtain the initially predicted behaviors. Then the supervised
learning method is used to predict the behaviors. Note that, the pre-training trains the
initial model parameters in an unsupervised method without given driving behavior labels,
while the fine tuning adjusts and updates the parameters in a supervised method based on
labeled behaviors. In what follows, we will detail the training and tuning procedures.

2.2.1. Pre-Training Procedure

Based on a stack of RBMs, pre-training is to initialize parameters through unsuper-
vised greedy algorithms. Usually, the RBM is composed of a visible layer (denoted as
R) and a hidden layer (denoted as H), as shown in Figure 4. RBM1 is the first RBM,
and nodes4x,4y,4v, v represent the visible nodes of RBM1. The nodes between layers
are interconnected while those in the same layer are disconnected with each other [41,50].

Define P(r, h|θ) as the probability distribution of a single RBM, then the energy
function of the RBM is given as

E(r, h|θ) = ln P(r, h|θ)

= −
K

∑
k=1

akrk −
J

∑
j=1

bjhj −
K

∑
k=1

J

∑
j=1

wkjrkhj
(2)
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where θ = (wkj, ak, bj) are the model parameters, wkj is the weight from the k-th visible
node rk to the j-th hidden node hj; ak and bj are the biases of rk and hj in a single RBM,
respectively. For the input layer in Figure 3, the input units including IE, ID, and IS
correspond to the visible nodes rk of the R layer for RBM1, as shown in Figure 4 and
Equation (2).

··· ···

··· ···R

H

··· ···

··· ···R

H

Same layer

Same layer

··
·

1w

1h 2h
jh Jh

2w

'

1h '

2h
'

jh '

Jh

kr Kr1r 2r

1RBM

2RBM

vx y v

Figure 4. Schematic diagram for the RBM and training process for the pre-training.

Given the state of the visible unit r and the state of the hidden unit h, the activation
probabilities of hj and rk are written as

P(hj|r, θ) = sigm(bj + ∑K
k=1 rkwkj)

P(rk|h, θ) = sigm(ak + ∑J
j=1 hjwkj)

(3)

with the sigmoid function
sigm(z) = 1/(1 + exp(−z)) (4)

We update the parameter θ using the contrastive divergence algorithm [45,51]. The
update rules for weight wkj and biases ak and bj are given as

4wkj = η · (E(rkhj)data −E(rkhj)model)

4ak = η · (E(rk)data −E(rk)model)

4bj = η · (E(hj)data −E(hj)model)

(5)

where η is the learning rate for pre-training procedure which varies from zero to one,
E(·)data and E(·)model represent the expectations of the training data and the distribution
of the model, respectively.

In the DBN, the output of an RBM is the input of the next RBM, that is, the adjacent
RBMs have a shared layer with the same nodes, as shown in Figure 4. The pre-training
process is achieved via Step 1 in Figure 3. All the RBMs are trained one by one. Specifically,
the RBMs are trained from the first RBM to the last one, and once an RBM is trained, its
output will be regarded as the input of the next RBM. Thus, we can initialize the model
parameters {w′, b′} for the fine-tuning procedure. Then, the output of the last RBM is fed
as the input of the sigmoid regression (Figures 2 and 3).
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2.2.2. Fine-Tuning Procedure

The fine-tuning procedure is a supervised part based on BP network, and Step 2 in
Figure 3 explains the training process. Once obtaining the initial weights and biases for the
prediction model after training RBMs one by one, the fine tuning adjusts model parameters
to obtain the final prediction model.

