
sensors

Article

Design of Secure Microcontroller-Based Systems: Application
to Mobile Robots for Perimeter Monitoring

Dmitry Levshun * , Andrey Chechulin and Igor Kotenko

����������
�������

Citation: Levshun, D.; Chechulin, A.;

Kotenko, I. Design of Secure

Microcontroller-Based Systems:

Application to Mobile Robots for

Perimeter Monitoring. Sensors 2021,

21, 8451. https://doi.org/10.3390/

s21248451

Academic Editor: Gregor Klancar

Received: 30 October 2021

Accepted: 8 December 2021

Published: 17 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS),
199178 St. Petersburg, Russia; chechulin@comsec.spb.ru (A.C.); ivkote@comsec.spb.ru (I.K.)
* Correspondence: levshun@comsec.spb.ru

Abstract: This paper describes an original methodology for the design of microcontroller-based
physical security systems and its application for the system of mobile robots. The novelty of the
proposed methodology lies in combining various design algorithms on the basis of abstract and
detailed system representations. The suggested design approach, which is based on the methodology,
is modular and extensible, takes into account the security of the physical layer of the system, works
with the abstract system representation and is looking for a trade-off between the security of the final
solution and the resources expended on it. Moreover, unlike existing solutions, the methodology has
a strong focus on security. It is aimed at ensuring the protection of the system against attacks at the
design stage, considers security components as an integral part of the system and checks if the system
can be designed in accordance with given requirements and limitations. An experimental evaluation
of the methodology was conducted with help of its software implementation that consists of Python
script, PostgreSQL database, Tkinter interface and available for download on our GitHub. As a use
case, the system of mobile robots for perimeter monitoring was chosen. During the experimental
evaluation, the design time was measured depending on the parameters of the attacker against which
system security must be ensured. Moreover, the software implementation of the methodology was
analyzed in compliance with requirements and compared with analogues. The advantages and
disadvantages of the methodology as well as future work directions are indicated.

Keywords: information security; physical security; security by design; design methodology;
microcontroller-based system; perimeter monitoring; mobile robot

1. Introduction

Microcontroller-based systems now are an integral part of any sphere of our activity,
that is why the importance of ensuring their security is critical [1]. The consequences of
failure of such systems, including associated with activities of intruders, include financial
and reputational damage as well as a threat to human life and health [2]. One of the
possible attack vectors is the exploitation of vulnerabilities, the presence of which in such
systems is due to various factors.

Errors during the design stage of the lifecycle of microcontroller-based systems are
critical, because they lead to the presence of weak places and architectural defects. More-
over, there are situations, when fixing discovered vulnerabilities is not feasible, because the
companies that developed the device or its software no longer exist [3]. It means that
security is not considered during the development of microcontroller-based devices, while
most of the weaknesses could be prevented during the design stage.

For example, according to the SonicWall report, malware attacks with the help of
microcontroller-based devices jumped 215.7% to 32.7 million in 2018 up from 10.3 million
in 2017 [4]. In 2019, the attacks continued but showed a more moderate increase of 5%,
according to their 2020 Cyber Threat Report [5]. According to the Palo Alto Networks 2020
Unit 42 Threat Report “98% of all device traffic is unencrypted, exposing personal and
confidential data on the network” [6].

Sensors 2021, 21, 8451. https://doi.org/10.3390/s21248451 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1898-6624
https://orcid.org/0000-0001-7056-6972
https://orcid.org/0000-0001-6859-7120
https://doi.org/10.3390/s21248451
https://doi.org/10.3390/s21248451
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21248451
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21248451?type=check_update&version=1

Sensors 2021, 21, 8451 2 of 41

Thus, the scientific problem to be solved is the contradiction that despite the large
number of vulnerabilities regularly discovered in microcontroller-based systems, there is
no general methodology for such systems design. However, different techniques in this
area are widely used for specific applications: robots, railway infrastructure, smart cities,
etc. Those techniques can be aimed at software, hardware, individual devices and classes
of systems.

The key issue of such solutions is in focusing on certain aspects of the security, ensuring
their inapplicability for providing the security of microcontroller-based systems in general.
For example, techniques might not take into account the strong relationship between
hardware and software elements of microcontroller-based devices [7–10] or design such
devices in isolation from the system they are supposed to work in [11,12].

Moreover, techniques might provide secure connection with external systems only
from the designed system side [13–15], be bound to specific hardware, software, platforms
and architectures and do not take into account limitations of microcontroller-based devices
like computational complexity, energy efficiency, size and price [16–21].

Therefore, this work is aimed at developing the original methodology for the design of
microcontroller-based physical security systems. Among all possible systems, only physical
security systems were chosen as an area of the application, because, in such systems, during
the design process, it is required to ensure not only the functionality of the system but also
its security against cyber-physical attacks [22].

The contributions to the research field are as follows:

• an extendable set-based hierarchical relational model,
• an algorithm for the formation of requirements,
• an algorithm for the formation of component compositions,
• an algorithm for the design of abstract models,
• an algorithm for the design of detailed models, and
• a design methodology that combines algorithms into a single approach.

Unlike the existing solutions, the extendable set-based hierarchical relational model
represents a microcontroller-based physical security system instead of representing sep-
arate microcontroller-based devices. Such functionality neutralizes the disadvantages of
analogs in terms of designing devices separately from their interaction with each other.
Moreover, this model is modular, extensible and hierarchical, has a strong focus on security
of the resulting solution as well as considers security elements as an integral part of the
designed system.

The novelty of the algorithm for the formation of requirements is in retrieving a list of
system devices, communications available to them, as well as requirements for them only
on the basis of system tasks, while the list of attack actions that are possible for the attacker
is retrieved in accordance with the attacker’s parameters.

Unlike other solutions, the algorithm for the formation of component compositions is
retrieving abstract elements and sub-elements of the designed system in accordance with
the requirements, device base and already retrieved elements, while security elements are
represented as abstract elements, sub-elements and recommendations for the system and
its device implementation.

The novelty of tthe algorithm for the design of abstract models is in taking into
account complex dependencies between systems elements, namely, their hierarchy, nesting,
communications, conflicts and requirements. Moreover, this algorithm is not limited to
specific platforms and architectures and because of its abstract nature reduces the number
of parameters to be searched, thereby increasing the work speed of the solution.

Unlike existing solutions, the algorithm for the design of detailed models forms a
step-by-step process of detailing the abstract representations of systems in accordance
with the hierarchy and mutual dependencies of their elements. Moreover, this algorithm
calculates the parameters of devices based on the parameters of their elements as well as
the parameters of systems based on the parameters of their devices. This algorithm does
not replace the abstract model of the system, but expands and complements it.

Sensors 2021, 21, 8451 3 of 41

The novelty of the methodology for the design of microcontroller-based physical
security systems lies in a new approach to the design, which allows combining various
design techniques on the basis of hierarchical relational model transformation algorithms.
Moreover, the suggested approach is modular and extensible, takes into account the security
of the physical layer of the system, works with the abstract system representation and is
looking for a trade-off between the security of the final solution and expended resources.

Unlike existing solutions, the methodology has a strong focus on security. It is aimed
at ensuring the protection of the system against attacks at the design stage, considers
security components as an integral part of the system and checks if the system can be
designed in accordance with given requirements and limitations.

It is important to note that this paper represents our latest results in the investi-
gation and development of the methodology for design of secure systems based on
microcontrollers. The previous versions of this methodology were presented in [1,2].
The key part of this methodology—the extendable set-based hierarchical relational model
of microcontroller-based system—was presented in [23,24]. Moreover, one of the algo-
rithms, namely, algorithm for the design of abstract models, was presented at the 14th
International Symposium on Intelligent Distributed Computing (IDC 2021).

This paper is an extension and improvement of the given work. The model of
microcontroller-based systems was reconsidered and improved. First, the model of links
between building blocks, software and hardware elements was extended with information
about communication parties. Secondly, the model of the attacker now allows to distin-
guish attackers according to their type of access, knowledge and resources instead of level
of capabilities and type of access. Thirdly, the model of attack actions now distinguishes
actions according to their class, object and subject instead of preconditions.

Moreover, classes of attack actions are specified in accordance with the levels of
the system they occur in, while examples of actions of each class are provided. Finally,
the connections between models of the attacker, attack actions, security and non-security
elements are described in detail. Unlike before, the workflow of the methodology is
described as a set of algorithms that are combined into a single automated approach with
minimal operator involvement.

For the first time, the software implementation of the methodology is presented. It is
used to validate the correctness of the methodology based on the design of a secure system
of mobile robots for perimeter monitoring.

The methodology presented in this paper works only with ready-made components
and controllers, without taking into account elements of electronic circuits. It is not
generating source code of the system software and firmware. The parameters of the device
case, its cooling and resistance to various weather conditions are not considered. This
indicates that, for example, navigation of mobile robots is considered only on the level of
required sensors and algorithms, while the process of constructing such algorithms is a
separate complex task [25,26].

The paper is organized as follows. Section 2 considers the state of the art in the area
of design of secure microcontroller-based systems. In Section 3 the original extendable
set-based hierarchical relational model of microcontroller-based physical security systems
is presented. Section 4 describes the new approach for the design of microcontroller-
based physical security systems. In Section 5 an experimental evaluation of the developed
methodology is presented. In Section 6 advantages and disadvantages of the methodology
are considered. Section 7 contains general conclusions and future work directions.

2. Related Work

There are many approaches to ensure the information security of microcontroller-
based systems [27]. As a rule, they are associated with individual stages of such systems
development lifecycle: analysis, planning, design, development, testing, deployment,
maintenance and evaluation; see Figure 1.

Sensors 2021, 21, 8451 4 of 41

System
Development
Lifecycle

Analysis

Planning

Design

Development

Testing

Deployment

Maintenance

Evaluation

1

2

3

4

5

6

7

8

Figure 1. Microcontroller-based systems development lifecycle.

Approaches that are discussed in this section are used at the design stage of the
systems development lifecycle and associated with the security by design approach. This
is an approach to software and hardware development that aims to reduce the amount
of possible vulnerabilities and enhance the system’s protection against possible attacks.
The main idea of the approach is in taking into account security features as a design
criterion of products.

Moreover, based on the information about the component composition of a system
based on microcontrollers, it is possible to determine a list of attack actions to which this
system is potentially susceptible. Then, based on the parameters of the attacker, this list of
attacks can be limited in the same way as if there is information about the methods and
means of protection used. All attack actions remaining are representing a real threat and
must be considered. Information about attack actions to which the designed system is
potentially susceptible is often used by design techniques to find a trade-off between the
level of protection of the resulting solution and resources expended on it.

The task of designing microcontroller-based systems to be secure against attacks is
complex, and thus different techniques in this area are widely used for specific areas of
applications—robots, railway infrastructure, smart cities, etc. Those techniques can be
aimed at software, hardware, individual devices and classes of systems. Let us consider
them in more detail.

The design process of resilient microcontroller-based systems is presented in [13].
According to the authors, the resilient system includes three features: stability, security and
systematicness. Stability means that the control system always reaches a stable decision
result eventually. Security means that the designed system is able to detect and countermea-
sure cyber-physical attacks. Systematicness means that cyber and physical components are
integrated together. The system framework suggested by the authors includes six levels:
sensing, processing, modeling, decision fusion, human and actuators. To design a resilient
microcontroller-based system, the following challenges should be addressed: reliability,
dependability, consistency, cyber-physical mismatch and coupling security.

In [7], a microcontroller-based automatic power factor correction technique was im-
plemented by the authors. The goal of the system is to minimize penalties, reduce losses

Sensors 2021, 21, 8451 5 of 41

and save power. The authors used a PIC18F452 microcontroller to build a system proto-
type. The design approach consists of (1) development of the block diagram of the entire
system; (2) development of the circuit diagram of the system; (3) development of the
system prototype; and (4) prototype testing and evaluation. All of the approach steps were
done manually.

The extension of mechatronic systems to cyber-physical ones is presented in [14]. The
authors considered similarities of such systems and underlined the need of cyber-physical
systems in the manufacturing sector. Moreover, the authors presented the main research
issues in the process of designing such systems, namely, the need for the integrated and
multi-scale approach. Such an approach is required to prevent cross-domain conflicts in
the process of development of cyber-physical systems.

The authors described the requirement for multi-scalability based on external and
internal interactions, process control, behaviour simulation, topological relations and
interoperability. The suggested design methodology contains seven main stages—namely,
system boundary definition, multi-view/multi-level modeling, interactions modeling,
topological modeling, semantic interoperability, multi-agent modeling and collaboration
modeling. As a case study, the authors used a process of manufacturing tablets.

A microcontroller-based wireless humidity monitor was designed and developed
in [8]. The authors used a DHT22 sensor module and an RF 433 MHz transmitter that
were connected with an Arduino Uno microcontroller. The collected data was displayed
on a 16×1 LCD. The author’s approach to design such a system contains (1) design of the
block diagram, which divided the system into the transmission and receiving sections; (2)
design of flow charts for each section of the system; (3) development of the software for
each part of the system; and (4) implementation of the system. The authors built such a
system manually, using their own knowledge.

