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Abstract: Fault diagnosis and classification for machines are integral to condition monitoring in
the industrial sector. However, in recent times, as sensor technology and artificial intelligence have
developed, data-driven fault diagnosis and classification have been more widely investigated. The
data-driven approach requires good-quality features to attain good fault classification accuracy, yet
domain expertise and a fair amount of labeled data are important for better features. This paper
proposes a deep auto-encoder (DAE) and convolutional neural network (CNN)-based bearing fault
classification model using motor current signals of an induction motor (IM). Motor current signals
can be easily and non-invasively collected from the motor. However, the current signal collected
from industrial sources is highly contaminated with noise; feature calculation thus becomes very
challenging. The DAE is utilized for estimating the nonlinear function of the system with the normal
state data, and later, the residual signal is obtained. The subsequent CNN model then successfully
classified the types of faults from the residual signals. Our proposed semi-supervised approach
achieved very high classification accuracy (more than 99%). The inclusion of DAE was found to not
only improve the accuracy significantly but also to be potentially useful when the amount of labeled
data is small. The experimental outcomes are compared with some existing works on the same
dataset, and the performance of this proposed combined approach is found to be comparable with
them. In terms of the classification accuracy and other evaluation parameters, the overall method can
be considered as an effective approach for bearing fault classification using the motor current signal.

Keywords: bearing fault diagnosis; condition monitoring; convolution neural network (CNN); deep
autoencoder (DAE); motor current signal; residual signal

1. Introduction

Rotating machinery is among the most pervasive and substantial components of
the industrial sector. Whether the system is mechanical or electro-mechanical, one or
more rotating machines are involved; examples include motors, generators, turbines,
gearboxes, drive trains, automobile, and aircraft engines. Due to rapid industrialization
and automation, the use of complex rotating machinery has increased by a lot, which
increases the chance of multiple and significant faults occurring because of a generating
fault in any single component [1]. Among all the various types of rotating machinery,
induction motors (IMs) are the most commonly used because of their vigorous design, high
productivity, reliability, and low cost [2]. In general, the IM needs to operate uninterrupted
over a long time and under difficult operating scenarios. The operating conditions and
unfavorable environment in many cases initiate different faults and may eventually lead to
undesirable downtime, huge economic losses, and in the worse case, human causalities [3].
To avoid these unwanted situations, the fault diagnosis mechanism has emerged as an
important part of the prognosis and health management (PHM) techniques. Research on
the fault diagnosis of rotating machinery recently became a very popular topic, and many
significant breakthroughs were achieved because of the speedy development of artificial
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intelligence. Designing a robust and accurate condition monitoring system can improve the
fault diagnosis system by reducing maintenance costs, as well as by increasing reliability,
productivity, and safety. It becomes very challenging to properly carry out this type of
research work in practical industrial circumstances because of the complex, changing,
and noisy environments that exist around rotating machinery, which makes it almost
impossible to collect noise-free and accurate signals with proper fault information [4].
Statistical reports reveal that among different parts in IM, faults occurring in the bearing
are a common phenomenon. Specifically, for small and large size machines, the rate of
bearing faults occurring is approximately 90% and 40%, respectively [5]. Bearing faults can
be initiated at the time of manufacture or during the period of operation.

Signals recorded from an IM may contain fault-specific information. In general,
an impulse is initiated in the bearing fault signal when the bearing collides with the
defective contact surface, and due to the damped oscillation, it generates a strident transient
response. This recurrent transient response holds the necessary information about the
bearing condition [6]. If an accurate analysis of the transient response can be performed,
then any possibility of a fault occurring in bearing elements in the future can be identified
at an early stage, which may avoid unpredicted downtime as well as make the industrial
operation more efficient by avoiding huge monetary loss.

In general, the model-based [7,8] and data-driven-based [9,10] techniques are consid-
ered as the basic fault diagnosis mechanisms. Model-based fault diagnosis identifies the
faults by using a small dataset, but it needs to model the system’s dynamics accurately. In
highly nonlinear and uncertain conditions situations, it is difficult or impossible. Addition-
ally, the technology of recent times ensures the availability of sensors for collecting various
types of signals from machines to be used in the various fault monitoring systems. The
availability of abundant data makes the data- driven -based approach in the fault diagnosis
field very popular. The basic steps of the data-driven-based method are the acquisition of
multiple state signals, extracting and selecting important features carrying fault signatures,
and finally, classifying faults with machine learning algorithms [11–13]. Among the steps,
the feature selection and extraction process is laborious and time-consuming; not only
does it require deep knowledge of advanced signal processing techniques but also a great
understanding of the working process and fault signals of the IM system [14]. Gener-
ally, vibration [15,16], current [17], acoustic emission [18,19], electromagnetic signals [20],
and thermal imaging [21] are the signal types applied to diagnose faults. Therefore, it is
very important to investigate and build a relationship between the recorded signals and
corresponding types of bearing defects.