Specifically, after obtaining the initial parameters θ′ = (w′kj, a′i, b′j) through the pre-
training procedure, the network makes use of the forward propagation algorithm to
compute the output of the hidden units.Then, a multi-target sigmoid regression layer is
applied as shown in Figure 2 to predict the initial output O′p (i.e., initial front wheel angle
and speed) [41]. The initial output O′p = {O′pα

, O′pv} of the multi-target sigmoid regression
layer is defined as

O′pα
= sigm(b′α + O′pα−1

w′α)

O′pv = sigm(b′v + O′pv−1
w′v)

(6)

where {b′α,w′α} and {b′v,w′v} are the initial biases and weights for α′ (i.e., O′pα
) and v′ (i.e.,

O′pv ), respectively. O′p is the output for the output layer of Step 1 in Figure 3, and O′pa−1
and O′ps−1

are the initial outputs of Layer #3 and Layer #4 for front wheel angle and speed,
as shown in Figure 3.

In order to optimize the prediction model, the BP network uses a back propagation
algorithm to fine tune the parameters θ′. We need to calculate the sensitivity σ of layers to
modify the parameter of the model from the top layer to the bottom layer. For the predictor
layer, the predicted output for the k-th node is assumed to O′pk

, and the actual expected
output is O′ak. The sensitivity σ can be computed by

σk = O′pk
(1−O′pk

)(O′ak −O′pk
) (7)

For the l-th hidden layer, σ can be written as

σl
k = O′p

l
k
(1−O′p

l
k
)∑

j
wl

kjσ
l+1
j (8)

Then, θ′ can be adjusted to θ and back to each layer. Thus, the model parameters can
be updated and adjusted. Similar to Equation (6), the final output Op, the prediction result
of the model, is as below

Op = {αt+1, vt+1} (9)

where αt+1 and vt+1 are the final front wheel angle and speed of the ego vehicle at the
future moment, respectively.

3. Data Collection and Data Processing
3.1. Data Collection
3.1.1. Data Acquisition

We collected the real-vehicle data by BYD Surui, an autonomous vehicle of Intelli-
gent Vehicle Research Center of Beijing Institute of Technology (BIT). The data acquisition
platform was equipped with on-board sensors to collect vehicle and traffic data. An OxTs in-
tegrated navigation system was used to collect GPS information, such as latitude/longitude,
heading angle, and time stamp of data. Vehicle CAN-bus provided throttle pedal position,
brake pressure, front wheel angle, vehicle speed, and time stamp of data. Radar detected
both mid-range and long-range obstacles and provided positions of states of surrounding
vehicles. Additionally, a camera was used to collect the scene image information. Table 1
shows some important information of data collection.
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Table 1. Information of data collection.

Name Parameter Units

power unit combustion engine with automatic transmission -
travel distance 48 km

travel time 0.95 h
average velocity 50.27 km/h
collection time 3 to 3.57 (off-peak) pm

Our vehicle was driven by an experienced human driver and interacted with sur-
rounding vehicles in the Third Ring Road in Beijing, and the route is shown by the red
curve in Figure 5. We focus on the naturalistic driving scene in the straight road rather
than complex scenarios, such as turning scenario and intersection scenario. Specifically,
we excluded the data under complex scenarios based on the scene images captured by the
camera and selected the data. Finally, 20,000 samples were selected for the prediction.

Figure 5. Data acquisition route.

3.1.2. Data Preprocessing

We focus on the surrounding vehicles that have significant effects on the ego vehicle
and extract the data of three surrounding vehicles including the left front vehicle, the front
vehicle, and the right front vehicle. Based on the collected data of 64 target points by
radar, we used dynamic target analysis and the geometric relationship, such as relative
position and relative speed to calculate and extract the states of the surrounding vehicles.
In addition, we extracted the historical speed (v) and front wheel angle (α) of the ego
vehicle and the relative position (4x and4y) and speed (4v) of surrounding vehicles to
train our prediction model. The historical front wheel angle of the ego vehicle are treated
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as the control state of the human driver. Thus, we integrated and preprocessed the driver’s
operations, the states of the ego vehicle, and the states of surrounding vehicles. After
obtaining the filtered data, we normalized them into [0, 1] to satisfy the input requirement
of DBN, and then divided them into two groups as training and testing data.