In [9], the authors identified the requirements for a secure, robust and resilient SDN
(Software-Defined Network, [28]) controller. Moreover, such controllers were analyzed
with respect to the security of their design, and recommendations for security improve-
ments were provided. The security attributes were categorized into three groups: secure
controller design, secure controller interfaces and controller security services. As for design,
the following functionality was checked: control process (application) isolation, imple-
mentation of policy conflict resolution, multiple Controller instances, multiple application
instances and secure storage.

A systematic methodology for a chaotic map-based real-time video encryption and
decryption system was proposed in [10]. Moreover, the authors developed its hardware
implementation and tested it in a real-world network environment. The security perfor-
mance of the designed system was tested using criteria from the National Institute of
Standards and Technology statistical test suite. Based on theoretical analysis and exper-
imental results, the authors concluded validity and feasibility of the new secure video
communication system.

Google Cloud Internet of Things is a set of technologies that is focused on network-
connected devices that are embedded in the physical environment [16]. As an addi-
tional dimension of microcontroller-based systems compared to other cloud applications,
the authors highlighted the following: diverse hardware, operating systems and soft-
ware on devices as well as requirements for network gateways. This solution divides
microcontroller-based systems into devices (software + hardware), gateways and clouds.

The main benefit of this technology is in the possibility to work with Google services,
including artificial intelligence ones. For example, Vertex AI can be used to work with
machine learning tools developed by Google Research [29]. To connect microcontroller-
based devices to Google cloud, the Google IoT Device SDK (software development kit) was
developed [30]. This SDK supports a wide range of 32-bit microcontrollers and real-time
operating systems (Zephyr, ARM Mbed OS, FreeRTOS, etc.), while libraries of SDK are
written in Embedded C and available on Github [31].

Sensors 2021, 21, 8451 6 of 41

PSA Certified is a security framework for the Internet of Things that was created by
ARM, Brightsight, CAICT, Prove & Run, Riscure, TrustCB and ULs [17]. This framework is
an extension of the ARM Platform Security Architecture (PSA). The idea of the framework
is in providing an approach for security design of connected microcontroller-based devices.
The main features are as follows: open resources, layered approach, reduced costs, stan-
dardized security, unbiased certification and aligned standards. As the main 10 security
goals the following are mentioned: unique identification, security lifecycle, attestation,
secure boot, secure update, anti-rollback, isolation, interaction across isolated boundaries,
secure storage and cryptographic and trusted services.

For additional security on a hardware level, the authors developed a PSA Root
of Trust (PSA-RoT), which is the the part of the chip that performs trusted functions to
ensure security [32]. The PSA Certified framework also provides a security-by-design
methodology that consists of four main steps: analysis and identification of security
requirements; consideration of the security architecture; integration of the components;
security assessment and certification [33].

Kaspersky Industrial CyberSecurity (KICS) is a combination of products and services
for industrial-level cybersecurity [18]. It contains the following products: KICS for nodes
(endpoint protection), KICS for networks (anomaly and breach detection) and Kaspersky
Security Center (security management). Services are divided into training and awareness
(Kaspersky security awareness and cybersecurity training) as well as expert services and
intelligence (Kaspersky security assessment, incident response and threat intelligence).

As benefits, the following are mentioned by the authors: asset discovery, deep packet
inspection, network integrity control, intrusion detection, command control, anomaly
detection, vulnerability management, external systems integration, reporting and notifica-
tion. The design of secure industrial microcontroller-based devices is based on Kaspersky
Operation System (KasperskyOS) [34].

Technologies of KasperskyOS include cyber immunity (sensitive components isola-
tion), microkernel (links between software and hardware) and security policies configura-
tion (policies customization, internal communications scanning). The work process of this
operating system is based on prohibition of all actions recognized as dangerous.

The main technologies of Microsoft for Internet of Things are Azure IoT Hub [19]
and Digital Twins [35]. Azure IoT Hub provides a possibility to design secure and reliable
communication between microcontroller-based devices and cloud applications. The main
features of this technology are as follows: per-device authentication, built-in device man-
agement and scaled provisioning.

Security risks are reduced with the help of Azure Defender for IoT [36]. Azure Digital
Twins is a platform for modeling devices, places, business processes and people. As a
modeling language, Digital Twin Definition Language (DTDL) is used, its specification is
available on the Github repository [37]. In addition, all Microsoft solutions are developed
with the help of their Security Development Lifecycle (SDL) [38].

This solution consists of the following stages: personal training, security require-
ments definition, acceptable levels of security definition, vulnerabilities identification, risk
and countermeasures analysis, security features definition for the design, cryptographic
solutions definition, third-party components analysis, approvement of tools, static and
dynamic analysis security testing, penetration testing, incident response plan preparation.
As a benefit, Microsoft SDL helps developers to build software with reduced number of
vulnerabilities, while the development process becomes cheaper.

Intel Internet of Things is a platform for the secure connection of microcontroller-
based devices to the cloud via gateways [20]. This platform ensures that data is efficiently
collected, processed and delivered. Moreover, this platform is integrated with the IBM
Watson IoT platform [39]. The IBM platform is a cloud service that provides devices
and their data management functions. The development of secure microcontroller-based
devices is based on the Intel oneAPI IoT Toolkit [40].

Sensors 2021, 21, 8451 7 of 41

This toolkit helps with system design, development and deployment across CPU, GPU,
FPGA, SoC and other architectures. The key benefits of FPGAs and SoCs are as follows:
customization of both hardware and software; security through hardware cryptography;
secure in-field upgrades [41].

MindSphere is a cloud-based service solution for Industrial Internet of Things from
Siemens [21]. It is used for contextualized collection, analysis and visualisation of data.
The key features of the solution are as follows: advanced analytics of near-real-time
data; connection of physical and web systems in one solution; integration of industrial
solutions; utilization of multiple data services. Analytics are based on artificial and business
intelligence, machine learning, industrial edge and visualisation [42].

Connectivity is based on abstract representation of devices, systems and workflows,
support of a variety of protocols, availability of out-of-the-box solutions as well as possibil-
ity of integration with enterprise IT systems [43]. Integration is based on closed-loop digital
twin, condition monitoring, low-code application development and modular offerings [44].
The connection of the application to the MindSphere is based on MindConnect API [45].
This API provides microcontroller-based devices with a possibility to send data to the
MindSphere service securely and reliably.

A configuration model for the design of microcontroller-based devices that are secure
and efficient in terms of the resource consumption is presented in [12]. This model is used
for the search of rational combinations of security building blocks based on their resource
consumption.

The authors proposed an approach for determining the process of combination of
individual algorithms and techniques that are implementing different protection functions.
Moreover, it was noted that the developed model and approach should be used as a
part of the design process for the whole microcontroller-based system. As a basis for the
microcontroller-based devices analysis, MARTE is used [46]. MARTE is a UML profile for
the modeling and analysis of real-time embedded systems.

The configuration model consists of: raw data (device specification, description of
security building blocks), input data that is extracted from the raw data (functional and
non-functional properties, attacker and threat models, security requirements, resources and
compatibility of the devices) as well as functions of the configuration process (filtration,
verification, compatibility analysis and optimization-based composition). The model was
applied for the smartphone HTC Wildfire S with Android 3.2.

In [11] a technique for the design of secure and energy-efficient microcontroller-based
devices was presented. This technique finds out rational combinations of security compo-
nents on the basis of solving the optimization problem. According to the authors, devices
are designed in accordance with the structured sequence of actions. Security components
are combined using semantic rules for their choice in accordance with functional and
non-functional constraints.

The main stages of the technique are as follows: definition of functional and non-
functional constraints; identification of security components in accordance with functional
constraints; definition of rules for the selection of security components in accordance with
the relations; calculation of non-functional constraints; choice of the rational configuration
in accordance with the importance of non-functional constraints. This technique was
applied for a perimeter protection system in its part of the implementation of the room
access control.

A methodology for the network information flow analysis in microcontroller-based
systems was presented in [47]. According to the authors, the main security issue of such sys-
tems lies in the fact that they work in a potentially hostile environment, while having strong
resource limitations. The following levels of the systems were mentioned and applicable for
the security-critical information flow analysis: electronic circuit schemes (hardware flows),
data of devices firmware and software (software flows), and communications between
devices (network flows).

Sensors 2021, 21, 8451 8 of 41

The suggested methodology consists of the two main approaches: topological and
security policies based information flow analysis. Topological approach is based on the
identification of all components that are lying between two nodes of the graph, between se-
cure information source and not secure information target. The security policies approach
uses filtering rules, network configuration and a description of anomalies for the detection
of conflicts in policies with the help of model checking tools. This methodology was
developed in the framework of the SecFutur project [15].

The main disadvantages of the analyzed scientific solutions are as follows:

• a focus on only one aspect of the security of microcontroller-based systems;
• strong relations between software and hardware in microcontroller-based devices are

not considered;
• microcontroller-based devices are designed without taking into account the system

they will work in; and
• secure communication is provided only between microcontroller-based devices, while

their communications with external systems is not considered.

The main disadvantages of the analyzed commercial solutions are as follows:

• strong restrictions on the possible platforms and architectures of microcontroller-based
devices to be used;

• security is ensured only on the level of cloud services and communications between
the gateway device and the cloud; and

• there is no trade-off between the security level and resources expended on it.

This means that a general approach for solving the issue of secure microcontroller-
based systems design is not done yet. Therefore, an original approach for the design of
secure microcontroller-based systems is required. Such an approach should work with
an abstract representation of the designed system, find a trade-off between the expended
resources and the obtained level of security, have no restrictions on the platforms and
architectures of the designed devices and take into account the physical layer of the
designed systems. Moreover, the new approach should be extensible and modular and
have a strong focus on security.

3. Hierarchical Model

To display various aspects of complex systems and detect the potential feasibility of
various attack actions component-based, semi-natural, simulation and analytical modeling
are used. Each modeling approach has its own abstraction level in the representation of the
system [48]; see Figure 2.

Analytical

Simulation

Semi-natural

Component-based

completness detalization

Attacks on the system components

Attacks on one device of the system

Attacks on multiple devices
of the system

Multi-step attack scenarious
on the whole system

Figure 2. Comparison of modeling approaches.

Sensors 2021, 21, 8451 9 of 41

The component-based approach is the most detailed way to represent microcontroller-
based physical security systems; however, it requires a great deal of time and effort.
Moreover, it is not possible to represent different dynamic processes with it. From the other
side, with the help of analytical modeling, it is possible to represent the whole system but
only on a high level of abstraction. Therefore, the performance of the solution strongly
depends on the level of detailing. That is why, to represent the whole lifecycle of the system,
heterogeneous structures of the united models are used to overcome this issue by using
different models for different cases.

For the design process of microcontroller-based physical security systems the
component-based approach is the most appropriate one if it is required to take into account
the security of the system as early as possible. The model suggested in this work represents
such systems as an extendable set-based hierarchical relational structure and consists of the
following parts: building blocks (hardware and software elements), links between system
elements (protocols and interfaces) and an attacker and attack actions.

One of possible ways to describe complex systems as a set of interacting building
blocks is the set-theoretic approach. Let us consider it in more detail.

3.1. Microcontroller-Based Physical Security Systems

Any system mbs ∈ MBS can be represented as follows:

mbs = (MBS
′
, BB, Lmbs, a, AA, pmbs), (1)

where MBS
′

is the set of microcontroller-based sub-systems of mbs; BB is the set of building
blocks of mbs; Lmbs is the set of links between BB and MBS

′
of mbs; a is the attacker against

mbs; AA is the set of attack actions on mbs; and pmbs represents the properties of mbs.
It is important to note that each element of the system at this level is considered as an

object with a set of properties and links without taking into account its internal structure.
This rule is functional for the sub-elements of each element as well.

The model of the system allows one to represent the information about its sub-systems
through MBS

′
and its individual blocks through BB. Information about the data trans-

fer environment between sub-systems mbs
′
i ∈ MBS

′
and individual blocks bbj ∈ BB is

represented through Lmbs, while properties arising from their interaction are represented
through pmbs.

As an example of mbs, any microcontroller-based physical security system can be
used: a naccess control system, fire alarm system, security alarm system, closed-circuit
television system, perimeter monitoring system, etc. The situation when mbs contains
sub-systems is related to integrated physical security systems that combine, for example,
access control and fire and security alarm systems.

A building block of mbs can be represented as follows:

bb = (BB
′
, HW, SW, Lbb, pbb), (2)

where BB
′

is the set of building sub-blocks of bb; HW is the set of hardware elements of bb;
SW is the set of software elements of bb; Lbb represents the links between elements of bb;
and pbb represents the properties of bb.

The model of individual blocks bb ∈ BB allows one to represent the information about
its sub-blocks through BB

′
, hardware through HW and software through SW. Information

about the data transfer environment between individual sub-blocks bb
′
i ∈ BB

′
, hardware

hwj ∈ HW and software swk ∈ SW is represented through Lbb, while properties arising
from their interaction are represented through pbb.

As an example of a building block, any device, controller or its combination with
components can be used. For example, it can be a Raspberry Pi single board computer,
micro SD card with a pre-installed operating system, ESP8266 or Iskra JS microcontroller
or even a server, hub, robot, station, drone, etc.

Sensors 2021, 21, 8451 10 of 41

A hardware element of mbs can be represented as follows:

hw = (HW
′
, Lhw, phw), (3)

where HW
′

is the set of hardware sub-elements hw
′

of hw; Lhw represents the links between
elements of hw; and phw represents the properties of hw.