The fault signatures initiated in the bearings of IM mainly depend on fault-specific
harmonic frequencies generated due to inner race, outer race, cage, or rolling element
faults, the rotational speed of the rotor, or the geometrical dimensions of the bearing. Single
point fault localization and diagnosis of fault in the entire bearing can be investigated
with the additional installation of vibration sensors (accelerometer) [22]. The installed
sensor can be difficult to access when located in a remote place, contributing to the overall
costliness of the fault diagnosis process. To deal with these difficulties, fault diagnosis with
motor current signal analysis (MCSA) has been proposed as an alternative way by many
researchers as it does not require any additional sensors mounted around the bearing,
which makes the data acquisition system non-invasive in nature and very cost-effective.
Martínez-Montes et al. applied MCSA to measure the fault severities of two different
bearing elements, the cage and the rolling elements, in a 5.5 kW IM [23]. Along with the
bearing faults, eccentricity and broken rotor bar fault detection were also investigated
by estimating the fault-related frequency and applying a matched subspace detector [24].
Techniques such as wavelet transform and short-time Fourier transform were also studied
in [25–27] for fault detection from a stator current signal. Multiple signature analysis, such
as the combination of MCSA and stray flux analysis, was introduced in [28], and it was
found to detect mechanical faults in IM with good precision. Furthermore, the inner race
faults were diagnosed by current, vibration, and stray flux signal in [29], where a 4 kW IM



Sensors 2021, 21, 8453 3 of 21

was involved in the experiment. From the comparative analysis, the researchers concluded
that in the case of a mechanical fault, MCSA is more sensitive than stray flux, whereas in
the case of misalignment and eccentricity, the stray flux becomes more sensitive.

Fault diagnosis from raw sensor data becomes computationally inefficient since the
size of the original signal is generally large and the whole signal stream might not be
adequate for fault identification. To reduce dimensionality, different signal processing
techniques are carried out to extract useful features in different domains such as the time
domain, frequency domain, and time–frequency domain. Later, the extracted features
are fed as the input of various machine learning (ML) and deep learning (DL) methods
for fault diagnosis. Machine learning approaches used for bearing fault classification
include support vector machine (SVM), K-nearest neighbors (KNN), gradient boosting
decision tree (GBDT), random forest (RF), principle component analysis, and artificial
neural network [30–33]. The mentioned approaches require a fair amount of historical fault
signature data (online dataset or laboratory measurement data) to train the model.

With the availability of high-volume data, the performance of DL approaches has
improved. DL approaches have been successfully implemented in various research areas
such as speech recognition, object detection, image classification, and fault diagnosis [34].
An overview of the amazing performance of CNN in fault diagnosis can be found in [35].
The main difference between classical ML and DL methods is that the accuracy of the
classical ML model largely depends on the appropriate feature extraction and selection
approach, whereas the DL inherits the automatic feature extraction ability. Although the
combination of the signal processing techniques and classical ML/DL algorithms can also
extract valid features and classify faults very efficiently, the performance largely depends
on the input of a suitable amount of training samples.

In the industrial environment, it is quite difficult to collect a huge amount of noiseless
data or data containing low noise with correct labeling. Other less forthright issues exist,
such as when the results obtained from training and testing samples do not exhibit the same
distribution, when there is a deficit in the amount of training data, and when samples are
contaminated with different types of noise at different time instances of the recording [36].
Generally, in the real industrial sector, the collected bearing data are not labeled during
acquisition [37]. The process of labeling is performed afterward when proper labeling
cannot be confirmed. The lack of accurately labeled data will create challenges for the
mostly applied supervised learning methods in the field of fault diagnosis. Furthermore,
the complexity among different conditions of data, the time delay of acquiring raw signals,
and imbalances occurring among different fault samples are some other technical challenges
of the supervised fault diagnosis process [38].

For the challenges discussed above, sometimes it is beneficial to use unsupervised
learning approaches. The autoencoder (AE) is considered as one of the promising unsuper-
vised methods that can effectively learn features from unlabeled data. The AE approach
is also being applied as a prominent dimensionality reduction mechanism in the rotating
machinery fault diagnosis system [39,40] due to its high efficiency and ease of implemen-
tation. In fault diagnosis problems, the AE model is trained with the normal state data
only, and it learns discriminative features that can be considered as the feature extraction
mechanism for estimating the system state. There exist several extensions of conventional
AE. Among them, the denoising AEs help to learn features that make differences among
states in the highly noisy system [40]. Another form of AE named sparse autoencoder (SAE)
is also implemented effectively in fault diagnosis systems by many researchers [14,41,42]. A
combination of the SAE-deep belief network (DBN) is applied to fuse multi-sensor features
for diagnosis bearing faults [43]. The variational AE (VAE) method was also applied in
combination with deep generative models [44] and by using separate latent variables for
each health state [45] for bearing fault diagnosis. In addition, the fault mode identification
is performed by Huang et al. by combining recurrent neural network (RNN)-based VAE
where the model preserves high-dimensional data information [46]. In [47], a convolu-
tion sparse autoencoder was designed for image recognition, where the convolutional
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autoencoder (CAE) was utilized for specifying the feature maps of the input. The ability
to achieve good performance of AE with a small amount of data makes it a reasonable
alternative to CNN as it requires huge data to perform. Many researchers have combined
the AE and CNN in different fields such as fault diagnosis and image classification with a
limited amount of data [40,48,49].

However, the CNN was designed to deal with the 2-D image of a large sample size.
The one-dimensional CNN (1-D CNN) has been developed in recent times to deal with
one-dimensional signals and has achieved good performance in terms of accuracy and
computational time [50]. Researchers applied the 1-D CNN in real-time fault diagnosis and
it not only achieved high performance but also can eliminate the manual feature extraction
phase [50–53].

