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Abstract: Thermal drift of nano-computed tomography (CT) adversely affects the accurate reconstruc-
tion of objects. However, feature-based reference scan correction methods are sometimes unstable
for images with similar texture and low contrast. In this study, based on the geometric position
of features and the structural similarity (SSIM) of projections, a rough-to-refined rigid alignment
method is proposed to align the projection. Using the proposed method, the thermal drift artifacts
in reconstructed slices are reduced. Firstly, the initial features are obtained by speeded up robust
features (SURF). Then, the outliers are roughly eliminated by the geometric position of global features.
The features are refined by the SSIM between the main and reference projections. Subsequently,
the SSIM between the neighborhood images of features are used to relocate the features. Finally,
the new features are used to align the projections. The two-dimensional (2D) transmission imag-
ing experiments reveal that the proposed method provides more accurate and robust results than
the random sample consensus (RANSAC) and locality preserving matching (LPM) methods. For
three-dimensional (3D) imaging correction, the proposed method is compared with the commonly
used enhanced correlation coefficient (ECC) method and single-step discrete Fourier transform (DFT)
algorithm. The results reveal that proposed method can retain the details more faithfully.

Keywords: nanoscale computed tomography (nano-CT); thermal drift correction; outlier elimination

1. Introduction

Computed tomography (CT), which is a nondestructive technique to obtain structural
information inside objects, is widely used in cultural relic detection, life sciences, and
other industrial applications [1]. However, small changes in the relative position of source-
turntable-detector can seriously affect the image quality of CT [2,3]. In particular, the
projection misalignment caused by thermal drift can deteriorate the reconstruction quality
and reduce the achievable spatial resolution of nano-CT [4–6]. The slices reconstructed by
the misaligned projections contain serious blur and double-edge artifacts [7]. Therefore,
the correction of thermal drift artifacts of great significance for boosting the practical
applications of nano-CT [8,9].

The projection alignment method based on short reference scan was proposed by
Sasov [10] in 2008. The method consists of three steps. (a) The second scan is carried
out with a larger rotation step to obtain the reference projection. (b) The relative position
relationship is calculated based on the features of the main and reference projections. (c)
The alignment of projection is achieved. Feature extraction is the most challenging step
because the features are directly related to the accuracy of drift calculation.

At present, there are three common methods to align the main projection with respect
to the reference projection: intensity based method, frequency domain based method,
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and feature based method. The intensity based method constructs the similarity measure
through the gray scale of projection and calculates the extreme value of the similarity
measure by using the optimization algorithm to get the translation parameters. Evangelidis
et al. [11] proposed an image registration method called enhanced correlation coefficient
(ECC) method based on entropy correlation coefficient as the objective function and estab-
lished a new iterative scheme for nonlinear optimization problems with simple closed form
solutions to improve the calculation speed. The frequency domain based method aligns
the projections with the relationship between the spatial movement and the parameters
in the frequency domain. Manuel et al. [12] proposed a fast alignment method based on
the matrix-multiply discrete Fourier transform (DFT). This method is called the single-step
DFT algorithm. Its essence is that the matrix multiplication of 2D DFT to initialize the
peak position of cross correlation. Consequently, the computational time is greatly reduced
without sacrificing accuracy.

The feature based method uses the similarity constraint of position and direction of the
feature points extracted by local descriptors to align the projections, such as scale invariant
feature transform (SIFT) [13], speeded up robust features (SURF) [14], and binary robust
independent elementary features (BRIEF) [15]. However, the initial features may contain
a large number of mismatched points in practical applications due to the ambiguities in
similarity constraint, which affects the realization of high-precision projection alignment,
so it is necessary to eliminate the mismatched points [16]. Two-stage constraint-based
strategy is a popular method to solve the mismatching problem [17–19]. In the first stage,
initial matching features of image pairs are obtained by using local descriptors. In the
second stage, geometric constraints of feature points are used to eliminate the outliers.
The remaining features are used to construct matching parameters between image pairs.
Locality preserving matching (LPM) [20] and random sample consensus (RANSAC) [21]
are the commonly used methods at present. In the artifact correction of nano-CT, the
projection alignment method based on feature points also requires the two-stage strategy.
Since the drift process only involves horizontal and vertical movement, a rigid model is
considered [22,23]. Although these methods have achieved satisfactory results in many
cases, the projection of nano-CT contains significant noise and varying luminance, so the
traditional two-stage strategy still needs to be optimized.