The model of individual hardware elements hw ∈ HW allows one to represent the
information about its sub-elements (also hardware) through HW

′
. Information about the

data transfer environment between individual sub-elements hw
′
i ∈ HW

′
is represented

through Lhw, while properties arising from their interaction are represented through phw.
As an example of a hardware element, any component can be used: sensors, receivers,

transmitters, readers, motors, batteries, etc. As an example of a hardware element that
consists of multiple hardware elements, let us consider a motor shield with two collector
motors that can be used for two-wheel robots. When motors are connected to the motor
shield, their rotation speed and direction are controlled by its signals, while the controller
of the robot can be connected to the motor shield to control signals of the shield through
the firmware.

A software element of mbs can be represented as follows:

sw = (SW
′
, Lsw, psw), (4)

where SW
′

is the set of software sub-elements of sw; Lsw represents the links between
elements of sw; and psw represents the properties of sw.

The model of individual software elements sw ∈ SW allows one to represent the
information about its sub-elements (also software) through SW

′
. Information about the

data transfer environment between individual sub-elements sw
′
i ∈ SW

′
is represented

through Lsw, while properties arising from their interaction are represented through psw.
As an example of a software element, any algorithm, library, firmware, database,

application or configuration can be used. As an example of a software element that consists
of multiple software elements, let us consider a firmware of the controller that can be
used as the brain of a two-wheel robot. Such a firmware often contains library imports for
most components that are connected to the controller as well as algorithms for the correct
functioning of the robot: navigation, communication, data processing and storage etc.

Links between elements of mbs can be represented as follows:

L = (R, I, E, pL), (5)

where R is the set of protocols that are used in L; I is the set of interfaces that are used in L;
E is the set of communication parties of L; and pL represents the properties of L.

The model of individual links l ∈ L allows one to represent the information about
its protocols through R, interfaces through I and communication parties through E, while
properties arising based on their combination are represented through pL.

Moreover, links between elements of mbs can be divided:

• Lmbs represents the links between devices of the system.
• Lbb represents the links between controllers of devices.
• Lhw represents the links between controllers and components.
• Lsw represents the links between software elements.

This indicates that the model allows one to represent low level protocols between
controllers and components together with connections between different algorithms inside
the firmware of one of controllers, while being able to represent high level protocols
between devices; see Table 1.

Within the framework of the developed model, all elements are connected with each
other through their properties. Thus, to ensure the required level of security of the designed
system, the goal of the approach is to find a reasonable combination of elements of the

Sensors 2021, 21, 8451 11 of 41

system according to the balance between their needs (functional requirements and non-
functional limitations) and capabilities (provided functionality and resources). On the other
hand, the influence of each successful attack action is represented through a reduction
of the system capabilities (for example, denial of service) or enhancing of its needs (for
example, resource depletion).

Table 1. Various types of links between elements.

R I E

Lmbs

Wi-Fi IEEE 800.11 wireless 2.4 GHz

device↔ device
ZigBee IEEE 802.15.4 wireless 2.4 GHz

Bluetooth IEEE 802.15.1 wireless 2.4 GHz

nRF24L01+ ESB wireless 2.4 GHz

Infrared NEC wireless 38 kHz

Lbb

I2C SDA + SCL TWI

controller↔ controllerSerial TxRx UART

RS-232 RS232 UART

RS-485 RS485 UART

Lhw

pin-to-pin shared power shield
controller↔ componentSVG AVR I/O pin three wires

VG AVR I/O pin two wires

Lsw

method functions compiler
software↔ softwaredatabase SQL queries psycopg2

API JSON structures POST/GET

Thus, the properties can be represented as follows:

p = (FR, NL, PF, PR), (6)

where FR is the set of functional requirements (the functionality that satisfaction is neces-
sary for the element to work); NL is the set of non-functional limitations (the limitation that
satisfaction is necessary for the element to work); PF is the set of provided functionalities;
and PR is the set of provided resources.

The model of properties p allows one to represent the information about elements
needs and capabilities through FR, NL and PF, PR accordingly. Let us consider examples
of each of them in more detail.

As functional requirements of the element, any functionality necessary to be able
to work can be used—a power source, secure connection, protocol, interface, bootloader,
library, operating system, compiler, driver, etc.

As non-functional limitations of the element, any limitation necessary for it to be able
to work can be used—a space for placement, suitable environment, voltage, current, size,
volume, flash memory, digital or analog pins, disk space, ram, etc.

As provided functionality of the element, any functionality that it can provide can be
used—access control, perimeter monitoring, navigation, obstacles detection, work with a
component, encryption, authentication, processing, etc.

As provided resources of the element, any resource it can provide can be used—data
storage, computing resources, environment for launching applications, the possibility to
add/remove/replace components, the possibility to work with environment, etc.

Sensors 2021, 21, 8451 12 of 41

3.2. Attackers, Attack Actions and Security Elements

An attacker against mbs can be represented as follows:

a = (ac, kn, rs), (7)

where ac is the type of access a has to mbs; kn is the type of knowledge a has about mbs;
and rs is the type of resources available to a to compromise mbs.

According to the developed model, the attacker’s ac can be in a range between 1 and 5.
This value describes the type of access an attacker has with the microcontroller-based
physical security system; see Table 2.

Table 2. Attacker types of access.

Description

1 No access to the system

2 Access to the system through global networks

3 Access to the system through local networks

4 Physical access to the system

5 Full access to the system

An attacker’s kn can be in a range between 1 and 4. This value describes the amount
of information available to the attacker about the system; see Table 3.

Table 3. Attacker types of knowledge.

Description

1 General knowledge about the system from publicly available sources

2 Knowledge about parameters of the system

3 Knowledge about means of protection of the system

4 Knowledge about software and hardware of the system

An attacker’s rs can be in a range between 1 and 3. This value describes the amount
of resources available to the attacker; see Table 4.

Table 4. Attacker types of resources.

Description

1 Widely-spread software tools and known vulnerabilities

2 Specialized software tools and previously non-used vulnerabilities

3 Possibility to investigate the system

In the developed model, the structure of the attacker’s access, knowledge and re-
sources types is hierarchical. This indicates that a1 with aca1 = 3 is able to perform any
attack action that is possible for a2 with aca2 = 2 if kna1 ≥ kna2 and rsa1 ≥ rsa2 . It also
means that a3 with aca3 = 3 is able to perform any attack action that is possible for a1 if
kna3 ≥ kna1 and rsa3 ≥ rsa1 . However, if there are a4 = (aca4 = 3, kna4 = 2, rsa4 = 2) and
a5 = (aca5 = 2, kna5 = 3, rsa5 = 3) then a4 will not be able to perform all attack actions that
are possible for a5 and vice versa.

An attack action on mbs can be represented as follows:

aa = (cl, oj, sj), (8)

Sensors 2021, 21, 8451 13 of 41

where cl is the class of aa; oj is the object of aa, which helps to link aa with the target
element(s) of mbs; and sj is the subject of aa, which helps to link aa with a, which is
sufficient for its successful realization.

In this work, instead of separate impact methods, we decided to use classes of attack
actions, where each class contains multiple examples of methods.

Classes of attack actions can be represented as follows:

cl = {cn, cr, dv, st}, (9)

where cn is the aa on the level of components and their communications with controllers
they are connected to; cr is the aa on the level of controllers and their communications
with other controllers; dv is the aa on the level of devices and their communications with
other devices; and st is the aa on the level of the system and its communications with
other systems.

Examples of attack actions on the cn level can be represented as follows:

cn = {gie, bcd, rpt, rmt}, (10)

where gie is the generation of incorrect component events; bcd is the bypassing component
detection algorithms; rpt is the replacement of the component; and rmt is the removal of
the component.

Examples of attack actions on the cr level can be represented as follows:

cr = {r f w, rbl, mup, imw}, (11)

where r f w is the replacement of the controller’s firmware; rbl is the reinstallation of the
controller’s bootloader; mup is the malfunction of the controller’s update system; and imw
is the interception, modification or termination of wired communications.

Examples of attack actions on the dv level can be represented as follows:

dv = {vau, cad, iec, iws}, (12)

where vau is the violation of the authentication system; cad is the cryptographic analysis
of transmitted data; iec is the increased energy consumption; and iws is the interception,
modification or termination of wireless communications.

Examples of attack actions on the st level can be represented as follows:

st = {soc, pwr, web, dbd}, (13)

where soc is the social engineering; pwr is the power failure; web is the disruption of web
services; and dbd is the disruption of database services.

As individual security element, any means or method or protection can be used: an
anomaly detection algorithm, hidden placement of sensors, events correlation algorithm,
vandal-proof device case, hardware authentication, firmware encryption, bootloader en-
cryption, removal of physical update interface, strong login credentials, password policy,
brute-force protection, strong encryption algorithms, secure key distribution mechanism,
behavior-based anomaly detection, devices isolation/limitation, training of operators and
users, etc.

This indicates that most security elements can be modeled as software or hardware
elements of the system and be integrated into its building blocks, while some of them can
be transferred as recommendations to the designed system implementation.

3.3. Connections between Models

Let us consider how classes of attack actions are connected with the parameters of
attackers; see Table 5. For example, let us consider the stakeholder that wants mbs to be
secure against a = (ac = 4, kn = 2, rs = 2). The gray coloring of the table cells represents

Sensors 2021, 21, 8451 14 of 41

values of the attacker’s parameters. Connections between the possibility to implement
attack actions and values of the attacker’s parameters are shown with “+”. According to
the content of the table, the designed system must be secure against: rpt, rmt, imw, iec, iws,
soc, pwr, web and dbd. These attack actions are shown in purple.

As we mentioned before, the structure of attacker types is hierarchical. This indicates
that an attacker with a certain access is able to perform any attack action that is possible for
an attacker with the same access but with lower knowledge/resources. Such a dependence
allows storing data only about the threshold values of the types that are necessary for the
successful implementation of attack actions. It is important to note that the developed
model allows the use of various models of attackers and attack actions. Thus, the number
of attacker parameters, just like the permissible ranges of their values, can be changed.
Likewise, for attack actions, another classification can be used, and the examples can
be extended.

Table 5. Classes of attack actions and different types of attackers.

a

ac kn rs

1 2 3 4 5 1 2 3 4 1 2 3

gie + + + + + + +

bcd + + + + + + +

rpt + + + + + + + +
cn

rmt + + + + + + + + +

r f w + + + +

rbl + + + +

mup + + + + + + +
cr

imw + + + + + + + + +

vau + + + + + + +

cad + + + + + + +

iec + + + + + + + + +
dv

iws + + + + + + + + +

soc + + + + + + + + + + + +

pwr + + + + + + + + +

web + + + + + + + + + +

cl

st

dbd + + + + + + + + + +

It is important to preserve the hierarchical nature of the attacker’s model and the
relationship between the attacker’s parameters and the possibility of implementing attack
actions. In addition, let us consider how classes of attack actions are connected with
security elements of microcontroller-based systems; see Table 6.

In the developed model, possible attack actions are defined by the system element
composition and parameters of the attacker, against which the system needs to be protected.
This indicates that, if the possible attack actions are known, then the necessary security
elements can be extracted. After that, each security element can be interpreted as software
(for example, an anomaly detection algorithm), hardware (for example, a vandal-proof
device case) and recommendations (for example, the training of operators and users).

Sensors 2021, 21, 8451 15 of 41

Let us consider how classes of attack actions are connected with non-security elements
of microcontroller-based systems; see Table 7. Relations between attack actions and non-
security elements define the attack surface of the system. Understanding the attack surface
allows its reduction in early stages of the system life cycle, significantly increasing its
security level.

Table 6. Classes of attack actions and security elements.

Security Elements

cl

cn

gie anomaly detection algorithm, hidden placement of sensors

bcd events correlation algorithm, hidden placement of sensors

rpt vandal-proof device case, hardware authentication

rmt vandal-proof device case

cr

r f w vandal-proof device case, firmware encryption

rbl vandal-proof device case, bootloader encryption

mup vandal-proof device case, removal of physical update interface

imw vandal-proof device case, encryption, authentication

dv

vau strong login credentials, password policy, brute-force protection

cad strong encryption algorithms, secure key distribution mechanism

iec behavior-based anomaly detection, devices isolation/limitation

iws strong encryption algorithm on access point, strong login credentials,
public key pair based authentication

st

soc training of operators and users, security policy

pwr uninterruptible power supplies, backup power supply

web firewall, update mechanism, backup mechanism, logging mechanism

dbd input validation, strict access policy, strong login credentials, separate
database users for different operations

Sensors 2021, 21, 8451 16 of 41

Table 7. Classes of attack actions and non-security elements.

mbs

cl

cn

gie sensors and receivers that react on the environment

bcd sensors that monitor environment

rpt any component

rmt any component

cr

r f w any controller with rewritable firmware

rbl any controller with rewritable bootloader

mup any controller with update system

imw controller↔ controller, controller↔ component

dv

vau device↔ device, where authentication is used

cad device↔ device, where encryption is used

iec devices with sleep mode/wireless interfaces

iws device↔ device

st

soc any system with operators or/and users

pwr any system that relies on power grid

web any system with web-services

dbd any system with database

4. Design Approach

The design approach presented in this paper is based on the developed methodology
for the design of microcontroller-based physical security systems. The main idea of the
methodology is to provide an automated tool for the design of microcontroller-based
physical security systems that are protected against attackers. This methodology allows
one to reduce the amount of weak places and architectural defects, thereby, significantly
reducing the attack surface of the designed systems. In turn, this reduces the security risks
that can lead to financial loss, loss of time as well as the safety of people.