In this paper, a novel bearing fault diagnosis approach has been presented based on
deep autoencoder (DAE) and 1-D CNN to address the drawbacks mentioned for supervised
algorithms using motor current signal analysis (MCSA). Here, the DAE technique is used
to substitute the traditional two-state control approach for approximating the behavior
of the signal. In the beginning, with the normal state of MCSA, the DAE is trained and
taught the latent coding, which denotes the equivalent nonlinear function of the bearing
considering only the normal operating state. After model training with the normal state
data, the current signal with the unknown condition is provided as the input of the DAE
model, and with the learned latent coding from the normal data, the estimation of the new
unknown signal state is performed. After that, the mean squared error (MSE) of the signal,
also known as the residual signal, is calculated with the difference between the real and
estimated signals of the data from the unknown state by the DAE model. The generated
residual signals from DAE of different conditions act as an indication of dissimilarities of
the different faulty signals, and these discriminative features help to improve the accuracy
of the fault classification approach. At last, a 1-D CNN is designed with the residual signals
as input to classify multiple types of faults of the bearing.

The major contributions of this work can be summarized as follows.

1. A novel data-driven approach based on DAE and 1-D CNN is presented using MCSA
to investigate multiple fault states in the bearing of an induction motor.

2. An unsupervised DAE-based approach is introduced for the initial identification of
faulty and normal state current signals for induction motors.

3. The fault diagnosis model is evaluated through a publicly available current sig-
nal dataset, and the final findings are compared with some previous works on the
same dataset.

The rest of the paper is organized as follows. The experimental setup and data
collection details are provided in Section 2. The details of the data segmentation and
overall structure of the proposed model are demonstrated in Section 3. The experimental
results of the proposed model and comparison with existing works on the same dataset are
provided in Section 4. Finally, Section 5 includes the conclusion.

2. Experimental Setup and Data Acquisition

The current signal of IM used in this work was obtained from the Kat-Data Center
contributed by the Mechanical Engineering research center of Paderborn University, Ger-
many [54]. In addition to the current signal, this dataset also contains vibration signal,
temperature, torque, speed, and radial load measurements of different operating conditions
of the IM. The test rig was composed of an IM, torque-measurement shaft, a module of
bearing, a flywheel, and finally, a load motor (Figure 1). Here, a frequency inverter was
used to operate the 425 W permanent magnet synchronous motor (PMSM) with a switching
frequency of 16 kHz. The model used for the PMSM and the frequency inverter are Type
SD4CDu8S-009, Hanning Elektro-Werke GmbH and Co. KG, and KEB Combivert 07F5E
1D-2B0A, respectively [54].
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Figure 1. Schematic diagram of the test rig.

In the data acquisition phase, a total of 32 different experimental bearings were
involved, among them, 6 were normal bearings, 12 damaged bearings where damage was
induced in an artificial manner, and another 14 faulty bearings with accelerating lifetime
tests. The artificial damage in the bearing is created using three methods: drilling, manual
electric engraving with a damage length of 1–4 mm, and electric discharge machining. Here,
the appropriate directions of geometrical sizes of the cracks in bearings were assigned
according to the VD1 3832 (2013) standard. For the accelerating lifetime test, plastic
deformation damage, damage by pitting, and fatigue damage techniques were applied
for the inner race and outer race faults. In case of injecting faults in bearings, the fault
measurements (the bearing geometry, location of fault, size of damage) followed the
15,243 (2010) standards, which makes the overall data acquisition process more reliable.
Additionally, to make the overall data acquisition process robust and acceptable, different
faults with a wide range of severity levels were tested several times with various operating
conditions as given in Table 1.

Table 1. Operating conditions of the testbed.

Condition No Rotational Speed (S)
(rpm)

Radial Force (F)
(N)

Load Torque (M)
(Nm)

1 1500 1000 0.7

2 1500 1000 0.1

3 1500 400 0.7

4 900 1000 0.7

With a current transducer of model LEM CKSR 15-NP, the current signal for two dif-
ferent phases was measured for each of the operating conditions mentioned above. Among
the 32 different signals available in the dataset, data from 17 bearings with 3 different
conditions were considered in this analysis. There are 20 measurements for each of the
bearings listed in Table 2, where each instance holds 4 s of recording. The signal is passed
through a 25 kHz low pass filter and then sampled at a rate of 64 kHz. For our analysis,
we divided 4 s of data into segments of 1 s, which makes the data dimension for our final
analysis 1320 ∗ 64,000 for three different classes, named normal (class 0), outer race fault
(class 1), and inner race fault (class 2).
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Table 2. Bearing data considered for analysis.

Type of Bearing Bearing Code Class Label

Normal Bearing K001, K002, K003, K004, K005, K006 0

Outer Ring KA04, KA15, KA16, KA22, KA30 1

Inner Ring KI04, KI14, KI16, KI17, KI18, KI21 2

3. Materials and Methods

A framework of the overall methodology is presented in Figure 2 for classifying
three different conditions of bearing using the current signal of IM. In the beginning, a
deep autoencoder (DAE) is trained only with the normal state-bearing data to generate a
nonlinear function approximation of a system. After that, the residual signal is generated
by the difference between the original current signal and the estimated current signal
generated by the DAE using the learned nonlinear approximation with the normal state of
the system. In this case, the anomaly detection mechanism of the autoencoder is applied to
identify the deviations of the faulty signals from the original signal by generating a residual
signal. At the last stage, the discriminative nature of the residual signal due to different
bearing conditions is considered as the representation of the individual bearing states of
the system and applied as the input of the CNN to classify three different conditions of the
bearing, including one normal and two faulty in IM.
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3.1. Bearing Fault Frequencies