In this study, a method based on outlier elimination and position adjustment is
proposed to align the main projection by the reference projection for reducing or even
eliminating the thermal drift artifact of nano-CT. The proposed method can effectively
eliminate outliers with high accuracy. Further, an elimination model of outliers based
on the geometric position of features and structural similarity (SSIM) [24] of projection is
established, which can evaluate the feature points accurately. The local SSIM between the
neighborhood images of feature points is used to adjust the position. Two-dimensional
(2D) transmission experiments and three-dimensional (3D) reconstruction experiments
reveal that the proposed method has remarkable accuracy, and it can preserve more details
of the image as compared to the existing methods.

The rest of this paper is organized as follows. Section 2 introduces the proposed
method in detail. The 2D transmission experiment and 3D reconstruction experiment are
described in Section 3. In Section 4, the feasibility and accuracy of method are verified
by experiments and comparison with other methods. Finally, the study is concluded in
Section 5.

2. Method

The reference projections are acquired with a larger rotation step after obtaining the
main projections. The proposed method is used to calculate the drifts between the main
and the reference projections. The drift of main projection without reference projection is
estimated by cubic spline interpolation of adjacent drift.

The workflow of the proposed method is shown in Figure 1, which consists of four
steps: projection pretreatment, acquisition of initial features, feature point elimination



Sensors 2021, 21, 8493 3 of 16

based on feature angle and SSIM (ASIM), and feature point position adjustment based
on SSIM. First, the main projection-reference projection image pairs are preprocessed by
denoising and histogram equalization to improve the image quality and contrast. SURF
is used to generate the initial features of the projections. Then, ASIM is used for feature
elimination to reduce the influence of outliers on the drift calculation. Finally, the SSIM in
the feature point neighborhood is used to reposition the feature.
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2.1. Alignment Model of Main Projection and Reference Projection

The alignment model of main projection and reference projection is considered as a
rigid transformation model since drift is a slowly varying translation process [25].[

xmain
ymain

]
=

[
xre f
yre f

]
+

[
dx
dy

]
, (1)

where (xmain, ymain) is the coordinate of the feature point in the main projection feature set.(
xre f , yre f

)
is the coordinate of the corresponding feature point in the reference projection

feature set. dx and dy represent the horizontal and vertical rigid drifts, respectively.

2.2. Rough Elimination of Outliers Based on Feature Angle

SURF is a fast and robust feature description method which consists of two main
parts: feature generation and matching. The purpose of feature generation is to determine
feature point locations and descriptors. Matching is achieved by the Euclidean distance of
the feature points.

It is assumed that the matching feature point sets have been extracted by SURF. The
feature point sets of the main and reference projections are denoted by Tmain and Tre f ,
respectively. In the scanning process of nano-CT, the initial point set is interfered by
different noise distributions and brightness [16] due to the long-time interval between
the main and reference projections (usually a complete main scanning period) [10]. The
outliers affect the calculation results of drift. Therefore, it is necessary to identify the inliers
and outliers in the initial point set to establish a reliable matching relationship.

The proposed elimination strategy includes rough elimination and refined elimina-
tion. The purpose of rough elimination is to identify and eliminate obvious outliers for
accelerating the operational efficiency of refined elimination.