The work process of the methodology is mostly automated, and involvement of the
operator is required during the transformation of wishes of stakeholder into requirements
and limitations and optional at the stage of selection of the concrete implementations of
elements among suitable ones during the process of detailing the abstract system model.
Alternatively, the methodology can select implementations on its own.

Let us consider the proposed methodology in more detail.

4.1. Proposed Methodology

The methodology for the design of microcontroller-based physical security systems
protected from cyber-physical attacks consists of four algorithms; see Figure 3.

The goal of the first three algorithms is to design the abstract system model based on
requirements, while the last algorithm design of the detailed system model is based on the
available components. It is important to note that all algorithms of the methodology can be
useful to an expert in the design of secure systems separately; however, their full potential
is revealed only when they are interacting with each other.

The novelty of the methodology lies in a new approach to the design, which allows
combining various design techniques on the basis of hierarchical relational model trans-
formation algorithms [23]. The suggested approach is modular and extensible, takes into
account the security of the physical layer of the system, works with the abstract system
representation and is looking for a trade-off between the security of the final solution and
expended resources.

Sensors 2021, 21, 8451 17 of 41

Unlike existing solutions, the methodology has a strong focus on security. It aims at
ensuring the protection of the system against attacks at the design stage, considers security
components as an integral part of the system and checks if the system can be designed in
accordance with given requirements and limitations.

Moreover, the methodology is not aimed to replace security experts. In most situations,
an expert in the security of microcontroller-based systems knows about existing best and
highly specialized solutions and is able to form alternatives at a very high level, while the
quality of the solution provided by the methodology directly depends on the correctness
and completeness of the database. However, it can be useful for an expert to automate
routine tasks and provide alternative solutions.

Let us consider the algorithms of the methodology in more detail.

Attacker's
parameters System's tasks

Attacker's actions Devices list

Devices
requirements

Devices
communications Devices linksSecurity elements

Devices bases

Algorithm for the formation
of requirements to the system

1

Algorithm for the formation
of the system components composition

2

Abstract elements
and sub-elements

Security
recommendations

Abstract links
and abilities

Algorithm for the design
of the abstract model of the system

3

Stakeholder's wishes

Abstract
system model

Algorithm for the design
of the detailed model of the system

4

Detailed
system model

Figure 3. Methodology for the design of microcontroller-based physical security systems.

Sensors 2021, 21, 8451 18 of 41

4.2. Algorithm for the Formation of Requirements to the System

This algorithm is used to extract attack actions that are possible for the attacker as
well as a list of devices of the designed system, their links, communications, bases and
requirements in accordance with the attacker’s parameters and system tasks.

As input data, the algorithm takes the:

• attacker’s parameters: characterizing the capabilities of the attacker in accordance with
the developed model; and

• system’s tasks: characterizing the main tasks of the designed system in accordance with
the wishes of the stakeholder.

As output data, the algorithm provides the:

• attacker’s actions: the list of attack actions that are possible for the attacker;
• security elements: the data structure for the security elements that are required to

prevent possible attack actions is JSON-based;
• devices list: the list of devices that are required to design in accordance with the general

tasks to the system;
• device requirements: the data structure for requirements for devices is JSON-based,

while its keys are devices from the list of devices; by each device key, the data about
requirements for this device can be extracted;

• device communications: the data structure for devices types of communications is also
JSON-based, while its keys are also devices from the list of devices; by each device
key, the data about possible for this device types of communications can be extracted;

• device links: the data structure for links between devices is JSON-based, while its keys
are devices from the list of devices; by each device key, the data about its links with
other devices can be extracted; and

• device bases: the data structure for bases of devices is JSON-based, while its keys are
devices from the list of devices; bases are representing individual controllers or their
combinations that are necessary for the device to work.

The work process of the algorithm is automated and contains six main stages, while
the last stage is divided into seven sub-stages. The operator is required for the translation
of wishes of the stakeholder into the attacker’s parameters and general tasks of the system.
Let us consider each stage in more detail.

Stage 1: Initialization of data structures. This stage defines the data structures for
storing devices and their requirements, communications, links and bases. Devices are
stored as a list, while their requirements, communications, links and bases are stored as
dictionaries—key-value structures.

Stage 2: Extracting attack actions that are possible for the attacker. At this stage,
data about attack actions that are possible for the attacker in accordance with his or her
parameters is extracted. Possible values of parameters are predefined by the model of
the attacker. Concrete values of parameters are provided as input data and selected by
the operator, while connections between parameters and attack actions are predefined in
the database.

Stage 3: Extracting security elements to prevent attack actions. This stage is aimed
at the extraction of security elements that are required to protect the system against attack
actions. Actions that are possible for the attacker are provided by Stage 2. Security elements
are extracted for each action separately and combined.

Stage 4: Extracting abilities of the designed system. At this stage, data about abil-
ities that are expected from the designed system is extracted. Abilities are extracted in
accordance with the tasks of the designed system that are provided as an input data.
Abilities can be interpreted as something that the designed system must be able to do to
solve tasks. For example, the task “static perimeter monitoring” can be connected with
the following abilities: “to communicate with mobile robots of the system”, “to provide
wireless charging”, “to monitor the perimeter nearby” and “to communicate with the
server of the system”. Tasks are selected by the operator.

Sensors 2021, 21, 8451 19 of 41

Stage 5: Extracting the requirements of the designed system. This stage is aimed
at extraction of data about requirements for the designed system. The requirements
are extracted in accordance with the abilities of the designed system that are provided
by Stage 4. The requirements can be interpreted as something that is required for the
designed system to have abilities. For example, the ability “to provide wireless charging”
can be connected with the requirement “device that represents the charging stations of
the system”.

Stage 6 is called extracting the device data. At this stage, data about devices are
extracted based on the requirements of the system, which are provided by Stage 5. This is
done for each requirement separately. Let us consider it in more detail.

Stage 6.1: Extracting the device name. This stage is aimed at extraction of data
about the name of the device based on the provided requirement for the designed system.
The name of the device is based on the requirement’s description. For example, the re-
quirement “device that represents the charging stations of the system” is transformed into
“charging station”. Such a transformation is possible because of the description format
“device that represents the [device name] of the system”. Extracted names of devices are
stored in the devices list.

Stage 6.2: Extracting device tasks. At this stage, data about tasks that are expected
from devices of the system is extracted. Tasks of devices are extracted in accordance with
requirements for the system that are provided by Stage 6.1. Those tasks can be interpreted
as functionality that the designed device must have to fulfill system requirements. For ex-
ample, the system requirement “device that represents the charging stations of the system”
can be connected with the following tasks of the device: “work cycle support”, “interaction
with intruders”, “interaction with mobile robots” and “interaction with the server”.

Stage 6.3: Extracting device abilities. This stage is aimed at extraction of data about
abilities of the designed devices. Abilities are extracted in accordance with the tasks of the
designed devices that are provided by Stage 6.2. Abilities can be interpreted as something
that the designed devices must be able to do to solve their tasks. For example, the task
“interaction with intruders” can be connected with abilities “to detect intruders” and “to
chase intruders”.

Stage 6.4: Extracting device requirements. At this stage, data about requirements for
the designed devices is extracted. The requirements are extracted in accordance with the
abilities of the designed devices that are provided by Stage 6.3. The requirements can be
interpreted as something that is required for devices to have their abilities. For example,
the ability “to detect intruders” can be connected with the “motion sensor”, “servo drive”,
“noise sensor” and “detection algorithm” requirements.

Stage 6.5: Extracting the device base. This stage is aimed at the extraction of data
about the bases of the designed devices. The bases are extracted in accordance with the
requirements for devices that are provided by Stage 6.4. The base of the device can be
interpreted as something that represents its main computing unit. In this work, the base
can have the following values: “single-board computer”, “connected microcontrollers” or
“microcontroller”. Such values were selected to represent controllers of microcontroller-
based devices. The extraction of the base for each device is based on all its requirements,
where the necessary base is selected according to the principle of minimum allowable
computing power.

Stage 6.6: Extracting the device types of communications. At this stage, data about
types of communications that are possible for the designed devices is extracted. Types of
communications are extracted in accordance with the bases of devices that are provided by
Stage 6.5.

Stage 6.7: Extracting the device links. This stage is aimed at extraction of data about
links between the designed devices. Links are extracted in accordance with the abilities of
devices that are provided by Stage 6.3.

Note that during most of the stages the algorithm relies on the content of the database
for making decisions. The output data of the algorithm is well-structured, while the

Sensors 2021, 21, 8451 20 of 41

algorithm takes into account dependencies between stakeholder’s wishes and system
tasks, system tasks and system abilities, system abilities and system requirements, system
requirements and device tasks, device tasks and device abilities, device abilities and
device requirements.

4.3. Algorithm for the Formation of the System Components Composition

This algorithm is used to extract abstract elements and sub-elements of the system
devices, security recommendations to the implementation of the system and its devices
as well as abstract links between devices based on attack actions that are possible for
the attacker, list of devices of the system, their bases, types of communications and links
and requirements for them. It works with abstract elements, links and recommendations
and represents the designed system component composition as multiple devices, each
of which has multiple abstract elements, while each abstract element can have multiple
abstract sub-elements. Wherein abstract elements and sub-elements represent controllers
and components as well their software, including those that are related to security.

As input data, the algorithm takes:

• devices list: the list of devices that are required to design;
• devices bases: the data structure for bases of devices is JSON-based, while its keys are

devices from the list of devices;
• devices requirements: the data structure for requirements for devices is JSON-based,

while its keys are devices from the list of devices;
• attacker’s actions: the list of attack actions that are possible for the attacker; each attack

action has an id, name and description;
• devices communications: the data structure for devices types of communications is also

JSON-based, while its keys are also devices from the list of devices;
• devices links: the data structure for links between devices is JSON-based, while its keys

are devices from the list of devices.

As output data, the algorithm provides:

• abstract elements and sub-elements: abstract component composition of the system de-
vices, where abstract elements are extracted based on requirements for the device and
possible attack actions and represent controllers, components, software and firmware,
while abstract sub-elements are extracted based on abstract elements and represent
algorithms, settings and requirements; the data structure for abstract elements and
sub-elements is JSON-based, while its keys are devices from the list of devices;

• security recommendations: abstract security recommendations to the system implemen-
tation as a whole as well as for each of its devices separately that are extracted based
on security elements and cannot be interpreted as abstract elements or sub-elements;
the data structure for recommendations is also JSON-based, while it has keys for the
system and all its devices; and

• abstract links and abilities: abstract types of communications that are possible between
devices of the system with corresponding devices abilities that are related to their
interaction; data structure for links is JSON-based, while its keys are devices from the
list of devices; by each key the data about the respective links can be extracted.

The work process of the algorithm is automatic and contains two main stages, while
the last stage is divided into five sub-stages. The operator is not required. Let us consider
each stage in more detail.

Stage 1: Initialization of data structures. This stage defines the data structures for
storing abstract elements and sub-elements of devices, security recommendations to the
implementation of the system and its devices as well as abstract links between devices and
abilities that define those links.

Stage 2 is called extracting the component composition of devices. At this stage,
based on the provided as input data devices list, component composition of each device of
the system is extracted. Let us consider it in more detail.

Sensors 2021, 21, 8451 21 of 41

Stage 2.1: Extracting abstract elements with their sub-elements. This stage is aimed
at the extraction of data about abstract elements of devices of the system as well as their
sub-elements based on the provided requirements for devices and their bases. Elements
are extracted recursively based on: the provided device base; provided requirements for
the device; and already extracted elements.

Stage 2.2: Extracting possible attack actions. At this stage, data about attack actions
that are possible for the designed devices in accordance with their types of communications
and component compositions are extracted. Types of communications that are possible
for the device are provided as input data. After attack actions that are possible based
on component composition and communications of the device are extracted, they are
compared with attack actions that are possible in accordance with parameters of the
attacker. Intersection of these two sets of attack actions allows finding the set of attack
actions that are possible on the designed device.

Stage 2.3: Extracting additional abstract elements with their sub-elements. This
stage is aimed at extraction of data about additional elements and sub-elements of the
device based on the provided attack actions. Additional elements are related to the means
and methods of protection that are necessary to prevent attack actions. First, the list of
required security elements is extracted. After that, abstract elements and sub-elements that
are representing security elements are extracted. In the end, additional elements of the
device are combined with the other elements that were extracted in Stage 2.1.

Stage 2.4: Extracting security recommendations for implementation. At this stage,
data about security recommendations to the implementation of the system and its devices
in accordance with the security elements of devices is extracted. Recommendations can be
interpreted as security requirements that cannot be satisfied on the component level, which
is why they can be satisfied only after implementation. For example, a recommendation to
the system can be as follows: “to educate operators and users of the system about social
engineering attacks”.

Stage 2.5: Extracting links. This stage is aimed at teh extraction of data about links
between devices of the system based on the provided input data–device links. This stage is
related to transformation of the input data into another data structure called abstract links
and abilities. The new data structure is JSON-based, while keys are devices from the list of
devices and values are links between devices.