The rolling element bearings (REB) are generally used to make the rotor operation
smooth by reducing the friction. They also have to operate for a long time under heavy
load conditions. Because of this, the bearing fault is the most frequently occurring fault
in IMs and requires thorough monitoring to avoid damage that can hamper the whole
industrial operation. The REB contains four basic elements, the inner race, outer race, cage,
and rolling elements. In bearings, the outer ring and inner ring are mounted on a rotating
shaft, whereas the rolling elements are placed in a closed cage having the same distance
from one another. Different types of faults such as pitting or flaking can be generated in
these elements due to adverse operating conditions, such as improper installation and
lubrication, material fatigue, and contamination in lubricating materials. Single element
faults such as those of the outer race, inner race, or roller faults occur most often, but
multiple faults can also be generated simultaneously in various elements. We consider the
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motor current signal for two faulty conditions (Figure 3) along with the normal bearing
condition in this work.
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When any fault generates during operation and the roller passes across the defect point
in every rotation, a shock impulse is creating having a characteristic defect frequency. The
damage frequencies of different elements can be calculated with the geometric parameters
of the bearing and the rotational speed along with the help of the Equations provided as
(1)–(4):

Inner race fault frequency: Finner =
Nball

2
× fm ×

(
1 +

(
Dball
Dcage

× cos β

))
(1)

Outer race fault frequency: Fouter =
Nball

2
× fm ×

(
1−

(
Dball
Dcage

× cos β

))
(2)

Roller fault frequency: Froller =
Dcage

2Dball
× fm ×

(
1−

(
Dball
Dcage

× cos β

)2
)

(3)

Cage fault frequency: Fcage =
fm

2

(
1−

(
Dball
Dcage

× cos β

))
(4)

Here, Nball is the number of rolling elements (balls), Dball is the ball diameter, Dcage
is the cage diameter, β is the angle measurement of the balls, and fm represents the
rotational frequency.

When the bearing fault occurs, a radial displacement is created between the stator
and rotor, and oscillations, as well as fault frequencies, are generated in the current signals
because of the radial motion. Later, the load torque and the rotating eccentricity develop
some fluctuations that result in variations in the values of inductance and cause amplitude,
frequency, and phase modulation. The current equation due to the occurrence of bearing
faults can be expressed as:

i(t) =
∞

∑
k=1

ikcos(ωCk t + φ) (5)

where φ is the phase angle, and ωCk represents the angular velocity, and

ωCk =
2π fbearing

p
(6)

Here, p is the pole pair number of the operating machine, and fbearing indicates the
harmonic frequency of the current signal and can be written as, fbearing = | fs ±m fv|. Here,
fs and m denote the supply frequency and the harmonic index, respectively. However, fv
can be either finner or fouter. Therefore, by applying the frequency auto search algorithm,
the approximation of fault frequencies can be possible [55]. In some cases, the harmonics
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generated due to the bearing fault and the noise frequencies become almost similar, which
later creates a problem in differentiating the actual fault frequencies [56].

The representation of three different conditions of the current signals at the time
domain is given in Figure 4, where all the signals exhibit subtle differences if we consider
the zoom view.
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Figure 4. Time−domain signal of the different bearing conditions.

The envelope analysis is considered effective in analyzing the fault frequencies of
different bearing fault conditions [57]. In Figure 5, the envelope spectrums of three different
conditions are presented to exhibit the supply and corresponding fault frequencies. Here,
the supply frequency (100 Hz) is visible for all conditions. However, for the inner and
outer fault conditions, the envelope spectra of the current signal do not show a peak at the
inner and outer frequency harmonics for all instances. The absence of indication of faults
in the current signal is because of the damped signal condition, presence of noise as well
as multiple disturbances, and the indirect transmission of the fault signatures in the drive
train through torque variations. Therefore, the features extraction from the current signal
becomes difficult and challenging, which makes essential the development of efficient
feature learning approaches for diagnosis bearing faults with a current signal [58].
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3.2. Data Segmentation

In an industrial setup, the collection of a large-scale dataset with proper labeling is
time-consuming, laborious, and makes the overall system design too complex. However,
to implement deep learning-based methods, high dimensional training data improves
the learning model to learn efficiently. In addition, in the case of implementing a 1-D
signal in a convolution neural network approach, the input data dimension will influence
the overall architecture of the model. As the input shape increases, the number of input
nodes and hidden layers also increases. Such a large and deep structure may provide
good performance, but it also requires a large amount of time to learn by the model
and there is the possibility of overfitting. To resolve this issue and convert the data
meaningfully, a resampling mechanism is applied on different states of the current signal
before the autoencoder, which prepares a sequence of frames. Here, each frame contains
the same number of data points collected at the time of each revolution period. Three steps,
provided below, are followed for the data segmentation before using data as the input of
the autoencoder.

1. Determining the number of rotations by the bearing in one second as the number
of revolutions accomplished in one second (RPS) can be estimated with the formula
stated below:

Rotations per second(RPS) =
rotating speed in rpm

60
(7)

2. Determining the time required for one complete rotation as

TOR =
1

RPS
(8)

3. Finally, the total number of data points recorded during one revolution can be found
by Equation (9).

Ff rame_size = fsampling × TOR (9)

Here, fsampling and Ff rame_size represent, respectively, the sampling frequency and each
frame length of the resampled signal in terms of numbers of data points.