3.2. Performance Evaluation

Three kinds of matrics are used to evaluate the performance of the prediction model
by measuring the errors of prediction results [24,52–54], including root mean square error
(RMSE),

RMSE = [
1
N

N

∑
n=1

(Oa −Op)
2]1/2 (10)

mean absolute error (MAE),

MAE =
1
N

N

∑
n=1
|Oa −Op| (11)

and mean relative error (MRE),

MRE =
1
N

N

∑
n=1
|
Oa −Op

Oa
| (12)

where N represents the sample number, Oa represents the observed actual behavior, Op
represents the predicted behavior. Here, we do not use MRE to evaluate the prediction
performance for the front wheel angle since the front wheel angle may be equal to 0 or
close to 0, thus leading to a positive infinite value of MRE.

3.3. Model Input Selection

As mentioned above, this paper is based on a series of historical data and current
states of the ego vehicle and surrounding vehicles to predict the driving behavior of the
ego vehicle [55]. More than 20,000 samples are used to train and test our prediction model
(the training data account for approximately 85%). The input includes the historical data of
the ego vehicle, driver operation, and surrounding vehicles, as described in Equation (1).
In urban complex traffic, the surrounding vehicle behaviors would affect the state of the
ego vehicle since they need to interact with each other. Additionally, the future states of
the surrounding vehicles will influence the decision-making of the ego vehicle. Therefore,
we take the states of surrounding vehicles at the next moment as one of input to improve
the prediction accuracy by simulating real scenarios. However, the future behaviors of
surrounding vehicles are unknown when predicting the next state of the ego vehicle.
Therefore, this section will firstly predict the driving states of surrounding vehicles.

We will explore different time-series inputs to find the appropriate one for the predic-
tion model. A series of experiments demonstrate that the errors are relatively low when
the learning rate η is 0.7, and the number of hidden nodes is 100, which will be introduced
explicitly in Section 4. In this section, the learning rate and hidden nodes are similarly fixed
(0.7 and 100, respectively) to show our experiment design clearly.

3.3.1. State Prediction of Surrounding Vehicles

To simulate the real situation, we will predict the states of surrounding vehicles for the
forthcoming moment. For the surrounding vehicles, the rear vehicles drive normally and
have little influences on the ego vehicle which can be neglected, and we only consider the
effects of front vehicles. Since increasing the number of layers of DBN would significantly
increase the training time, we choose DBN with one hidden layer to predict the states of
the surrounding vehicles.

Based on different historical data of surrounding vehicles, we can compute the errors
of 4x, 4y, and 4v (i.e., 4xRMSE, 4xMAE, 4yRMSE, 4yMAE, 4vRMSE, and 4vMAE) for
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surrounding vehicles including the left front vehicle, front vehicle, and right front vehicle,
as shown in Table 2. Five cases (Case 00, Case 01, Case 02, Case 03, and Case 04) represent
different historical data for previous 0 s, 1 s, 2 s, 3 s, and 4 s, respectively. In Table 2,
the minimum errors for4xRMSE,4xMAE,4yRMSE,4yMAE,4vRMSE, and4vMAE among
three surrounding vehicles are in red; the second-minimum errors are in blue; the value in
red in the type column is the selected type for our prediction model.

Table 2 indicates that Case 01 obtains the lowest 4vRMSE and 4vMAE for three sur-
rounding vehicles among all types, and the second minimum for the majority4yRMSE and
4yMAE. Even though some4xRMSE and4xMAE in Case 01 do not obtain the lowest errors
among all the five types, the relative lateral positions have little effects on the ego vehicle
and all the vehicles driving regularly and safely on their own lanes, so we select Case 01
as the optimal one to predict surrounding vehicles in this paper. Thus, we choose Case
01 (i.e., the historical data 1 s ahead) to predict the states of surrounding vehicles at the
next moment.

Table 2. Prediction errors for surrounding vehicles based on DBN.