First, the feature points ti
main = (xi

main, yi
main), tj

main = (xj
main, yj

main) in the main
feature point set Tmain =

{
ti
main

}
(i = 1, 2 . . . K) and the corresponding points ti

re f =

(xi
re f , yi

re f ), tj
re f = (xj

re f , yj
re f ) in the reference feature point set Tre f =

{
ti
re f

}
(i = 1, 2 . . . K)

are considered. Here, K is the number of initial feature points. The angle between two
points in the same point set is used to represent the geometric position. In the proposed
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method, this angle is called the feature angle. Based on the four feature points, the two
feature angles are defined as

A(ti
main, tj

main) = arctan yj
main−yi

main

xj
main−xi

main

A(ti
re f , tj

re f ) = arctan
yj

re f−yi
re f

xj
re f−xi

re f

, (2)

where A(ti
main, tj

main) and A(ti
re f , tj

re f ) represent the feature angle of
{

ti
main, tj

main

}
and{

ti
re f , tj

re f

}
, respectively. Please note that the feature angle contains the direction informa-

tion of the two points. Here, A(ti
main, tj

main) is taken as the example, and ti
main is used as

the origin to establish the rectangular coordinate system. The angle between the line of{
ti
main, tj

main

}
and the positive direction of the X axis is taken as the feature angle, as shown

in Figure 2c.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 16 
 

First, the feature points ( , )i i i
main main maint x y= , ( , )j j j

main main maint x y=  in the main feature point 
set { }( 1,2... )i

main mainT t i K= =  and the corresponding points ( , )i i i
ref ref reft x y= , ( , )j j j

ref ref reft x y=  
in the reference feature point set { }( 1,2... )i

ref refT t i K= =  are considered. Here, K  is the 
number of initial feature points. The angle between two points in the same point set is used to 
represent the geometric position. In the proposed method, this angle is called the feature angle. 
Based on the four feature points, the two feature angles are defined as 

( , ) arctan
,

( , ) arctan

j i
i j main main
main main j i

main main
j i
ref refi j

ref ref j i
ref ref

y yA t t
x x
y y

A t t
x x

−=
−

−
=

−

 (2) 

where ( , )i j
main mainA t t  and ( , )i j

ref refA t t represent the feature angle of { , }i j
main maint t  and { , }i j

ref reft t , 
respectively. Please note that the feature angle contains the direction information of the two 
points. Here, ( , )i j

main mainA t t  is taken as the example, and i
maint  is used as the origin to establish 

the rectangular coordinate system. The angle between the line of { , }i j
main maint t and the positive 

direction of the X axis is taken as the feature angle, as shown in Figure 2c. 

 
Figure 2. Schematic diagram of feature elimination and relocation based on ASIM. (a) Initial feature 
matching relationship, where blue and red lines represent the inliers and outliers, respectively. (b) 
Calculation of the feature angle ( , )i j

main mainA t t  between i
maint  and j

maint . Only three dots are con-
nected here for clarity. (c) Process of feature position adjustment, where the hollow circles represent 
the position of original features and the solid circles represent the new optimal location. 

Figure 2. Schematic diagram of feature elimination and relocation based on ASIM. (a) Initial feature
matching relationship, where blue and red lines represent the inliers and outliers, respectively.
(b) Calculation of the feature angle A(ti

main, tj
main) between ti

main and tj
main. Only three dots are

connected here for clarity. (c) Process of feature position adjustment, where the hollow circles
represent the position of original features and the solid circles represent the new optimal location.



Sensors 2021, 21, 8493 5 of 16

Then, the feature angle is considered to identify the outliers. If the matching rela-
tionship of the feature points is accurate, the feature angles A(ti

main, tj
main) and A(ti

re f , tj
re f )

should satisfy the following relationship:

A(ti
main, tj

main) = A(ti
re f , tj

re f ). (3)

However, it is difficult to satisfy Equation (3) due to the difference in brightness and
noise distribution between the main projection and reference projection. The difference
between the feature angle of ti

main and the feature angle of the corresponding point ti
re f is

used as the evaluation criterion of outliers which can be expressed as

F = ∑
i∈Trough

∑
j∈Trough

∣∣∣A(ti
main, tj

main)− A(ti
re f , tj

re f )
∣∣∣, (4)

where F represents the outlier evaluation criterion. Trough is the set of inliers in rough
elimination. Our goal is to construct the optimal inlier set Trough by minimizing the outlier
evaluation criterion F.