Thus, when the speed of the bearing rotation is 1500 rpm, the parameters in
Equations (7)–(9) are calculated as RPS = 15, TOR = 0.04, and Ff rame_size = 2560 for 1-s data.

3.3. Deep Autoencoder (DAE)

The autoencoder based on a deep neural network is considered as one of the most
robust unsupervised learning models of the last few decades. With the unsupervised
model, it becomes possible to extract effective and discriminative features from a huge
unlabeled data set, which makes this approach widely applicable for the extraction of
features and dimensionality reduction [36]. Basically, an autoencoder consists of a fully
connected three-layer neural network where the encoder contains input and hidden layers
and the decoder part comprises hidden and output layers. The encoder transfers the input
data with a higher dimension into a feature vector with a lower dimension. After that, the
decoder converts the data back to the input dimension. One of the main priorities of the
deep neural network is to build a complex nonlinear relationship among the input data,
which also helps in the autoencoder to effectively reconstruct the output of the decoder.
Therefore, the reconstruction error will be decreased simultaneously through the overall
training period and significant features will be stored in the hidden layer. Finally, the
hidden layer output will depict the efficiency of the feature extraction of the designed
autoencoder. Figure 6 represents the configuration of the basic autoencoder.
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For the n-dimension input data samples, X = [x1, x2, . . . , xn], the output/activation of
the hidden layer h with m-dimension (m < n) can be calculated as Equation (10):

h = f h
(

W(1)x + b(1)
)

(10)

Here, W(1)x, b(1) and f h represent the weight matrix connecting the input and hidden
layer, bias, and activation function, respectively.

After the decoding process, the reconstructed signal, x̃ at the output layer can be
expressed as:

x̃ = f o
(

W(2)h + b(2)
)

(11)

Here, W(2), b(2) represent the weight matrix and the bias vector of the output layer.
The activation function used for both encoder and decoder parts is generally set as a
sigmoid function, f (t) = 1/

(
1 + e−t) or any other activation function depending on the

data type. The training process begins with some initial values of weights and biases.
During the training process, the parameters need to adjust for minimizing the re-

construction error between the original input data and the reconstructed output. The
reconstruction error is quantified by the mean squared error (MSE), as mentioned in
Equation (12), which is applied in our analysis.

L(W, b) =
1
N

N

∑
n=1

(x− x̃)2 (12)

In other cases, if the input values exist between 0 and 1, binary cross-entropy loss will
be calculated as the reconstruction error with Equation (13):

L(W, b) = − 1
mn

m

∑
i=1

n

∑
j=1

[
x(i)j logx̃(i)j +

(
1− x(i)j

)
logx(i)j

]
(13)

In this analysis, a deep autoencoder (one which uses more than one hidden layer) is
applied to find an approximation of the normal state of the bearing, whose architecture is
provided in Table 3.
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Table 3. The structure of the designed deep autoencoder (DAE).

Layer # Layer Type Number of Nodes Activation

1 Input (Encoder) 2560 -

2 Hidden (Encoder) 1280 SELU

3 Hidden (Encoder) 640 SELU

4 Hidden (Encoder) 320 SELU

5 Hidden (Encoder) 128 SELU

6 Hidden (Encoder/Decoder) 32 SELU

7 Hidden (Decoder) 128 SELU

8 Hidden (Decoder) 320 SELU

9 Hidden (Decoder) 640 SELU

10 Hidden (Decoder) 1280 SELU

11 Output (Decoder) 2560 SELU

The scaled exponential linear unit (SELU) is applied as the activation function for both
hidden and output layers of the DAE in this analysis. The recorded current signal has both
positive and negative values; since SELU is a non-saturating type of activation function, it
is a good choice for the type of signal used here, and it also tackles the vanishing gradient
problem that occurred in the deep network architecture. Additionally, the normalization
properties of SELU help to make the training process fast by converging the deep neural
network quickly. The SELU can be defined as Equation (14):

fSELU = λ

{
αex − α; x ≤ 0
x; x > 0

(14)

Here, the coefficient values for λ and α are set to approximately 1.05 and 1.6731,
respectively, according to [59]. In this work, the optimizer used for updating the weight
is adaptive moment estimation (Adam). This optimizer technique is becoming very well-
known because of its ability to memorize prior gradients as well as prior squared gradients
exponentially decaying average values of the loss function [60].

3.4. Generation of the Residual Signal

To generate the residual signal with the designed autoencoder to apply it as the input
of the CNN is one of the most significant parts of this research. In the training phase,
normal-state bearing data are fed to the DAE, and it learns the nonlinear behavior of the
system. Once the training phase is over, current signals for different states of the bearing
are provided as input to the DEA. In this case, all the signal instances are different from
those that are used in the training phase. In response, the DAE provides an estimated
signal for each instance of the input signal. Next, the difference between the original input
signal and the estimated signal from DAE is calculated, which is known as the residual
signal. The computation of the residual signal, rx̂(n) can be calculated as [40]:

rx̂(n) = x(n)− x̂(n) (15)

Here, x(n) and x̂(n) represent the raw time domain motor current signal and recon-
struction signal with the model developed with the normal state data, respectively.

Finally, we arranged the residual signal with three different conditions of motor
current signal for normal bearing, outer race fault, and inner race fault and used it as the
input of the 1D-CNN in the next step to perform fault classification.