Once again, during most of the stages the algorithm relies on the content of the
database for making decisions. The output data of the algorithm is well-structured, while
the algorithm takes into account the iterative retrieval process of abstract elements of
devices together with their sub-elements. At the beginning, abstract elements and sub-
elements are retrieved in accordance with bases of devices, then on the basis of their
requirements, after that in accordance with the already extracted elements and sub-elements
as well as required methods and means of protection.

4.4. Algorithm for the Design of the Abstract Model of the System

This algorithm is used to construct an abstract representation of a secure system based
on its devices list, their abilities, elements and sub-elements as well as security recommenda-
tions. It represents the system as an abstract hierarchical model that takes into account the
connections between system devices, their elemental composition, dependencies between
device elements and the requirements for them.

As input data, the algorithm takes:

• security recommendations: abstract security recommendations to the system implemen-
tation as a whole as well as for each of its devices separately that are extracted based
on security elements and cannot be interpreted as abstract elements or sub-elements;

• abstract elements and sub-elements: the abstract component composition of the system
devices, where abstract elements represent controllers, components, software and
firmware, while abstract sub-elements represent algorithms, settings and requirements;

Sensors 2021, 21, 8451 22 of 41

• abstract links and abilities: abstract types of communications that are possible between
devices of the system with corresponding devices abilities that are related to their
interaction;

• security elements: abstract methods and means of protection that are required to make
the designed system secure against attackers with certain parameters, interpretable as
security recommendations, abstract elements and sub-elements.

As output data, the algorithm provides the abstract system model that contains abstract
system representation. The structure of the abstract model of the system is JSON-based
and contains the following fields:

• devices: data about each device of the system, including its unique key, id, name,
components and recommendations;

• recommendations: data about recommendations to the implementation of the system to
ensure its security against attackers with certain parameters, including unique key, id
and name (description);

• links: data about links between devices of the system, including the unique key, id,
type, parties, dependencies and requirements.

Each element from the “components” field has its unique key and id as well as data
about its own components (sub-elements), links, requirements and dependencies.

The work process of the algorithm is automatic and contains seven main stages.
The operator is not required. Let us consider each stage in more detail.

Stage 1: Initialization of the abstract model. This stage defines the data structure
for storing the abstract model of the system. At the end of the stage, the abstract model
consists of fields for data about devices, links between them and security recommendations
for the implementation of the system.

Stage 2: Generation of the system security recommendations. At this stage, the ab-
stract model of the system is filled with data on the recommendations for the implemen-
tation of the system related to ensuring its security. Each of the recommendations has a
unique key by which its id and text description are available.

Stage 3: Generation of the system devices. This stage is aimed at filling the abstract
model of the system with data about its devices. For each device, data is generated about
its unique identifier, name and component composition. Data on recommendations related
to ensuring the security of devices after their implementation are also generated.

The main part of this stage is the generation of the device component composition.
This part contains the initialization of abstract components of each device as well as the
generation of their requirements based on each component sub-elements (including security
ones). For example, depending on the component of the device, it is assumed how much
flash memory of the firmware it needs to work correctly.

After this stage is done, each device of the abstract system model is filled with a
number of elements in their “components” field. Each element represents an abstract
component of the microcontroller-based system (the operating system, firmware, sensor,
receiver, transmitter, database, microcontroller, etc). Each element in the abstract model
has its own key that is unique only inside each device. By using this key, the data about
its unique identifier, name, components, links and requirements can be extracted. It is
important to note that data about each element’s components and links during this stage is
empty and would be filled only during Stage 7.

Stage 4: Generation of links between devices. At this stage, the abstract model is
filled with data on links between devices of the system. First, the algorithm detects all
links that are possible between each pair of devices according to their abilities. If the link
is detected, its generation starts. In the abstract model, each link has its own unique key,
by which data about its unique identifier, type, parties, dependencies and requirements
can be extracted. For example, the “dependencies” field is filled with data about abstract
elements, the selection of a specific implementation of which directly depends on the
selection of the interface and protocol of this link between devices. As an output of this

Sensors 2021, 21, 8451 23 of 41

stage, unique keys of links with unique identifiers of elements the selection of which
depends on the selection of a specific interface and protocol of the link are provided.

Stage 5: Generation of requirements for links. This stage is aimed at filling the
abstract model with data about requirements for links between devices. This field was
empty after stage 4 and now is filled with data generated based on the information about
security elements that are required to design a secure system. Generated during this stage
requirements define if a link is wired or wireless, transfers data, signal or charge, requires
encryption and/or authentication, etc.

Stage 6: Generation of dependencies between elements. At this stage, the abstract
model is filled with data on requirements for elements of devices as well as with data
about dependencies between them. For example, for each microcontroller data about
dependencies between their selection and the subsequent selection of sensors that will be
connected to them would be generated. It is done to ensure the compatibility of the elements
of the device after the transmission from the abstract model to the implementation of the
system. For each controller that is related to work with other components, like sensors,
receivers and transmitters, the number of required digital and analogue pins is calculated.

Stage 7: Generation of the hierarchy of elements. This stage is aimed at the recon-
struction of the “components” field of each device of the system. The algorithm generates
a hierarchical element composition instead of their enumeration. The transmission to the
hierarchical structure is based on a graph representation of the components of each device
of the system and recursive conversions. First, graph nodes are generated based on unique
identifiers and keys of elements. After that, elements of each device are checked pair by
pair in terms of the possibility to connect one element to another. For example, a sensor
can be connected to a controller if they are compatible, while compatibility can be checked
according to their parameters. If two elements can be connected to each other then the
edge between nodes that are representing them is generated.

After the graph structure for each device is generated, the process of hierarchy building
starts. First, the root node of the graph is obtained based on topological sorting. After that,
the child node of the lowest level of the graph is obtained together with its parent node.
It is required for the algorithm to encapsulate the data about the obtained child element
into the “components” field of its parent element as well as for the generation of a link
between them. After it is done, the data about the encapsulated child is deleted from the
abstract model (these data are in the “components” field of its parent now) and the node
corresponding to this child is deleted from the graph representation of the device. This
process continues until no other graph node can be deleted.

It is important to note that during Stages 3, 4, 6 and 7, the algorithm relies on the
database for making decisions. The output data of the algorithm is well-structured, while
the algorithm takes into account the hierarchy of elements and dependencies between them
and generates requirements for them.

4.5. Algorithm for the Design of the Detailed Model of the System

This algorithm is used to construct a detailed representation of a secure system based
on its abstract representation. The detailed model of the system preserves and expands the
structure of the abstract model of the system and takes into account compatibility, require-
ments, dependencies and hierarchy of system elements. The process of transition from the
abstract system model to a detailed one is a step-by-step process. Each step represents the
process of selection of the concrete implementation of one of the system elements, while
the sequence of steps is formed in accordance with hierarchy and dependencies between
those elements. Moreover, after each step, the amount of options for further steps is limited
in accordance with compatibility.

As input data, the algorithm takes the abstract system model.
As output data, the algorithm provides the detailed system model. The structure of the

detailed model of the system is also JSON-based. Moreover, it has the same structure as
the abstract system model but with some additions:

Sensors 2021, 21, 8451 24 of 41

• each element from the components field that was selected is extended with the se-
lected field: data about selected elements, including the id, name and parameters of
its implementation; parameters of the element differ for different components and
controllers;

• each device of the system is extended with the parameters field: data about the parame-
ters of the designed device, including the price, energy consumption, voltage, current,
length, width, height, free memory and battery life; device parameters are based
on parameters of its elements; the parameters are mostly the same for all devices;
however, the units for free memory are different for single-board computers and
microcontrollers;

• each link between devices of the system is extended with the selected field: data
about the selected links between devices, including id, name, interface, protocol and
parameters; the parameters are the same for each link and can be divided into Boolean
and numerical ones; Boolean parameters define if the selected link is wireless, directed,
transfers data, charge or signal, requires an access point, and, if it has encryption or
authentication; numerical parameters define the range and speed of the link.

The work process of the algorithm is automated and contains six main stages. In-
volvement of the operator is possible during the selection of concrete implementations of
elements among suitable options. Alternatively, the algorithm can select them on its own.
Let us consider each stage in more detail.

Stage 1: Initialization of the data structures. This stage defines the data structures
for storing the selection steps and selected options. There is no need to define the data
structure for the detailed model of the system, because it is stored in the same data structure
that was used for the abstract model of the system.

The data structure for the selection steps is JSON-based and contains unique keys for
each step of selection. Using this key, data about the selected element can be extracted. Each
selected element has key, type, id, name, label, hierarchy, dependencies and requirements.
There is also an additional field “selected” to store data about the selected options as well
as the field “same for” that prevents the selection of one element multiple times.

The data structure for selected options is JSON-based and contains keys table and
database id. By the table key, it is possible to extract data about the database table, where
data on the selected option is stored, while database id is identificator of the concrete data
tuple in the database table.

Stage 2: Generation of selection steps based on links between devices. At this stage,
the sequence of selection steps is filled with data about selection of links between devices of
the system. The sequence of selection steps is a very important part of the algorithm because
of dependencies between components of devices as well as the possibility of their conflicts
in terms of compatibility. That is why the generation of selection steps starts with selection
of links between devices. Each link, after its selection, is limiting options for controllers
and components that are related to communications between devices for compatibility.

Stage 3: Generation of selection steps based on components of devices. This stage
is aimed at filling the sequence of selection steps with data about components of devices.
This process is more complicated because of the hierarchical nature of device component
compositions in the abstract model. In addition, it is important to take into account that
components of one device can depend on the selection of components of another device.
That is why first devices are selected in some order too, while data about each device
component’s composition is extracted recursively. Moreover, the sequence of extracted
components is also based on their hierarchy. Each element, after its selection, is limiting
options for its dependable elements. For example, selection of the controller is limited to
options for components that are connected to it for compatibility.

Stage 4: Saving the data of selected options. At this stage, the process of selection
of concrete implementations begins. Each selection step means the choice of one option
among suggestions. This process can be manually done by the operator or automatically by
the algorithm. After the option is selected, the choice is saved so that it can be considered

Sensors 2021, 21, 8451 25 of 41

during the selection of other elements that have dependencies with the selected one.
For example, if the link responsible for communication between devices of the system
represents a Wi-Fi connection, the options for controllers are limited to those ones that
support Wi-Fi or can be extended to support it. The list of options is based on the content
of the database, while it can be limited according to the requirements of the abstract
representation of the selected element. For example, requirements for the controller can
limit its options to those that have at least the necessary amount of flash memory and pins.
Thus, during this stage, all options that are representing the abstract element are limited in
accordance with the compatibility, requirements and dependencies.

Stage 5: Detailing of the abstract system model. This stage is aimed at filling the
abstract system model with the data of selected implementations of its elements and
represents the process of detailing. As we mentioned during output data description,
each selected element is extended with the selected field. This extension is based on the
content of the database, while the selected options data structure provides data on the table
where content is stored as well as the id of its tuple. For example, an element with name
“single-board compute” can have selected field with the following key-values: Raspberry
Pi 4 Model B 2 GB, Broadcom BCM2711 1.5 GHz, Cortex A72 4-core 64-bit, 2 GB RAM,
5V, 3A, 85 × 56 × 17 mm, 69 euro and 540 mA. The situation for each selected link is the
same. For example, the link related to Wi-Fi connection between devices can have selected
fields with the following key-values: Wi-Fi IEEE 800.11 2.4 GHz WPA2-PSK, 40 m range
and 20 Mbit/s.

Stage 6: Calculation of the device parameters. At this stage, the parameters of
devices of the designed system are calculated. As was mentioned in the output data
description, those calculations are based on the parameters of the elements of devices
and are mostly the same for all devices. For example, the parameters of the device that
is representing a server of the system can be as follows: 106 euro, 540 mAh, 5V, 3A, 85
× 153.5 × 44.5 mm, 29,400 MB of free memory and 37 h of battery life. Note that the
parameters of the system as a whole are not calculated, because the necessary amount of
its devices is not known by the algorithm and depends on the concrete implementation of
the designed system.

It is important to note that the algorithm relies on the content of the database when
extracting options that can be selected as well as when checking parameters of the selected
options. This indicates that the correctness of its work strongly depends on the content
of the database. Its output data is well-structured, while the algorithm takes into account
compatibility, requirements, dependencies and hierarchy of elements.

5. Experimental Evaluation

This section describes the experimental evaluation of the methodology for the de-
sign of microcontroller-based physical security systems. It contains the description of
the designed system, software implementation of the methodology and the conducted
experiment and its result analysis, including a comparison with analogues.

5.1. Use Case

We decided to design a microcontroller-based physical security system that provides
perimeter monitoring based on mobile robots; see Figure 4.

Sensors 2021, 21, 8451 26 of 41

Single-board computer

Database

Application
EC microcontroller Motor shield

Troyka Shield

Motor

Signal receiver

WS
microcontroller

Distance sensor

Servo drive

Motion sensor

Noise sensor

Touch sensor

Encoder
2

Power bank Charge receiver

2

Mobile Robot

EC microcontroller

Troyka Shield

Signal
transmitter

WS
microcontroller Motion sensor

Noise sensor
2

Charging station

Servo drive

Charge
transmitter

Server

Figure 4. Architecture of the perimeter monitoring system.