To obtain the optimal solution of Equation (4), the feature angle similarity function
pi,j is constructed to evaluate the difference between feature angles A(ti

main, tj
main) and

A(ti
re f , tj

re f ). εmin and εmax are the upper and lower limits of feature angle A(ti
re f , tj

re f ) that

can be accepted relative to A(ti
main, tj

main). Then, pi,j can be expressed as

pi,j =

{
1, εmin ≤ A(ti

re f , tj
re f ) ≤ εmax

0, else
. (5)

It is extremely difficult to directly set the upper and lower limits of the feature angle, so
the feature point offset limit χ is defined to calculate the values of εmin and εmax. According
to the direction of the feature angle, the limits of the feature angle can be expressed as

εmin =



A[(xi
main − χ, yi

main + χ), (xj
main + χ, yj

main − χ)], A ∈ I

A[(xi
main − χ, yi

main − χ), (xj
main + χ, yj

main + χ)], A ∈ I I

A[(xi
main + χ, yi

main − χ), (xj
main − χ, yj

main + χ)], A ∈ I I I

A[(xi
main + χ, yi

main + χ), (xj
main − χ, yj

main − χ)], A ∈ IV

(6)

and

εmax =



A[(xi
main + χ, yi

main − χ), (xj
main − χ, yj

main + χ)], A ∈ I

A[(xi
main + χ, yi

main + χ), (xj
main − χ, yj

main − χ)], A ∈ I I

A[(xi
main − χ, yi

main + χ), (xj
main + χ, yj

main − χ)], A ∈ I I I

A[(xi
main − χ, yi

main − χ), (xj
main + χ, yj

main + χ)], A ∈ IV

, (7)

where, I, II, III, and IV represent the quadrant to which the feature angle belongs. We
construct the voting function based on the feature angle similarity function pi,j

Gi =
K

∑
j=1

pi,j, (8)

where, Gi represents the voting function of feature point ti
main.

Then, the rough elimination strategy of outliers can be expressed as

Trough =
{

ti
main|Gi ≥ λK, i = 1, 2 . . . N

}
(9)
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where λ indicates the vote threshold. N is the number of feature points after rough
elimination. Trough is the feature points after rough elimination. (9) provides a voting
method for determining the best point set of (4). As mentioned above, the purpose of
rough elimination is to eliminate obvious outliers (the feature point difference is greater
than offset limit χ). Therefore, the loose vote threshold is set in Section 2.5.

2.3. Refined Elimination of Outliers Based on SSIM

In Section 2.2, the rough elimination of outliers based on feature angle was introduced.
Obvious outliers were identified and eliminated by the feature point offset limit χ and
vote threshold λ. However, feature points need to be further eliminated to improve the
matching accuracy in high-precision rigid alignment. D is defined as the alignment vector,
which can be expressed as follows:

Di = (di
x, di

y) =
(

xi
main
− xi

re f , yi
main
− yi

re f

)
, (10)

where Di is the alignment vector of the point pair
{

ti
main, ti

re f

}
and Di ∈ D. The coordinates

of the feature points are expressed as ti
main = (xi

main
, yi

main
) and ti

re f = (xi
re f , yi

re f
).

The SSIM is used to further refine the features. Each pair of feature points provides a
guide to align the projection through the alignment vector D. The SSIM between the refer-
ence projection and the main projection moved by the alignment vector can be expressed
as

SSIM
[

Pmain(x− di
x, y− di

y), Pre f (x, y)
]
=

(2µmµr + C1)(2σmσr + C2)

(µ2
m + µ2

r + C1)(σ2
mσ2

r + C2)
(11)

where Pre f (x, y) is the reference projection. µm and µr represent the mean of the main and
reference projections, respectively. Pmain(x− di

x, y− di
y) is the main projection moved by

the alignment vector Di. σm and σr are the standard deviations of the main and reference
projections, respectively. C1 and C2 are constant.