The reconstruction error will be different for signals of different bearing states. The
DAE model is trained with normal bearing state data, so when it estimates a normal signal
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instance, the reconstruction error will be small. However, when DAE estimates for a current
signal that contains a fault signature, there is a high possibility that the reconstruction
error will deviate significantly from the previous case. Generally, various types of faulty
condition signals contain different characteristics and amplitude levels, and the relative
statistical parameters also vary according to the signal amplitude. As a result, the difference
between the time domain faulty state signals and the estimated signal by the DAE (residual
signal) will also vary depending on which type of fault is present. For this reason, the
computed residual signal can be used as discriminative features not only to detect the
present condition of any system but also to diagnose fault classification performance of
IM bearing.

3.5. Convolution Neural Network (CNN)

A convolution neural network (CNN) is a deep learning-based supervised algorithm
that combines feature extraction and feature classification approaches. In general, the CNN
is a feed-forward, deep network having full connectivity through the adjoining layers and
one that performs better in comparison with other general supervised techniques. The
ability to automatically learn high-dimensional features and solve the overfitting problem
in ML approaches makes CNN a very effective technique in large-scale applications.
The CNN is built with an input layer, multiple convolution layers, pooling layers, a
fully connected layer, and an output layer. Each layer performs distinct roles, which are
performed automatically within the architecture [61]. Additional inclusion of optimization
parameters, dropout layers, and batch normalization, help CNN to decrease its dependency
on the training data [62].

The original time-series data or the images of interest are passed to the convolution
layer from the input layer. The heaviest computational task occurs in the convolution layer
when a set of feature maps is generated. In each convolutional layer, a kernel having a local
receptive field is used to perform convolution operations with the input data. After that, a
bias term is added and the result passes through a nonlinear activation function, such as
rectified linear unit (ReLU), to generate the output feature map, which acts as the input for
the subsequent convolutional layer. ReLU is the most used function due to its ability to
make the nonlinearity of CNN quite high. The convolution operation can be defined as
Equation (16):

Xl
j = ReLU

 ∑
i∈Mj

Xl−1
i ×ωl

ij + bl
j

 (16)

Here, the ReLU operation can be calculated as Equation (17),

xj
i = max(0, xj′

i ) (17)

Here, Xl
j and Xl−1

i represent the output and input layers of the convolution layer
with i-th input feature map and j-th output feature map. Furthermore, l indicates the layer
number, ωl

ij represents the weight matrix, bl
j is the bias matrix, and ReLU represents the

activation function.
After the convolution layer, a down-sampling layer is added to merge similar types of

features, which reduces the size of the feature map and reduces the computation time by
maintaining the same invariance in the characteristic scale. Therefore, the pooling layer
reduces the data dimension without updating the weights of the parameters. It is important
to set the stride parameter carefully as it plays an important role in this layer to reduce
the resolution and preserve the numerical information. Max pooling, average pooling,
norm pooling, logarithmic pooling, and stochastic pooling are different types of pooling
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approaches used in CNN. The output of the pooling layer for the j-th channel of the t-length
feature can be expressed as:

Pj(n) = max
0≤n≤ t

s

{
Xj(nW, (n + 1)W

}
(18)

where Xj, W, S represent the input, width of the pooling window, and stride size, respectively.
After completing the multiple stacks of convolution and pooling layers, the outcome

can be transferred to the final stage of CNN, named the fully connected layer. This layer
utilizes the output from the last pooling layer to predict the classes of the provided data.
Therefore, the input of this layer was generated by performing a weighted summation of a
one-dimensional feature matrix expanded by all feature graphs. The output of this layer yi

can be expressed as:
yi = f

(
wixi−1 + bi

)
(19)

Here, xi−1, wi, and bi are the feature vectors of one dimension, weight matrix, and
bias, respectively. The output of the fully connected layer is a probability for each class or
category in case of the classification problem. The probability is computed by a softmax
activation function. The categorical cross-entropy loss function is used to calculate the
gradients, which are to be utilized to update the weights in the training phase involving
the loss function, which is expressed as follows:

Loss(θ) = − 1
n

n

∑
i=1

K

∑
k=1

yi
klog(P̂K) (20)

Here, yi
k and P̂K represent, respectively, the target and estimated probabilities for i-th

instances in the dataset containing the output class label k. The Adam optimization used
for the autoencoder is also used for training the CNN.

The architecture of the CNN model applied in this work is shown in Figure 7, which
connects the input layer with two convolution and max-pooling layers and finally one fully
connected and three output layers.
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Figure 7. Architecture of the designed CNN.

The outline of the CNN model used in this fault classification task is presented in
Table 4, where the details of layer type, output shape, and the total number of parameters
are included.
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Table 4. Sequential model of a 2-layer CNN.

Layer (Type) Output Shape Number of Parameters

conv1d_1 (Conv1D) None, 63,998, 64) 256

max_pooling1d_1
(MaxPooling) (None, 31,999, 64) 0

conv1d_2 (Conv1D) (None, 31,997, 32) 6176

max_pooling1d_2
(MaxPooling) (None, 15,998, 32) 0

flatten_1 (Flatten) (None, 511,936) 0

dense (Dense) (None, 3) 1,535,811

Total params: 1,542,243
Trainable params: 1,542,243

Non-trainable params: 0

3.6. Fault Classification Performance Evaluation Parameters

As our proposed approach classifies bearing faults from the motor current signal, we
used commonly used evaluation parameters for classification problems such as precision,
recall, F1-score, and accuracy. These parameters can be calculated using Equations (21)–(24).