This system contains a server as well as multiple mobile robots and charging stations
with different controllers and components. Robots and stations monitor the perimeter via
different sensors based on the server instructions. If the battery of one of the robots is
low, it moves to the nearest free charging station. The information about the perimeter
map, locations of robots and stations as well as the charge state of robots and occupancy of
stations is stored on the server.

Such a system was chosen due to the presence of several types of devices, multiple
communications between them, as well as the need to use many different elements for each
device in the system (server consists of eight elements with sub-elements, station 12 and
robot 17, which means that such a system is appropriate in accordance with the provided
requirements).

Moreover, there are links between devices of the system and elements of devices,
requirements for links and elements as well as dependencies between them. During the
design of such a system, it is necessary to not only ensure its functionality (perimeter
monitoring) but also to ensure that the system is secure against attacks on it.

As mentioned in Section 4, the extraction of requirements for the designed system
starts from its tasks that are formulated by the operator in accordance with the wishes of
the stakeholder. Tasks of the perimeter monitoring system are as follows:

• centralized system management;
• static perimeter monitoring;
• mobile perimeter monitoring; and
• an appropriate level of security.

Links between tasks, abilities and requirements are considered in Table 8.

Sensors 2021, 21, 8451 27 of 41

Note that an appropriate level of security is set according to the parameters of the
attacker model: access (ac ∈ Z, 1 ≤ ac ≤ 5), knowledge (kn ∈ Z, 1 ≤ kn ≤ 4) and resources
(rs ∈ Z, 1 ≤ rs ≤ 3) types.

Moreover, as noted in Table 8, the requirements can be divided into requirements for
the server, mobile robots and charging stations of the system as well as security require-
ments. Note that security requirements should be considered not only on the system level
but also during the design of all the devices.

Table 8. Tasks, abilities and requirements of the designed system.

Task Ability Requirement Dependency

centralized
system

management

to store and process
system data

device that represents the
server of the system

to run executable
applications

to download and install
software updates

to create wireless
access points

to communicate with
mobile robots

to communicate with
charging stations

to provide user
interface for operators
of the system

static
perimeter

monitoring

to provide wireless
charging

devices that represent
charging stations of the
system

to provide static
perimeter monitoring,
the task of centralized
system management
should already be
satisfied

to monitor the
perimeter nearby

to communicate with
mobile robots

to communicate with
the server of the
system

Sensors 2021, 21, 8451 28 of 41

Table 8. Cont.

Task Ability Requirement Dependency

mobile
perimeter

monitoring

to be charged wirelessly

devices that represent
mobile robots of the system

to provide mobile
perimeter monitoring,
the tasks of centralized
system management
and static perimeter
monitoring should
already be satisfied

to navigate through the
perimeter

to detect and chase
intruders

to communicate with
charging stations

to communicate with
the server

appropriate level
of security

attackers with ac = 4,
kn = 2, rs = 2

security requirements
should be taken into
account during formation of
all devices of the system

5.1.1. Server

Links between tasks, abilities and requirements are presented in Table 9.

Table 9. Tasks, abilities and requirements related to the server.

Task Ability Requirement Dependency

work cycle support

to store data
32-bit operating system

sql database

to update software

wire network interface

software update server

software update mechanism

to run applications 32-bit operating system

to create wireless
access points

32-bit operating system

wireless network interface

access points configuration
mechanism

interaction with
operators

to provide graphical
user interface

application with GUI to provide interaction
with operators, the task
of work cycle support
should already be
satisfied

app-db connection

data processing algorithm

data presentation
algorithm

interaction with
other devices

to communicate with
other devices

wireless
network
interface

to provide interaction
with other devices,
the task of work cycle
support should already
be satisfied

devices
communication
algorithm

appropriate level
of security

attackers with ac = 4,
kn = 2, rs = 2

security should be taken into
account during the design
of all elements of the device

Sensors 2021, 21, 8451 29 of 41

Note that devices requirements are connected with controllers, components, etc.

5.1.2. Charging Station

Links between tasks, abilities and requirements are presented in Table 10.

Table 10. Tasks, abilities and requirements related to the charging stations.

Task Ability Requirement Dependency

work cycle
support

to update firmware

wireless network interface

bootloader

firmware update mechanism

to charge parked devices wireless charge transmitter

interaction
with intruders to detect intruders

motion sensor to provide interaction
with intruders, the task
of work cycle support
should already be satisfied

noise sensor

servo drive

intruder detection algorithm

interaction
with

parking devices

to help mobile devices
to park near

wireless
signal
transmitter

to provide interaction
with parking devices,
the task of work cycle
support should already
be satisfied

parking
direction
algorithm

interaction
with the server

to communicate
with the server

wireless
network
interface

to provide interaction
with the server, the
task of work cycle
support should already
be satisfied

server
communication
algorithm

appropriate level
of security

attackers with ac = 4,
kn = 2, rs = 2

security should be taken into
account during the design
of all elements of the device

5.1.3. Mobile Robot

Links between tasks, abilities and requirements are presented in Table 11.

Table 11. Tasks, abilities and requirements related to the mobile robots.

Task Ability Requirement Dependency

work cycle
support

to update firmware

wireless network interface

bootloader

firmware update mechanism

to be charged in
a wireless way

wireless charge receiver battery should provide
power supply for 8 hbattery

charge monitoring algorithm

Sensors 2021, 21, 8451 30 of 41

Table 11. Cont.

Task Ability Requirement Dependency

perimeter
monitoring

to move
collector motor to move, the work cycle support

task should already
be satisfied

movement algorithm

to avoid obstacles

distance sensor

to avoid obstacles,
each robot should
already have an ability
to move

touch sensor

servo drive

obstacles detection algorithm

obstacles avoidance algorithm

to navigate

encoder to navigate, each robot
should already have
and ability to avoid
obstacles

map construction algorithm

path construction algorithm

interaction
with

intruders

to detect intruders

motion sensor
to detect intruders,
the perimeter monitoring
task should already
be satisfied

noise sensor

servo drive

intruders detection algorithm

to chase intruders

distance
sensor to chase intruders, each mobile

robot should already have an
ability to detect intruders

intruders
chase
algorithm

interaction
with

charging stations

to park near
charging stations

wireless
signal
receiver

to park near charging
stations, the perimeter
monitoring task should
already be satisfied

parking
algorithm

interaction
with

the server

to communicate
with the server

wireless
network interface to communicate with

the server, the work
cycle support task
should already be satisfied

server
communication
algorithm

appropriate level
of security

attackers with ac = 4,
kn = 2, rs = 2

security should be taken into
account during the design
of all elements of the device

It is important to note that devices of the designed system have requirements that
introduce dependencies between their implementations:

• the wireless network interface must be satisfied for the server, charging stations and
mobile robots in such a way that they can communicate with each other (the selected
implementations must be compatible);

• the wireless charge transmitters of charging stations must be compatible withthe wireless
charge receivers of mobile robots; and

• the wireless signal transmitters of charging stations must be compatible with the wireless
signal receivers of mobile robots.

The step-by-step design process of the microcontroller-based system is built inside the
methodology in accordance with the relations between tasks, abilities and requirements.

Sensors 2021, 21, 8451 31 of 41

As a result of such a process, it is required to extract possible system component com-
positions that satisfy the provided requirements. Satisfaction of the requirements means
that the designed system has abilities that are connected with those requirements. In turn,
the abilities are connected with tasks, which means that the designed system is also able to
solve the related tasks when the requirements are satisfied. If the system is able to solve
the required tasks, then a correct microcontroller-based system was designed.

Note that each requirement could be linked to a number of element implementations.
For example, a chassis of the robot can be with one or more wheels or tracks, and, de-
pending on the selected option, an appropriate number of motors will be required for
its movement. Moreover, some element implementations can be used to fulfill several
requirements. For example, environment scanning sensors can be used to detect obsta-
cles and/or intruders. In addition, implementations of algorithms may have their own
requirements that vary from each other. For example, different environment data pro-
cessing algorithms use data from different sensors; therefore, dependencies as well as
conflicts between element implementations are possible and should be considered during
the design process.

5.2. Software Prototype

Our software implementation of the methodology is an application that consists of
Python script [49], PostgreSQL database [50] and Tkinter interface [51]. An overview of
the software implementation architecture is presented in Figure 5.

PostgreSQL
database

Tkinter Interface

Python script

Operator

Figure 5. The architecture of the software implementation.

The PostgreSQL database is required to store data about the extendable set-based
hierarchical relational model of microcontroller-based physical security systems as well as
data for algorithms and methodology. These data help to provide data to the operator as
well as help the algorithms and methodology to make decisions about element compati-
bility, dependencies, hierarchy and nesting. The developed database contains more than
100 tables, while the database initialization contains more than 2300 lines of PL/pgSQL
queries [52].

Python script represents the implementation of the algorithms and methodology. Each
algorithm is implemented as a number of functions, while all functions are connected with
each other in a single methodology. The developed script contains more than 3000 lines
of code and works with imports, such as psycopg2 [53], tkinter [51], pygubu [54], net-
workx [55], json [56], functools [57] and time [58]. The role of the script is to implement
algorithms, combine them together into the design methodology and provide connections
between the database and the interface. The script connects itself with the developed
interface based on the pygubu library. This allows the script to obtain access to objects of
the interface and control them: the default state, selected values, callback functions and
their links can be defined. The script connects itself with the developed database based
on the psycopg2 library and its extension sql. This allows the script to extract data from
the database.

The Tkinter interface is required to receive input data from the operator, namely,
parameters of the attacker and tasks of the designed system as well as to provide the output
data to him or her. The interface of the application consists of six main parts; see Figure 6:

Sensors 2021, 21, 8451 32 of 41

1. Input of the parameters of the attacker against which the designed microcontroller-
based physical security system needs to be protected.

2. Input of the tasks that need to be solved by the designed microcontroller-based
physical security system.

3. Frame to display the process of selection of components of the designed microcontroller-
based physical security system.

4. Frame to display the log of the work of the design methodology for microcontroller-
based physical security systems.

5. Frame to display the results of work of the design methodology for microcontroller-
based physical security systems.

6. Control buttons of the application.

Figure 6. Interface of the application: state after the design process.

Let us consider each part of the interface in more detail.
Part 1. Input of the parameters of the attacker is based on the model of the attacker

and consists of three parameters: access type, knowledge type and resource type.
Part 2. Input of the tasks for the designed system is based on their selection from the

developed database. For this demo, the number of possible tasks was limited to three.
Part 3. This frame displays options of communication protocols and interfaces, single-

board computers, controllers and components to the operator. The choice made by the
operator determines the detailed system model. It is important to note that the selection
process is displayed step by step without the possibility of changing previously made
decisions. Moreover, since each choice made affects the number of options available in
subsequent steps, if there is only one option for selection, the choice is made automatically.

Sensors 2021, 21, 8451 33 of 41

Part 4. This frame displays separate logs for the designed system, its devices, abstract
and detailed models. System log contains information about attack actions that are possible
for the selected attacker, security elements that should be used to prevent them, system
abilities that were formed based on provided tasks, requirements that were formed based
on these abilities and recommendations for the system implementation.

Device logs contain information about tasks that were formed for each device, abilities
that were formed based on these tasks; requirements that were formed based on these
abilities; the base of this device; its abstract elements, sub-elements and types of communi-
cation; attack actions that are possible based on types of communication, abstract elements
and attacker parameters; security elements to prevent attack actions; additional elements
of the device; additional sub-elements of the device; a generated set of device components
and recommendations for the server implementation. Abstract log contains the abstract
system model in JSON format, while Detailed log contains the detailed system model.

Part 5. This frame for each device displays the list of its components that were selected
with their parameters as well as the list of components that are required to be developed or
configured with required algorithms or settings. In addition, the parameters of each device
as well as security recommendations for their implementation are displayed.

Part 6. Control buttons of the application are represented as “Design” and “Select”
buttons and “automatic” checkbutton. Design button starts the design process for the
abstract system model. Select button starts the selection process for the elements of the
system to design its detailed model. Automatic checkbutton switches from the manual
selection process (by the operator) to automated (by the methodology).

Using the developed interface, the operator can set the parameters of the attacker,
against which the system is required to be protected, as well as tasks of the system. The in-
terface is an important part of the software implementation, because it provides a possibility
for the operator to work with the design methodology.

The source code of the script, the dump of the database as well as the file of graphical
user interface are available for download using the following link: https://github.com/
levshun/PhD-mcbpss_design (accessed on 14 December 2021).

5.3. Experimental Results

The model of the attacker characterizes the attacker’s capabilities in accordance with
ac, which is the type of access; kn, which is the type of knowledge; and rs, which is the
type of resources, where:

• ac can be in a range between 1 and 5 and describes the type of access that the attacker
has to the system (for example, physical access to system devices);

• kn can be in a range between 1 and 4 and describes the amount of information available
about the system (for example, system hardware and software is known); and

• rs can be in a range between 1 and 3 and describes the amount of resources available
to the attacker (for example, the attacker can use specialized software tools).

The relationship between these parameters and dt, which is the system design time,
is shown in Figure 7. The scale on the left from 0 to 5 reflects changes in values of the
attacker’s parameters ac, kn and rs are shown as area charts, while the scale on the right
from 0.27 to 0.35 reflects the design time; dt is shown as a black line.