To improve the robustness of refined elimination, the SSIM threshold ε is set. Then,
the refined feature points satisfy

Tre f ined =
{
(tm(i), tr(i))

∣∣∣SSIM
[

Pmain(x, y), Pre f (x− di
x, y− di

y)
]
≥ ε

}
(12)

ASIM is used to eliminate the outliers in the SURF initial feature points. The complete
procedure is summarized in Table 1.

Table 1. The process of outliers elimination based on ASIM.

Input: The image pair of main projection Pmain and reference projection Pre f ,
the feature point offset limit χ, and vote threshold λ.
Output: The refined set of feature points Tre f ined
1. Establish the initial feature set Tmain and Tre f by the SURF.

2. Calculate the feature angle A(ti
main, tj

main) and A(ti
re f , tj

re f ) (1 ≤ i ≤ N, 1 ≤ j ≤ N).
3. Calculate the upper and lower limits of feature angle based on (6) and (7) using
the feature point offset limit χ.
4. Evaluate each feature point ti

main by the voting function Gi based on (5) and (8).
5. Get the feature points after rough elimination Trough by the vote threshold λ based on (9).
6. Calculate the alignment vector D based on (10) by the Trough.
7. Move the main projection Pmain by the alignment vector D.
8. Calculate the SSIM between the reference projection and the main projection moved in step 7
based on (11).
9. Sort the feature points according to SSIM. 20% points of Trough are built as the refined feature
set Tre f ined.
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2.4. Position Adjustment of Feature Points Based on SSIM

The location of feature points may not be calculated accurately by SURF due to the
influence of brightness and gray distribution of projected image. The position adjustment
method based on SSIM provides accurate position of feature points.

{
ti
main, ti

re f

}
is the

refined feature set extracted in Section 2.3. The position adjustment of feature points
method is introduced below.

In the main projection and reference projection, image blocks Pγ
main(x, y, ti

main) and

Pγ
re f (x, y, ti

re f ) with size γpixel × γpixel are cropped with
{

ti
main, ti

re f

}
as the center respec-

tively. The main projection is moved within the image block with the step size of 0.1 pixel,
and the SSIM of the new projection is calculated. ti,new

main represents the inlier ti
main after

position adjustment. The optimal position of feature points is satisfied

Tre f ined_relocation =
{

ti,new
main

∣∣∣maxSSIM[Pγ
main(x, y, ti,new

main ), Pγ
re f (x, y, ti

re f )]
}

(13)

SSIM is used for feature point relocation. The relocation process is summarized in
Table 2.

Table 2. The process of relocation based on SSIM.

Input: The refined feature set Tre f ined. Neighborhood image size γpixel × γpixel.
Output: The optimal set of feature points Tre f ined_relocation.
1. Crop the neighborhood images Pγ

main(x, y, ti
main) and Pγ

re f (x, y, ti
re f )

with the center of ti
main and ti

re f by the neighborhood image size γpixel × γpixel.
2. Move Pγ

main(x, y, ti
main) in steps of 0.1 pixels to obtain Pγ

main(x, y, ti
main).

3. Calculate the SSIM between Pγ
main(x, y, ti,new

main ) and Pγ
re f (x, y).

4. The position with the largest SSIM is taken as the new feature point position. Finally, the
feature set after relocation Tre f ined_relocation is obtained.

Figure 2 shows a schematic of feature angle and position adjustment. The proposed
method uses the feature angle and SSIM for the elimination and position adjustment.
Therefore, the proposed method is named ASIM.

2.5. Implementation Details

The features directly affect the calculation of drift. There are three parameters in the
proposed algorithm: the feature point offset limit χ, the range of neighborhoods near the
feature γ, and the vote threshold λ. The feature point offset limit χ controls the range of
feature point deviation. The vote threshold λ represents the percentage of correct matching
relation in Equation (5). Rough elimination method is used to eliminate the features with
large deviations, which are measured by χ and λ. We set χ = 0.5,γ = 1.0, and λ = 0.3.