Precision =
TP

TP + FP
(21)

Recall =
TP

TP + FN
(22)

F1_score =
2× Precision× Recall

Precision + Recall
(23)

Accuracy =
TP + TN

TP + FP + TN + FN
(24)

4. Experimental Results and Discussion

A pipeline process consists of two steps: the first one performs the approximation of
the nonlinear function, and the second stage represents the decision-making process for
classification, and these are applied in the proposed method for fault classification. The
nonlinear function approximation was performed through a DAE, which was trained with
only the normal state data of the bearing and, by using the model, the residual signals were
obtained for one normal state and two different faulty states.

Initially, we started with one second of the current signal recording consisting of
64,000 samples, and after performing signal segmentation, we obtained 2560 samples
for each frame. In the beginning, the normal condition segmented data samples of the
motor current signal were only considered to train the DAE. Then, the same signal is
again reconstructed with the trained model. From the difference of these two signals, the
residual signal (also known as reconstruction error) was generated and used as the input
of the CNN in the next step. In this training process of DAE, the segmented data are
divided into training and test sets with an 80:20 ratio. Therefore, 2048 samples were used
to train the DAE model, and the remaining 512 samples were used for testing purposes to
calculate the validation error. After training the DAE model for 500 epochs, each 1-s data
(64000 samples) segment of normal and faulty conditions was used to generate the residual
signal. In the end, these residuals are applied as the input of the CNN, which helped the
decision-making part in classifying the bearing conditions. Since the DAE model is trained
initially with normal condition data, the residual signal generated due to normal state
data is very low in magnitude with most values clustered around zero. Therefore, the
small magnitude residual signal indicates a very small reconstruction error as the original
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data and the predicted data through DAE nearly resemble each other. Generally, when
a fault occurred in a system, the faulty data showed some deviation from normal state
data. Hence, when the residual signal is generated for signals of faulty condition, the
amplitude of reconstruction error also becomes high as compared to the residual signal
of the normal state data. We calculated the reconstruction error with mean square error
and obtained the values 0.104, 0.386, 0.479 for normal, outer race fault, and inner race fault
data, respectively. The raw signal, corresponding signal predicted by DAE, and residual
signal for three different conditions are presented in Figure 8a–c. Additionally, 100 sample
segments of residuals obtained for each of the signal types are plotted in Figure 8d to
provide a clear visualization of the differences among the normal and faulty conditions in
terms of the residual signal.
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After obtaining the residual signals for all three conditions, 80% of these residual
signal samples are used to train the subsequent CNN model, and the remaining 20% are
used for the testing phase. While training the CNN model, 64 samples were grouped as
data batches, and the training process is continued up to 500 epochs. We utilized a 2-layer
CNN as mentioned in Section 3.5 and, by optimizing the model parameters, 99.6% accuracy
was achieved on the test dataset.

To validate the performance of our proposed method, we compare the result with
some other partially modified approaches. For the first one, we kept the CNN model
unchanged and made the original segmented current signal as the input (Raw + CNN)
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to investigate whether or not the nonlinear signal approximation technique by DAE is
playing a significant role in improving the model performance. The accuracy obtained by
Raw + CNN was 61.06%, which is significantly lower than the proposed method. We also
wanted to investigate whether the familiar machine learning algorithms could perform
a good classification of the faults. For this purpose, a group of statistical features (SF)
mentioned in Table 5 were extracted from the residual signal, and later, these features are
used with support vector machine (SVM), random forest (RF), and k-nearest neighbor
(KNN) individually. These three approaches are mentioned as RS + SF + SVM, RS + SF +
RF, and RS + SF + KNN, respectively, in Table 6.

Table 5. List of extracting statistical features from the residual signal.

Feature Name Equation Feature Name Equation

RMS: Xrms =

√
∑N

i=1 xi
2

N
Energy: E =

N
∑

i=1
xi

2

Standard Deviation: S =

√
∑N

i=1 (xi−µ)2

N−1
Kurtosis:

xkurtosis =
1
N

∑N
i=1 (xi−µ)4

σ4

Variance: S2 = ∑N
i=1 (xi−µ)2

N−1
Skewness:

xskewness =
1
N

∑N
i=1 (xi−µ)3

σ3

Crest factor: C f =
Xmax
Xmin

Shannon-entropy
Hs =

−
N
∑

i=1
xi

2log(xi
2)

Form factor Ff =
µ

Xrms
Log-energy entropy He = −

N
∑

i=1
log(xi

2)

Table 6. The results of the evaluation parameters of five different approaches.

Methods
Evaluation Parameters

Recall Precision F1_Score Accuracy (%)

RS + SF + SVM 0.42 0.41 0.41 41.67

RS + SF + RF 0.53 0.52 0.52 53.06

RS + SF + KNN 0.47 0.49 0.44 47.08

Raw + CNN 0.60 0.59 0.60 61.06

Proposed 0.99 0.99 0.99 99.6

Finally, the evaluating parameters of all the mentioned approaches are listed in Table 6,
and it is evident from the results that the proposed methodology with an accuracy score of
99.6% outperformed the other discussed methods.