Type Surrounding Vehicles\Errors 4xRMSE 4xMAE 4yRMSE 4yMAE 4vRMSE 4vMAE

Case 00
Left front vehicle 0.1793 0.1223 2.6915 2.2376 1.3976 0.8935
Front vehicle 0.2865 0.2139 2.3622 1.6879 1.2073 0.8054
Right front vehicle 0.2875 0.2293 3.5747 1.9832 1.5416 1.1863

Case 01
Left front vehicle 0.4094 0.3794 3.9323 2.5273 0.9838 0.7563
Front vehicle 0.1396 0.1036 3.6175 3.0658 0.5568 0.4278
Right front vehicle 0.4806 0.4685 2.5734 2.0658 0.8483 0.6464

Case 02
Left front vehicle 0.2568 0.1527 3.6497 2.5632 1.5037 1.0070
Front vehicle 0.2391 0.1758 9.7533 6.8699 1.3156 0.9809
Right front vehicle 0.2899 0.2175 9.8397 5.5563 1.8377 1.2637

Case 03
Left front vehicle 0.1814 0.1068 6.2141 4.4135 1.8260 1.6235
Front vehicle 0.1909 0.1352 5.1570 3.1565 2.0950 1.7989
Right front vehicle 0.1901 0.1217 3.8158 2.2171 1.5692 1.3391

Case 04
Left front vehicle 0.2912 0.1947 11.3866 9.5590 2.0985 1.4397
Front vehicle 0.2587 0.2040 9.0340 8.0025 1.5723 1.2682
Right front vehicle 0.2613 0.1882 5.4806 3.4477 2.8110 2.4085

Figure 6 presents the comparison results with BP and RBF to illustrate the prediction
accuracy for surrounding vehicles based on DBN, where superscripts 01, 02, and 03
represent the relative states of the left front vehicle (vehicle1), front vehicle (vehicle2) and
right front vehicle (vehicle3) with respect to the ego vehicle (vehicle0), associated with
Table 2. Most RMSE and MAE values of4x,4y and4v for three surrounding vehicles
are slightly low, compared to those of BP and RBF. Thus, we utilize the prediction results
of the surrounding vehicles to improve the driving state prediction for the ego vehicle.

3.3.2. Different Historical Data

To obtain an optimal prediction performance of driving behavior for the ego vehicle,
we test different inputs with different historical data of the ego vehicle and surrounding
vehicles. Table 3 shows the prediction errors of α and v of DBN with one RBM (0.7 learning
rate and 100 hidden layer nodes), where Case 0, Case 1, Case 2, Case 3, and Case 4 represent
N = 0, N = 1, N = 2, N = 3, and N = 4 in Equation (1), respectively. In order to describe
the results efficiently, we term the prediction errors of the front wheel angle as αRMSE and
αMAE. Additionally, the RMSE, MAE, and MRE of the speed are abbreviated as vRMSE,
vMAE, and vMRE.

Table 3 shows that Case 0 obtains the lowest vRMSE, vMAE and vMRE while Case 4 and
2 obtain the lowest αRMSE, and αMAE. The errors of speed are relatively higher than those
of front wheel angle, so we consider the errors of speed in the first place. Even though
Case 0 obtain the lowest value of the errors of speed, it obtains a more significant error of
front wheel angle, compared to Case 4. Thus, we choose Case 1 since most of the errors of
speed and front wheel angle are acceptable. The rest of this paper will regard the current
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states and historical states 1 s ahead of surrounding vehicles and the ego vehicle and the
predicted states of surrounding vehicles at next moment as input to predict the driving
behavior of the ego vehicle.
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Figure 6. Prediction errors for surrounding vehicles based on different methods.

Table 3. Prediction errors for ego vehicle based on DBN with one RBM.