3. Experiment
3.1. 2D Transmission Imaging Alignment Experiment

In the nano-CT scanning experiment, the time difference between the main and
reference projections is long. Three 2D transmission imaging experiments are set up to
evaluate the influence of brightness, noise level, and initial feature number on the alignment
accuracy. To evaluate the effectiveness and robustness of the proposed method for high-
precision matching between the main projection and the reference projection, the SURF,
RANSAC, and LPM are used as comparison methods.

All the data used in the experiment are obtained from the nano-CT in Henan Imaging
and Intelligent Information Processing Laboratory. To consider the difference in correction
accuracy caused by different gray distributions and shapes, four groups of actual scan data
are selected for testing. The samples and exposure time are listed in Table 3. The interval
time represents the time difference between the main and reference projections.
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Table 3. Scan sample and exposure time.

No. Sample Exposure Time (s) Interval Time (s)

1 Wasp 10 4860
2 Cabbage seed 15 25,500
3 Bamboo stick 20 32,700
4 Star card 60 3660

Firstly, the alignment effect under different lighting conditions is tested. The interval
time of image pairs is shown in Table 3. The rotation angles of main projection and reference
projection are the same.

Secondly, the number of initial features is considered to test the effect on accuracy. The
samples in Table 3 are tested. The initial number of features are set to 75, 125, 175, and 225.

Finally, the robustness of ASIM is tested. The sample projection pairs of the first and
second rows in Table 3 are used to test the alignment results under Gaussian noise of 5%,
10%, and 15%.

3.2. 3D Reconstruction Experiment

To evaluate the accuracy of the proposed method in 3D reconstruction, the method is
applied to the 3D imaging experiment of an electronic component and cabbage seed. The
relevant scanning parameters are listed in the Table 4. The sample is rotated by 360◦ to
obtain the projection of each rotation angle. The rotation step is the rotation angle difference
between adjacent projections. The starting point of rotation for the main scan and the
reference scan is the same. The proposed method is not only compared with the feature
elimination methods (RANSAC and LPM), but also with the intensity based method (ECC)
and frequency domain based method (the single-step DFT algorithm).

Table 4. Scan parameters of 3D reconstruction experiment.

Parameter Electronic Component Cabbage Seed

Voltage (kV) 60
Exposure time (s) 15
Image size (pixel) 1065 × 1030
Resolution (nm) 350 700

Main rotation step (◦) 0.36 0.25
Reference rotation step (◦) 3.6 2.5

Scanning time (h) 5.5 7.5

3.3. Evaluation Criteria

The root mean square error (RMSE), drift calculation error, precision, and accuracy are
used to evaluate the effect of different methods on the elimination of feature points.

SURF is used to obtain the initial features. When the difference between the calculated
result and the ground truth is less than 15%, the feature point is considered reliable, and
the point is called an inlier. Otherwise, it is considered invalid and is called an outlier.

Here, RMSE is used to evaluate the absolute offset error. The calculation error is used to
evaluate the relative offset error. Accuracy and precision represent the ability of elimination.
The recall is not considered because it makes little difference to the drift calculation whether
all the inliers are in the refined feature set. On the contrary, the precision represents the
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proportion of inliers in the refined feature set, which affects the calculation results. The
evaluation criteria are calculated as follows:

RMSE =

√
1
2

[
(x− dx)

2 +
(
y− dy

)2
]

Calculation_Error = 1
2

[
abs
(

x−dx
x

)
+ abs

(
+

y−dy
y

)]
Precision = TP

TP+FP

Accuracy = TP+TN
TP+TN+FP+FN

(14)

4. Experimental Results and Discussion

The proposed method was compared with two effective feature elimination algorithms
RANSAC and LPM. In the 3D imaging experiment, it was also compared with the single-
step DFT algorithm, ECC. Finally, discussion was made according to the experimental
results.