To observe the repeatability of our proposed model, all the experiments were executed
100 times and the resulting accuracy distribution was provided as box plots in Figure 9a.
The confusion matrix of our proposed method is presented in Figure 9b, where only one
sample is incorrectly classified with the designed CNN.
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Figure 9. (a) The boxplot representing the accuracy matrix of over 100 experiments; (b) confusion matrix.

From the boxplot representation, the accuracy value of our proposed method did
not significantly vary from the mean and median values throughout the experiments that
confirm the repeatability of the outcome. Not only that, other approaches that involve only
the CNN architecture also showed a small deviation in accuracy, and no outliers have been
observed. However, the accuracy is a little higher than the ML classifiers but much lower
than our proposed method. Therefore, the inclusion of an autoencoder-based approach
with CNN helps to achieve high accuracy where signals have nonlinear characteristics.
In general, the time domain current signal possesses non-stationary characteristics and
the statistical properties of the data containing the same class may vary with time, which
results in less discriminative features among the classes. For this reason, when it is directly
set as the input of CNN, the model fails to assign proper weights at the training phase
to accomplish good accuracy on the testing samples. On the other hand, the other three
approaches involving characterization of the residual signal with statistical features show
high deviation from the mean and median values, a large number of outlier samples,
and results in a comparatively low accuracy in fault classification performance with the
current signal.

Finally, we made a comparison with some other existing approaches where the same
dataset is being used for the bearing fault classification. An information fusion (IF) tech-
nique was investigated by Hoang and Kang [58], and three different classifier algorithms
were applied for fault classification with the motor current signal. In their approach, first
they convert the current signal into a 2-D gray image and then apply a 2-D CNN to classify
the images. Hence, they mentioned the CNN structure, where the number of convolution
and pooling layers was four. However, in our analysis, we first apply an autoencoder and
later use the generated reconstruction signal in 1-D CNN to classify the fault. Here, we
used a two-layer 1-D CNN with two convolution and two pooling layers. In general, the
computational complexity of the CNN model is proportional to the number of layers and
the parameters. Due to the nature of residual signal of bearing states, high classification
accuracy can be achieved with the help of a simple two-layer CNN. If we consider both
model type and complexity, our model seems easy to implement and requires less time
to accomplish. Furthermore, a combination of wavelet packet decomposition (WPD) and
particle swarm optimization-based SVM was applied by [54] and achieved more than 85%
accuracy in classifying the bearing fault with the current signal. Hsueh et al. applied em-
pirical wavelet transform to transform the 1-D current signal into 2-D grayscale images and
later to classify the fault with CNN [63]. Table 7 presents the comparison of the mentioned
existing works with our proposed method.
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Table 7. Comparison of accuracy metrics with existing works.

Applied Methods Classification Accuracy (%)

IF + MLP [58] 98.3

SVM + IF [58] 98.0

KNN + IF [58] 97.7

WPD + SVM-PSO [54] 86.03

CNN + EWT [63] 97.3

Proposed (Raw + RS + CNN) 99.6

From the comparisons among the experimental results and existing works, it can
be concluded that the discussed data-driven-based method containing the DAE-CNN
model can attain high accuracy in bearing fault classification with the motor current signal.
In this two-step pipeline method, the DAE acts as an automatic and efficient feature
learning approach, which also provides an approximation of the nonlinear behavior of
the bearing system. The resultant residual signal enhances the fault diagnosis ability of
CNN by providing discriminative features according to the bearing states. The overall
method does not require any additional signal processing techniques for extracting features,
which makes the approach less complex and less time-consuming. To make our method
more reliable and robust, in our future analysis, we will consider changing the operating
conditions of IM, including varying load and rotating speed. Therefore, the DAE-based
CNN approach can be considered as an efficient and effective way to learn features and
classify bearing faults by utilizing the motor current signal.

5. Conclusions

Due to the availability of sensor data, research has become more focused on data-
driven based fault diagnosis techniques. Among the different sensor data available, anal-
ysis with the motor current signal data is considered a smart solution due to the advan-
tages of low cost, easy access, and extensive technical support. In this analysis, a novel
semi-supervised method is introduced to classify three different bearing fault states. The
approach utilizes an unsupervised and supervised model simultaneously. In the beginning,
the time-domain current signal is segmented considering the fundamental frequency, and
then the deep autoencoder (DAE) is trained with the normal state data to estimate the
function approximation of the system. After that, the residual signal is calculated from
the difference between raw and estimated signals produced by the autoencoder for all
conditions. In this step, the DAE helps to extract discriminative features from the current
signal data without any labels. Lastly, with the residual signals, a two-layer CNN is con-
structed for identifying the bearing faults. The experiments were performed 100 times
by randomly selecting the training/testing data set, and the result shows good stable
convergence with high accuracy. This method does not require any previous knowledge
about the system or any additional signal processing techniques for feature engineering.
Furthermore, a comparison is presented with some reference approaches as well as some
recent works to test the efficiency, which indicates that the DAE-based CNN method can
be an efficient fault classification approach to classify different bearing faults. As proper
data labeling is quite difficult in an industrial environment, this semi-supervised learning
mechanism can be a promising alternative for supervised learning approaches in the fault
diagnosis method. In our future work, we will try to improve the autoencoder model
architecture to perform a better nonlinear model approximation to enhance the reliability
and robustness of the system. In addition, a systematic hyperparameter tuning approach
will be investigated for building an optimized CNN structure to make the decision-making
approach more automated.
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