Type\Errors αRMSE αMAE vRMSE vMAE vMRE

Case 0 0.1935 0.1874 0.3055 0.2364 0.0172
Case 1 0.0946 0.0514 0.4668 0.3920 0.0654
Case 2 0.0323 0.0212 0.6665 0.5054 0.0317
Case 3 0.0617 0.0516 0.5971 0.4851 0.0395
Case 4 0.0279 0.0228 1.4551 1.2334 0.0968

4. Results
4.1. Experiment of DBN Structure

Previous studies have obtained some prediction models based on DBN by determining
different parameters, such as the prediction model for traffic flow [41]; however, it is still
unknown which kind of structure is appropriate for driving behavior prediction, and there
is not a general method to guide the model design. To obtain an optimal DBN structure
for prediction, we explore a systematic testing method and train the model using the
cut-and-try method which is similar to the training method used by [54]. Specifically,
the performance of one parameter of the model is investigated by keeping other parameters
fixed. The parameters of our prediction model mainly include the learning rate, the number
of hidden layers, and the number of nodes in hidden layers [56,57]. The prediction model
has 31 input nodes and 2 output nodes as described above.

4.1.1. Learning Rates

The number of hidden layers and hidden nodes are determined by firstly testing
different learning rates. In this subsection, we set the DBN structure with one hidden
layer (i.e., one RBM) consisting of 100 hidden nodes. The prediction results of our model
for different learning rates are obtained based on training data, as shown in Table 4.
Both αMAE (0.0939) and αRMSE (0.0493) reach the best performance at the learning rate
0.5, and vRMSE, vMAE, and vMRE obtain the best performance with the learning rate 0.9,
respectively. However, a large learning rate would cause a poor prediction performance
because of over-fitting [51]. Additionally, Table 4 demonstrates that the error of speed is
larger than that of the front wheel angle. Thus, we chose the learning rate as 0.7 since all
the errors are close to their associated lowest ones.
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Table 4. Prediction results of different learning rates for front wheel angle and speed.

Learning Rate αRMSE αMAE vRMSE vMAE vMRE

0.1 1.0406 1.0118 15.1516 15.0381 2.5666
0.3 0.1029 0.0547 0.5516 0.4731 0.0814
0.5 0.0939 0.0493 0.5019 0.4335 0.0741
0.7 0.0946 0.0514 0.4668 0.3920 0.0654
0.9 0.0942 0.0494 0.4166 0.3381 0.0571

4.1.2. Hidden Layers

The number of hidden layers is explored by fixing the number of hidden nodes in each
hidden layer to 100. Table 5 shows the errors based on different hidden layers. The limited
training data size causes an unsatisfied prediction performance of complex structure with
over 3 layers for front wheel angle and speed, which may be caused by under-fitting. When
the number of RBM is 3, all the prediction errors of speed (vRMSE of 0.3858, vMAE of 0.2965,
and vMRE of 0.0531) are the lowest values, i.e., it achieves the best performance. αRMSE and
αMAE are the lowest values when setting the hidden layers as two and one, but larger errors
for speed than those of three layers. For the three-hidden-layer structure, αRMSE = 0.1431 is
slightly larger than the average error of 0.1290, but αMAE = 0.0811 is lower than the average
value of 0.0862. In addition, this structure performs the best for speed as mentioned above.
Therefore, we choice the hidden layer as 3.

Table 5. Prediction results of different hidden layers for front wheel angle and speed.

Number of RBM αRMSE αMAE vRMSE vMAE vMRE

1 0.0946 0.0514 0.4668 0.3920 0.0654
2 0.0900 0.0586 0.5763 0.4576 0.0878
3 0.1431 0.0811 0.3858 0.2965 0.0531
4 0.1171 0.0906 1.8569 1.5595 0.2867
5 0.1866 0.1310 1.5647 1.2909 0.2387
6 0.1427 0.1044 1.7684 1.4769 0.2716