The minimum design time was 0.2941 s, while the maximum was 0.3408.
To obtain the average design time for each parameter combination of the attacker,

the software implementation was executed 100 times for each combination of values on
the computer with Windows 10 x64 operating system, Intel Core i7-4790 CPU 3.60 GHz
(8 cores) processor, 2 TB HDD and 32 GB RAM. The time consumption was measured with
the help of the time Python library.

https://github.com/levshun/PhD-mcbpss_design
https://github.com/levshun/PhD-mcbpss_design

Sensors 2021, 21, 8451 34 of 41

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

D
es

ig
n

tim
e

in
 s

ec
on

ds

Va
lu

es
 o

f t
he

 a
tt

ac
ke

r’s
 p

ar
am

et
er

s

Number of the combination of the attacker's parameters

ac kn rs dt

Figure 7. Dependencies between the design time and the attacker’s parameters.

It is important to note that, according to the related work analysis, there are no data
available regarding the average time of design of microcontroller-based physical security
systems by commercial or scientific solutions with which the developed one was compared.
Moreover, even if these data were available, it is difficult to compare design approaches
when different systems with different amounts of devices that contain different amounts of
elements are designed.

5.4. Results Analysis

To evaluate the methodology for the design of microcontroller-based physical se-
curity systems, it is required to analyze the compliance of its software implementa-
tion with requirements as well as to compare the obtained results with scientific and
commercial solutions.

According to Section 2, the requirements are as follows:

1. Building an abstract representation of the designed system.
2. Finding a trade-off between the resources spent and ensuring the security.
3. No restrictions on platforms and architectures of the devices to be designed.
4. The extensibility of the design process.
5. Taking into account the physical layer of the designed systems.

Let us consider compliance with each requirement in more detail.
Building an abstract representation of designed systems. The abstract representation of

the designed system is provided by the abstract model. This model is constructed by
the algorithm that represents the system as an abstract hierarchical model that takes into
account connections between system devices, their component composition, dependencies
between device elements and requirements for them.

Sensors 2021, 21, 8451 35 of 41

Finding a trade-off between the resources spent and security. The security of the designed
system is based on the integration of security elements into its devices component compo-
sition. The amount of security elements that are required to be integrated depends on the
number of classes of attack actions that are possible on the designed device in accordance
with its component composition, communication levels and parameters of the attacker
against which the system is required to be protected. This indicates that the exact same
microcontroller-based physical security system can be designed with different amounts of
security elements if parameters of the attacker differ.

No restrictions on platforms and architectures of devices to be designed. The software
implementation first works with abstract elements, sub-elements and links and only after
that replaces them with their implementations. This indicates that implementations of
any platforms or architectures can be used in the developed solution, until they can be
connected with abstract representations.

The extensibility of the design process. The structure of the database contains tables,
the content of which affects how microcontroller-based physical systems are designed by
the software implementation. Thus, the first way to extend the developed design approach
is to fill those tables with more data: additional examples of attack actions, tasks, abilities,
requirements, elements, sub-elements, etc. Moreover, it is possible to use other models of
the attacker and attack actions. In addition, more parameters of elements can be considered
as well as the list of calculated parameters for designed devices can be extended. Finally,
additional algorithms can be integrated into the developed solution: the design of software,
formal verification, solution of optimization problems, design on the level of electronic
circuits, etc.

Taking into account the physical layer of the designed systems. The software implementation
designs microcontroller-based physical security systems in accordance with the extendable
set-based hierarchical relational model. This model represents systems, such as building
blocks that are communicating with each other, while each block can have hardware and
software elements. Moreover, communications between hardware and software elements
are also considered as well as attack actions on them.

The results of analysis of commercial and scientific solutions, in accordance with the
number of levels of the system, the security of which can be ensured and the number of
classes of attacks against which the system can be protected, are presented in Table 12.

Table 12. The comparison with commercial and scientific solutions.

Solutions
Levels of the System Classes of Attack Actions

cn ↔ cr cr ↔ cr dv ↔ dv st ↔ st cn cr dv st

Scientific

[13] – – – – – * * –

[14] – – – – – * * –

[9] + + – – + + – –

[10] + + – – – + – –

[12] + + – – + + – –

[15] – – + – – + + –

Commercial

[16] – – – + – – + +

[17] – – – + – – + +

[18] – – – + – – + +

[19] – – – + – – – +

[20] – – – + – – + +

[21] – – – + – – – +

Developed + + + + + + + +
Note that “*” for [13,14] means that provided models and approaches can be improved for taking the corresponding classes of attack actions into account.

Sensors 2021, 21, 8451 36 of 41

The levels of the system are divided into: cn ↔ cr, which is the controllers, compo-
nents and their communications; cr ↔ cr, which is the controllers and their communica-
tions inside devices; dv↔ dv, which is the devices and their communications with each
other; and st↔ st, which is the system and its communications with other systems.

Classes of attack actions are divided into: cn, which is the components and their
communications with controllers; cr, which is the controllers and their communications
with other controllers; dv, which is the devices and their communications with other
devices; and st, which is the system and its communications with other systems.

The comparison showed that the developed design methodology provides protection
against all analyzed classes of attack actions as well as takes into account security of all
analyzed levels of microcontroller-based physical security systems, while other solutions
do not consider that many parameters.

The main drawback of commercial solutions is that they are bound to the specific
hardware, software, platforms and architectures. This indicates that, if the designed system
already contains devices whose hardware cannot be changed or there are restrictions that
do not allow the use of suitable devices, then these solutions are not applicable. In addition,
these solutions do not take into account the optimization of the system design process
due to limitations, such as the parameters of the attacker, computational complexity,
energy efficiency and price. This indicates that resulting systems may not be reasonable
for a developed use case as there is no trade-off between resources and the provided
security level.

The main drawback of the existing scientific solutions is that they are focused on
certain aspects of security, which ensures their inapplicability to provide the security of
designed systems in general. For example, some approaches do not take into account that
the functionality of system components is determined not only by software but also by
hardware. Other approaches consider designed devices in isolation from the system they
will work in.

This indicates that not all security aspects are considered and the security of the system
as a whole will not be ensured. Some techniques are aiming at ensuring the security of
communications between devices. The drawback is that such techniques provide secure
connection between designed systems and external systems only from the designed side,
which can lead to security issues during the design of complex multi-level systems.

It is assumed that the use of the developed solution will help to reduce the amount
of weak places and architectural defects in microcontroller-based systems, thereby signifi-
cantly reducing their attack surface. In turn, this will reduce the security risks that can lead
to financial losses, loss of time as well as the safety of people, which ensures the relevance
and high significance of this work.

6. Discussion

It is important to note that the developed solution is not aimed to replace experts in
security of microcontroller-based systems. It is understandable that, in most situations,
experts are aware of the existing best practices and highly specialized solutions and are
able to design such systems at a very high level. However, even for an expert, it can be
useful in terms of automating routine tasks as well as offering options that are different
from those that are familiar.

The advantages of the developed solution are as follows:

• modularity and extensibility;
• the physical layer of microcontroller-based systems is considered;
• the designed system is represented in an abstract way first and then detailed;
• a trade-off between the security and resources expended is found; and
• security components are considered as an integral part of the system.

The disadvantages of the developed solution are as follows:

• the quality depends on the correctness and completeness of the database;
• it is required to fill in the database manually; and

Sensors 2021, 21, 8451 37 of 41

• the selection of implementations is not optimized.

It is important to note that, while the fulfillment of the database with data about one
system requires a great deal of time and effort, this effort can be used to design other
systems as well. The database can be filled in such a way that different systems will
partially share with each other tasks, abilities, requirements, abstract elements, links and
sub-elements as well as their implementations, so the fulfillment of the database will take
less time and effort for every next system.

While, in this work, many tables of the database that are responsible for the compati-
bility of elements of designed devices were filled manually, this process can be automated.
For example, based on the content of different online shops that are selling controllers and
components for the implementation of microcontroller-based devices, it is possible to fill
the database with information about such implementations automatically with the help
of the parsing script. In addition, with the help of a user-friendly interface, the task of
fulfillment of the database can be shared among the community of enthusiasts.

The selection process can be improved with the use of genetic algorithms during the
automated selection of implementations of different components and controllers among
options that are satisfying given requirements. Based on priorities of parameters, like
price, energy consumption and computation efficiency, it would be possible to solve the
optimization task to find reasonable component compositions.

7. Conclusions

In this work, a new approach to the design of microcontroller-based physical security
systems was presented, which allows combining various design techniques into the mostly
automated solution with minimal involvement of the operator. This approach is modular
and extensible, takes into account the security of the physical layer of designed systems,
works with abstract system representation and looks for a trade-off between the security of
the final solution and the resources expended on it. The methodology has a strong focus on
security and aims at ensuring the protection of designed systems against various attacks at
early stages of their lifecycle, while security components are considered as an integral part
of the system.

For the experiment, we decided to design a system that provides perimeter monitoring
based on mobile robots. The experiment was conducted with the help of the methodology
software implementation. The developed methodology was evaluated in accordance
with functional and non-functional requirements as well as compared with scientific and
commercial solutions. Moreover, to obtain the average design time for each parameter
combination of the attacker, the software implementation was executed 100 times for each
combination of values on the computer with Windows 10 x64 operating system, Intel Core
i7-4790 CPU 3.60 GHz (8 cores) processor, 2 TB HDD and 32 GB RAM.

Attacker parameters define the attack actions that are possible for the attacker, which
means that the amount of security elements integrated into the designed system differs
from one combination of parameters to another. The time consumption was measured
with the help of the time Python library. The minimum design time was 0.2941 s, while
the maximum was 0.3408.

The results obtained in this work are very important for solving fundamental issues in
the field of ensuring the information security of microcontroller-based systems. Moreover,
the results of this work can be brought to practical use in the form of a software product.
The use of such a product will help to reduce the amount of weak places and architectural
defects in microcontroller-based systems, thereby, significantly reducing their attack surface.
In turn, this will reduce the security risks that can lead to financial losses and losses of time
as well as of the safety of people, which ensures the relevance and high significance of
this work.

This indicates that, to prevent the possibility of implementation of attack actions in
microcontroller-based systems, the developed methodology first analyses attack actions
that are possible in accordance with parameters of the attacker and system component

Sensors 2021, 21, 8451 38 of 41

composition. After that, the methodology integrates security elements that are necessary
to prevent those attack actions into the system devices, and thereby the system becomes
protected from cyber-physical attacks.

It is important to note that the methodology is not aimed to replace security experts.
In most situations, an expert in the security of microcontroller-based systems knows about
the existing best and highly specialized solutions and is able to form alternatives at a very
high level, while the quality of the solution provided by the methodology directly depends
on the correctness and completeness of the database. However, it can be useful for an
expert to automate routine tasks and provide alternative solutions.

In addition, the process of manual fulfillment of all tables of the developed database
is required for the correct work of the software implementation. While the fulfillment of
the database with data about one system requires a great deal of time and effort, this effort
can be used to design other systems as well. The database can be filled in such a way that
different systems will partially share tasks, abilities, requirements, abstract elements, links
and sub-elements as well as their implementations with each other, and thus the fulfillment
of the database will take less time and effort for every new system.

While, in this work, many tables of the database that are responsible for the compati-
bility of elements of designed devices were filled manually, this process can be automated.
For example, based on the content of different online shops that are selling controllers and
components for the implementation of microcontroller-based devices, it is possible to fill
the database with information about such implementations automatically with the help of
the parsing script.

This work presented not only the developed methodology for the design of
microcontroller-based physical security systems with its software implementation but also
a framework that can be improved in various ways.

For example, it can be improved with the use of genetic algorithms during the auto-
mated selection of implementations of different components and controllers among options
that are satisfying given requirements. Based on priorities of parameters, like price, energy
consumption and computation efficiency, it would be possible to solve the optimization
task to find reasonable component compositions.

In addition, the verification process can become an integral part of the solution. It
can provide the formal check of the possibility to design microcontroller-based physical
security systems in accordance with the given requirements [24]. Moreover, it can provide
the formal check of the security level of the designed system in accordance with the model
of the attacker.

The use of a component-based approach to modeling microcontroller-based physical
security systems can be extended with semi-natural, simulation and analytical model-
ing [48]. The advantage of integration of these approaches is in the possibility to represent
various aspects of such systems, including dynamic ones.

Author Contributions: Conceptualization, D.L., A.C. and I.K.; methodology, D.L.; software, D.L.;
validation, D.L.; formal analysis, D.L., A.C. and I.K.; investigation, D.L.; resources, D.L., A.C., I.K.;
data curation, D.L.; writing—original draft preparation, D.L.; writing—review and editing, D.L.,
A.C., I.K.; visualization, D.L.; supervision, I.K.; project administration, A.C.; funding acquisition, A.C.
All authors have read and agreed to the published version of the manuscript.

Funding: The reported study was partially funded by RFBR, project number 19-29-06099 and 19-37-
90082, and by the budget project 0073-2019-0002.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The software implementation of the presented design methodology is
available for download: https://github.com/levshun/PhD-mcbpss_design (accessed on 14 Decem-
ber 2021).

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/levshun/PhD-mcbpss_design

Sensors 2021, 21, 8451 39 of 41

References
1. Levshun, D.; Kotenko, I.; Chechulin, A. The application of the methodology for secure cyber–physical systems design to improve

the semi-natural model of the railway infrastructure. Microprocess. Microsystems 2021, 87, 103482.
2. Levshun, D.; Chechulin, A.; Kotenko, I.; Chevalier, Y. Design and verification methodology for secure and distributed cyber-

physical systems. In Proceedings of the 2019 10th IFIP International Conference on New Technologies, Mobility and Security
(NTMS), Canary Islands, Spain, 24–26 June 2019; pp. 1–5.