4.1. 2D Transmission Imaging Experiment

Table 5 summarizes the matching results of the samples shown in Table 3 obtained
using SURF, RANSAC, LPM, and the proposed method. The thermal drift eventually leads
to a rigid shift of the projection. To simulate the projection drift, we move the sample.
Firstly, the sample projection is acquired. Then, the X-ray source is turned off and the
sample is moved so that the projection moves within the detector plane. The ground truth
(in Table 5) of the projection drift is calculated by the actual distance of movement of the
sample and the magnification ratio. Finally, after waiting for the interval listed in Table 3,
the X-ray source is turned on and the sample projection is acquired. It is clear that RMSE of
all three elimination methods is better than that of SURF. The RMSE of the three elimination
methods is small in the wasp sample. Because SURF extracts a large number of initial
features, the outliers are easily eliminated, which can be seen in Figure 3. In addition, the
RMSE of the proposed method is the smallest among the three elimination methods, which
indicates that the proposed method has good drift calculation accuracy and the difference
between the calculated value and the true value is small.

Table 5. Feature point elimination result.

Image Number Sample Method Horizontal Vertical RMSE

1 Wasp

Ground truth 3.58 1.13
SURF 3.08 −1.33 1.78

RANSAC 3.71 1.00 0.11
LPM 3.85 0.99 0.21
ASIM 3.63 1.14 0.038

2 Cabbage seed

Ground truth 0.89 2.77
SURF 0.41 1.09 1.24

RANSAC 0.60 1.77 0.74
LPM 0.84 2.26 0.36
ASIM 0.91 2.88 0.079

3 Bamboo stick

Ground truth 20.75 11.99
SURF 11.67 8.96 6.77

RANSAC 21.71 13.23 1.11
LPM 22.11 11.68 0.99
ASIM 20.60 12.35 0.27

4 Star card

Ground truth 41.93 90.14
SURF 59.64 63.61 22.56

RANSAC 41.98 89.97 0.13
LPM 44.67 83.98 4.77
ASIM 41.91 90.18 0.034
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The alignment results of the samples in Table 3 using different methods are shown
in Figure 3. The feature points are marked with red circles. In Figure 3, the first, second,
third, and fourth columns represent the results of the initial feature points, elimination
using RANSAC, elimination using LPM, and the proposed method, respectively. The three
methods can effectively eliminate the outliers. In addition, the proposed method retains
less feature points than the other methods because it aims to provide accurate alignment
results and ensure high accuracy, and the invalid points in the retaining features can affect
the alignment result (invalid points are considered to be feature points with an error greater
than 15%).
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Figure 4a shows the average calculation errors of the three elimination methods. The
proposed method has the smallest average errors in the four samples. Figure 4b shows the
precision of the three methods, which indicates the sensitivity of the model to correct the
samples. The proposed method has significant advantages because a higher percentage
of feature points are correctly judged, resulting in a smaller error. Figure 4c shows the
accuracy of the three methods, which is used to measure the ability to distinguish positive
and negative features. It is evident from Figure 4c that the proposed method can accurately
distinguish inliers from outliers, resulting in a small RMSE in Table 5. The accuracy and
precision assess the robustness of the model, and the risk of accuracy loss is reduced when
the model can correctly distinguish between inliers and outliers because more outliers
increase the risk of calculation deviation.

Different numbers of initial points are set to test the effect on the results of different
elimination methods. We set four different numbers of initial points as 75, 125, 175 and
225, and the test samples are listed in Table 3. Figure 5 shows a boxplot of error results for
different initial points, where each box contains errors for different points of calculation. In
Figure 5, ‘◦’ represents the mean error, and the results prove that the proposed method has
smaller calculation error.
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of the refined feature points. (c) Accuracy of the elimination feature, which represents the correct
proportion of all the predicted points.
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Figure 5. Robustness test of elimination methods. Each column corresponds to a sample listed in
Table 3. In each column, the error results for different initial numbers of features are consolidated
into a bin. The mean error of the calculated results is represented as ‘◦.’ The maximum and minimum
value of data are represented as ‘*.’ The top and bottom borders of the box represent 0.75 and
0.25 points of data, respectively.