Average 0.1290 0.0862 1.1032 0.9122 0.1672

4.1.3. Hidden Nodes

Based on the analysis above, we test the model with different hidden nodes when the
learning rate is 0.7, and the hidden layer is 3. The number of hidden nodes is set to 32, 50,
64, 100, 128, 150, 200, and 256, respectively. Table 6 shows the test results and indicates
that for the front wheel angle, fewer hidden nodes in each hidden layer can achieve better
performance. Specifically, αRMSE and αMAE obtain the lowest errors for the front wheel
angle when the hidden nodes are [32, 32, 32] and [64, 64, 64]. For the speed, the structure
with 100 hidden nodes in each layer is the best choice. Although αRMSE and αMAE are
0.1431 and 0.0811 with 100 hidden nodes, and are slightly larger than the lowest value,
they are still lower than the average ones. However, inappropriate hidden nodes (e.g., 32
and 200) for the speed would lead to an unsatisfied performance because too few nodes
are insufficient to extract representative features and too many nodes would lead to extra
burden to the training model. Therefore, we set 100 nodes in each hidden layer.

Finally, we can obtain a three-hidden-layer DBN prediction model with 100 hidden
nodes and the learning rate of 0.7, denoted as DBN100

3 . The subscript represents the number
of hidden layers and superscript represents the number of nodes in each hidden layer.
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Table 6. Prediction results of different hidden nodes in a layer.

Hidden Nodes αRMSE αMAE vRMSE vMAE vMRE

32 0.1160 0.0766 1.8241 1.5283 0.2829
50 0.1279 0.0768 1.6475 1.3799 0.2543
64 0.1212 0.0717 1.0640 0.8687 0.1592
100 0.1431 0.0811 0.3858 0.2965 0.0531
128 0.2090 0.1555 1.2237 0.9832 0.1830
150 0.1426 0.0778 0.5932 0.4585 0.0778
200 0.1751 0.1260 1.5396 1.2659 0.2316
256 0.1614 0.1093 1.1938 0.9601 0.1720

Average 0.1495 0.0968 1.1840 0.9676 0.1767

4.2. Structure of MSR-DBN

Based on the obtained DBN100
3 , we should optimize the prediction performance further.

Tables 5 and 6 show that the DBN100
3 performs best for speed, but not for the front wheel

angle. In addition, the two-hidden-layer structure with 100 nodes in Table 5 achieves much
better performance for the front wheel angle, which is even better than the three-hidden-
layer model with 32 and 64 nodes.

Considering both front wheel angle and speed, we modify the prediction model
DBN100

3 and proposes a novel MSR-DBN prediction model which is a four-five-layer
prediction model for the driving behavior of the ego vehicle as shown in Figure 3. Thus,
the MSR-DBN consists of two sub-systems: a two-hidden-layers sub-network for front
wheel angle and a three-hidden-layers sub-network for speed.

4.3. Result Analysis and Comparison

To demonstrate the performance of our improved MSR-DBN for driving behavior
prediction, we analyze and compare the prediction results with DBN100

3 , SVR, BP, RBF,
and the actual values [24,44,54]. Figures 7 and 8 show the prediction results of the front
wheel angle and speed. We can see that these five prediction results have the same tendency
with the actual value, indicating that all these five methods can predict driving behaviors
for intelligent vehicles.
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Figure 7. Prediction results of the front wheel angle based on different methods.
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Figure 8. Prediction results of the speed based on different methods.

Figure 7 shows that SVR, BP, and RBF could achieve a relatively close performance.
The prediction results based on DBN100

3 are closer to the actual values than SVR, BP, and RBF
in the light of its deep architecture. However, the performance of MSR-DBN outperforms
all of these four methods. For example, in the 250-th test sample, the MSR-DBN obtains
the performance (−0.38 rad) that is the closest one to the actual value (−0.54 rad) than
the others.

However, different results occur for speed, as shown in Figure 8. The RBF obtains the
worst prediction performance, which even appears many big jumps for speed (such as the
test samples 50 and 350). In addition, BP has more fluctuations while it obtains a satisfying
performance for speed. However, the DBN achieves a better prediction performance,
compared with RBF and SVR. Take the 190-th sample for example, SVR cannot obtain
a prediction performance of speed as good as the front wheel angle, and the prediction
result is approximately 7.35 m/s which is higher than the actual speed. The predictions of
DBN100

3 and MSR-DBN (6.85 m/s and 6.5 m/s, respectively) are slightly larger than the
actual one (6.45 m/s). Therefore, the MSR-DBN is more robust, compared with the other
four models.

We also compare the prediction errors of MSR-DBN with the other four models to
further illustrate the prediction performance, as shown in Table 7. Specifically, the RBF
model obtains higher αRMSE and αMAE than SVR and BP. The DBN100

3 model obtains a larger
error of front wheel angle, compared with other three models. However, the proposed
MSR-DBN outperforms DBN100

3 with αRMSE (0.1165) and αMAE (0.0593), which is consistent
with the results in Figures 7 and 8.

For the prediction of speed, the SVR obtains the worst performance with vRMSE = 0.9142,
vMAE = 0.8447, and vMRE = 0.1541, followed by RBF and BP. Compared to SVR, RBF,
and BP, DBN100

3 obtains a smaller error, and MSR-DBN outperforms DBN100
3 . Thus, com-

pared to DBN100
3 , the MSR-DBN can not only improve the prediction performance of front

wheel angle, but reduce the errors of speed, which shows a strong capability of predicting
driving behavior.
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Table 7. Error comparison for front wheel angle and speed based on different models.

Methods\Errors αRMSE αMAE vRMSE vMAE vMRE

SVR 0.1256 0.0813 0.9142 0.8447 0.1541
BP 0.1277 0.0860 0.5799 0.3684 0.0695

RBF 0.1806 0.1009 1.0403 0.6894 0.1090
DBN100

3 0.1431 0.3858 0.0811 0.2965 0.0531
MSR-DBN 0.1165 0.0593 0.2067 0.1626 0.0259

4.4. Generalization Performance Analysis

In order to analysis the generalization performance of the MSR-DBN, test in different
dataset is necessary. The highD dataset is a new dataset used by many researchers, it
uses a drone to record the naturalistic vehicle trajectories on German [58]. It can provide
higher-precision trajectory information by using state-of-the-art computer vision algo-
rithms. Different from the urban road scenario data collected by ourselves, highD dataset
is collected from the highway scenario. We can extract the position, speed and other
information of the ego vehicle and surrounding vehicles from the dataset, but the steering
wheel angle information is not provided. We choose the longitudinal velocity of x-axis as
the speed, and the lateral velocity of y-axis to present the steering wheel angle. As shown
in Figure 9, the MSR-DBN still has a good prediction performance.

(a) (b)

Figure 9. Prediction results on highD dataset. (a) Prediction result of lateral speed. (b) Prediction
result of longitudinal speed.

5. Discussion

This paper presented a driving behavior prediction system with four sub-systems, data
acquisition, data preprocessing, DBN prediction, and result analysis. This system can utilize
multi-resource data including states of the ego vehicle, states of driver control, and states
of surrounding vehicles. In addition, we used a systematic testing method obtaining
an optimal DBN structure DBN100

3 and then developed a new DBN (called MSR-DBN,
consisting of two sub-networks) by integrating a multi-target sigmoid regression to predict
the longitudinal and lateral driving behavior simultaneously. A series of comparison results
demonstrate that our proposed MSR-DBN can reduce the prediction errors of the speed and
front wheel angle with more stable performance and higher accuracy for driving behavior.

Although our proposed MSR-DBN shows promising results, there still exist some
work to improve further prediction performance, such as increasing more data. Addi-
tionally, more complex predictions will be conducted in the near future such as real-time
behavior prediction, specific behavior prediction in different scenarios, and interaction
behavior prediction.
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