In addition, the robustness of different methods is examined. We test the samples
No.1 and No.2 in Table 3. Three different noise levels of 5%, 10%, and 15% are set, and
RMSE is used to evaluate the error between the calculated results and the ground truth. In
robustness tests, the brightness and noise distributions of image pairs are the same, so the
RMSE shown in Figure 6 is smaller than that listed in Table 5. As the noise increases, the
RMSE of all the three rejection methods increase, but the proposed method is still the most
stable at different noise levels.
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ASIM. (a) The test sample is wasp. (b) The test sample is cabbage seed. The proposed method (red
curve) achieves the most stable results.

4.2. 3D Imaging Experiment

In this section, the correction ability of the proposed method for 3D reconstruction is
experimentally evaluated. The advantages and disadvantages of the proposed method are
discussed based on the experimental results.

Figure 7 shows the calculation results of projection drift in the 3D reconstruction
correction experiment. The first line shows the calibration results of different methods in
electronic component scanning. The single-step DFT algorithm (pink line in Figure 7) does
not achieve good results, because the spatial resolution of electronic component imaging
reaches 350 nm, and the projection noise is relatively large, which causes interference in the
frequency domain registration method. The second line shows the correction results for the
cabbage seed scan. The drift calculation results of LPM and RANSAC fluctuate seriously
because the uncontrollable factors in the scanning process have a significant influence
on the number of initial features, and RANSAC and LPM cannot eliminate the outliers
completely.

Figure 8 shows the reconstructed slice of the electronic component corrected by
different methods. Figure 8a presents the original reconstructed slices with drift artifacts.
Drift artifacts have a considerable influence on the analysis of connection relationship.
Serious artifacts even cause misjudgment of components. ECC provides a fast image
registration method based on the entropy correlation coefficient. Figure 8b shows the
reconstruction slices corrected by ECC method. Figure 8c presents the alignment results
of the single-step DFT algorithm in the frequency domain. The reconstructed slices are
still blurry after correction by ECC and single-step DFT algorithm. Figure 8d presents the
correction results of RANSAC feature elimination method. The details of the image are
well recovered. Figure 8e shows the alignment results of LPM feature elimination method.
Although LPM enhances the computational speed, drift artifacts in the reconstructed slices
are still obvious. Nonetheless, the reconstructed images show more information than the
uncorrected ones. Figure 8f shows the corrected results of the proposed method. The fine
structure on the circuit component is clearly displayed.
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Figure 9 shows the drift correction results of the cabbage seed. Drift seriously affects
the 3D imaging of cabbage seed. The edge is obviously blurred, and the internal structure
of cabbage seed can no longer be distinguished, as shown in Figure 9a. Figure 9b shows the
correction results of ECC. The obvious drift artifact is removed, but the internal structure
remains blurred. Figure 9d,e present the correction results of RANSAC and LPM, respec-
tively. The internal structure of the seed can be clearly seen, but the position indicated by
the red arrow is still unclear. The single-step DFT algorithm (Figure 9c) and the proposed
method (Figure 9f) show similar correction effects. The internal structure of the seed is
clearly displayed.
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Figure 9. Correction results of difference alignment methods for cabbage seed. (a) Uncorrected.
(b) ECC. (c) Sigle-step DFT. (d) RANSAC. (e) LPM. (f) ASIM.

5. Conclusions

In this study, an effective reference correction method was proposed for thermal drift
correction of nano-CT based on ASIM. The ASIM was used to eliminate the outliers in the
initial features. The SSIM of feature point neighborhood images was used to adjust the
position of feature points.

The efficacy of the proposed method in 2D transmission imaging and 3D slice recon-
struction was evaluated. In 2D transmission imaging, the proposed method was compared
with the commonly used RANSAC and LPM elimination methods, where samples with
different gray distributions, exposure times, and shapes were used. The proposed method
showed better accuracy than the other methods. In the 3D reconstruction experiment, the
proposed method was compared with local feature-based ECC method and single-step DFT
algorithm, and the proposed method could recover the details of the reconstructed slices
well. However, the proposed method has some limitations. When the signal-to-noise ratio
(SNR) of image is too low, the original feature matching fails, so the feature elimination
and point adjustment can also fail. In the future, we hope to further optimize the feature
matching strategy to maintain the robustness of the algorithm.
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