3. Levshun, D.; Chechulin, A.; Kotenko, I. A technique for design of secure data transfer environment: Application for I2C protocol.
In Proceedings of the 2018 IEEE Industrial Cyber-Physical Systems (ICPS), St. Petersburg, Russia, 15–18 May 2018; pp. 789–794.

4. SonicWall. SonicWall: Encrypted Attacks, IoT Malware Surge as Global Malware Volume Dips. Available online: https://blog.
sonicwall.com/en-us/2019/10/sonicwall-encrypted-attacks-iot-malware-surge-as-global-malware-volume-dips/ (accessed on
22 October 2021).

5. SonicWall. Official Website for Receiving the 2020 SonicWall Cyber Threat Report. Available online: https://www.sonicwall.
com/resources/white-papers/2020-sonicwall-cyber-threat-report/ (accessed on 22 October 2021).

6. PaloAltoNetworks. Official website for reading the Palo Alto Networks 2020 Unit 42 Threat Report. Available online:
https://unit42.paloaltonetworks.com/iot-threat-report-2020/ (accessed on 22 October 2021).

7. Uddin, M.M.; Al Mahmud, A.; Islam, N. Design & implementation of a microcontroller based automatic power factor rectification
system for different loads. In Proceedings of the 2019 1st International Conference on Advances in Science, Engineering and
Robotics Technology (ICASERT), Dhaka, Bangladesh, 3–5 May 2019; pp. 1–6.

8. Islam, J.; Habiba, U.; Kabir, H.; Martuza, K.G.; Akter, F.; Hafiz, F.; Haque, M.A.S.; Hoq, M.; Mannan, M.A. Design and
development of microcontroller based wireless humidity monitor. IOSR J. Electr. Electron. Eng. 2018, 13, 41–46.

9. Scott-Hayward, S. Design and deployment of secure, robust, and resilient SDN Controllers. In Proceedings of the 2015 1st IEEE
Conference on Network Softwarization (NetSoft), London, UK, 13–17 April 2015; pp. 1–5.

10. Lin, Z.; Yu, S.; Lü, J.; Cai, S.; Chen, G. Design and ARM-embedded implementation of a chaotic map-based real-time secure video
communication system. IEEE Trans. Circuits Syst. Video Technol. 2014, 25, 1203–1216.

11. Desnitsky, V.; Chechulin, A.; Kotenko, I.; Levshun, D.; Kolomeec, M. Application of a technique for secure embedded device
design based on combining security components for creation of a perimeter protection system. In Proceedings of the 2016
24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP), Heraklion, Greece,
17–19 February 2016; pp. 609–616.

12. Desnitsky, V.; Kotenko, I.; Chechulin, A. Configuration-based approach to embedded device security. In Proceedings of the
International Conference on Mathematical Methods, Models, and Architectures for Computer Network Security, St. Petersburg,
Russia, 17–19 October 2012; pp. 270–285.

13. Hu, F.; Lu, Y.; Vasilakos, A.V.; Hao, Q.; Ma, R.; Patil, Y.; Zhang, T.; Lu, J.; Li, X.; Xiong, N.N. Robust cyber–physical systems:
Concept, models, and implementation. Future Gener. Comput. Syst. 2016, 56, 449–475.

14. Penas, O.; Plateaux, R.; Patalano, S.; Hammadi, M. Multi-scale approach from mechatronic to Cyber-Physical Systems for the
design of manufacturing systems. Comput. Ind. 2017, 86, 52–69.

15. SecFutur. Official Website of SecFutur Project—Design of Secure and Energy-Efficient Embedded Systems for Future Internet
Applications. Available online: https://cordis.europa.eu/project/id/256668 (accessed on 22 October 2021).

16. Google. Official website of Google Internet of Things Cloud Solution. Available online: https://cloud.google.com/solutions/iot/
(accessed on 22 October 2021).

17. ARM; Partners. Official Website of the PSA Certified Framework. Available online: https://www.arm.com/why-arm/
architecture/psa-certified (accessed on 28 November 2021).

18. Kaspersky. Official Website of Kaspersky Industrial Cyber-Security Solution. Available online: https://ics.kaspersky.com/
(accessed on 22 October 2021).

19. Microsoft. Official website of Microsoft Azure Internet of Things Hub solution. Available online: https://azure.microsoft.com/
en-us/services/iot-hub/ (accessed on 28 November 2021).

20. Intel. Official Website of Intel Internet of Things Platform. Available online: https://www.intel.com/content/www/us/en/
internet-of-things/overview.html (accessed on 22 October 2021).

21. Siemens. Official Website of MindSphere—Cloud-Based, Open Internet of Things Operating System from SIEMENS. Available
online: https://www.plm.automation.siemens.com/global/en/products/mindsphere/ (accessed on 28 November 2021).

22. Costin, A. Security of cctv and video surveillance systems: Threats, vulnerabilities, attacks, and mitigations. In Proceedings of
the 6th International Workshop on Trustworthy Embedded Devices, Vienna, Austria, 28 October 2016; pp. 45–54.

23. Levshun, D.; Kotenko, I.; Chechulin, A. The integrated model of secure cyber-physical systems for their design and verification.
In Proceedings of the International Symposium on Intelligent and Distributed Computing, St. Petersburg, Russia, 7–9 October
2019; pp. 333–343.

24. Levshun, D.; Chevalier, Y.; Kotenko, I.; Chechulin, A. Design and verification of a mobile robot based on the integrated model of
cyber-Physical systems. Simul. Model. Pract. Theory 2020, 105, 102151.

25. Pivarčiová, E.; Božek, P.; Turygin, Y.; Zajačko, I.; Shchenyatsky, A.; Václav, Š.; Císar, M.; Gemela, B. Analysis of control and
correction options of mobile robot trajectory by an inertial navigation system. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418755165.

26. Qazizada, M.E.; Pivarčiová, E. Mobile robot controlling possibilities of inertial navigation system. Procedia Eng. 2016, 149, 404–413.

https://blog.sonicwall.com/en-us/2019/10/sonicwall-encrypted-attacks-iot-malware-surge-as-global-malware-volume-dips/
https://blog.sonicwall.com/en-us/2019/10/sonicwall-encrypted-attacks-iot-malware-surge-as-global-malware-volume-dips/
https://www.sonicwall.com/resources/white-papers/2020-sonicwall-cyber-threat-report/
https://www.sonicwall.com/resources/white-papers/2020-sonicwall-cyber-threat-report/
https://unit42.paloaltonetworks.com/iot-threat-report-2020/
https://cordis.europa.eu/project/id/256668
https://cloud.google.com/solutions/iot/
https://www.arm.com/why-arm/architecture/psa-certified
https://www.arm.com/why-arm/architecture/psa-certified
https://ics.kaspersky.com/
https://azure.microsoft.com/en-us/services/iot-hub/
https://azure.microsoft.com/en-us/services/iot-hub/
https://www.intel.com/content/www/us/en/internet-of-things/overview.html
https://www.intel.com/content/www/us/en/internet-of-things/overview.html
https://www.plm.automation.siemens.com/global/en/products/mindsphere/

Sensors 2021, 21, 8451 40 of 41

27. Levshun, D.S.; Gaifulina, D.A.; Chechulin, A.A.; Kotenko, I.V. Problematic issues of information security of cyber-physical
systems. Informatics Autom. 2020, 19, 1050–1088.

28. Hu, F.; Hao, Q.; Bao, K. A survey on software-defined network and openflow: From concept to implementation. IEEE Commun.
Surv. Tutor. 2014, 16, 2181–2206.

29. Google. Official Website of Google Vertex AI Product with Documentation and Use Cases. Available online: https://cloud.
google.com/vertex-ai (accessed on 28 November 2021).

30. Google. Official Website of Google Internet of Things Device SDK Solution. Available online: https://cloud.google.com/blog/
products/iot-devices/introducing-cloud-iot-device-sdk-a-new-way-for-embedded-iot-devices-to-connect-to-google-cloud-
iot-core (accessed on 22 October 2021).

31. Google. Official Github Repository of Google IoT Device SDK. Available online: https://github.com/GoogleCloudPlatform/iot-
device-sdk-embedded-c (accessed on 28 November 2021).

32. Certified, P. Official Description of 10 Security Goals of Designing Secure Devices. Available online: https://publications.
psacertified.org/program-overview/what-is-psa-certified/ (accessed on 28 November 2021).

33. Certified, P. Official Description of the Main Steps of the PSA Certified Framework. Available online: https://publications.
psacertified.org/program-overview/the-psa-certified-framework/ (accessed on 28 November 2021).

34. Kaspersky. Official Website of Kaspersky Operation System. Available online: https://os.kaspersky.com/ (accessed on 22
October 2021).

35. Microsoft. Official Website of the Microsoft Azure Digital Twins Solution. Available online: https://azure.microsoft.com/en-us/
services/digital-twins/ (accessed on 28 November 2021).

36. Microsoft. Official Website of the Microsoft Azure Defender for IoT Solution. Available online: https://docs.microsoft.com/en-
us/azure/defender-for-iot/ (accessed on 28 November 2021).

37. Microsoft. Official Github Repository of the Digital Twins Definition Language (DTDL). Available online: https://github.com/
Azure/opendigitaltwins-dtdl/blob/master/DTDL/v2/dtdlv2.md (accessed on 28 November 2021).

38. Microsoft. Official Website of Microsoft Security Development Lifecycle with Examples and Documentation. Available online:
https://www.microsoft.com/enus/securityengineering/sdl/ (accessed on 28 November 2021).

39. IBM Watson IoT Platform. Official Website of the IBM Watson Internet of Things Platform. Available online: https://www.ibm.
com/docs/en/watson-iot-platform (accessed on 28 November 2021).

40. Intel. Official Website of the Intel oneAPI Internet of Things Toolkit. Available online: https://www.intel.com/content/www/
us/en/developer/tools/oneapi/commercial-base-iot.html#gs.i1fbr1 (accessed on 28 November 2021).

41. Intel. Official Website of the Intel FPGA and SoC Solutions. Available online: https://www.intel.com/content/www/us/en/
internet-of-things/products/programmable/overview.html?wapkw=IoT (accessed on 28 November 2021).

42. Siemens. Official Description of the Siemens Technologies for Data Analytics in MindSphere. Available online: https:
//www.plm.automation.siemens.com/global/en/products/iot/Analytics.html (accessed on 28 November 2021).

43. Siemens. Official Description of the Siemens Technologies for Connectivity in MindSphere. Available online: https://www.plm.
automation.siemens.com/global/en/products/iot/connectivity (accessed on 28 November 2021).

44. Siemens. Official Description of the Siemens Technologies for Integration in MindSphere. Available online: https://www.plm.
automation.siemens.com/global/en/products/iot/industrial-integrations.html (accessed on 28 November 2021).

45. Siemens. Official Documentation of the MindConnect API for the MindSphere Service. Available online: https://developer.
mindsphere.io/apis/connectivity-mindconnect/api-mindconnect-overview.html (accessed on 28 November 2021).

46. Object Management Group. Official Documentation of the UML Profile for MARTE: Modeling and Analysis of Real-Time
Embedded Systems. Available online: https://www.omg.org/spec/MARTE/1.1/PDF (accessed on 28 November 2021).

47. Chechulin, A.; Kotenko, I.; Desnitsky, V. An approach for network information flow analysis for systems of embedded components.
In Proceedings of the International Conference on Mathematical Methods, Models, and Architectures for Computer Network
Security, St. Petersburg, Russia, 17–19 October 2012; pp. 146–155.

48. Levshun, D.; Bakhtin, Y.; Chechulin, A.; Kotenko, I. Analysis of Attack Actions on the Railway Infrastructure Based on the
Integrated Model. In Proceedings of the International Symposium on Mobile Internet Security, Taichung, Taiwan, 17–19 October
2019; pp. 145–162.

49. Python. Official Website of the Python Programming Language. Available online: https://www.python.org/ (accessed on
22 October 2021).

50. PostgreSQL. Official Website of PostgreSQL—The Powerful, Open Source Object-Relational Database System. Available online:
https://www.postgresql.org/ (accessed on 22 October 2021).

51. Tkinter. Official Website of the Tkinter Package—The Standard Python Interface to the Tk GUI Toolkit. Available online:
https://docs.python.org/3/library/tkinter.html (accessed on 22 October 2021).

52. PL/pgSQL. Official Website of PL/pgSQL—SQL Procedural Language for PostgreSQL Databases. Available online: https:
//www.postgresql.org/docs/13/plpgsql-statements.html (accessed on 22 October 2021).

53. Psycopg. Official Website of Psycopg—PostgreSQL Database Adapter for the Python Programming Language. Available online:
https://pypi.org/project/psycopg2/ (accessed on 22 October 2021).
Available online: https://docs.python.org/3/library/tkinter.html (accessed on 22 October 2021).

https://cloud.google.com/vertex-ai
https://cloud.google.com/vertex-ai
https://cloud.google.com/blog/products/iot-devices/introducing-cloud-iot-device-sdk-a-new-way-for-embedded-iot-devices-to-connect-to-google-cloud-iot-core
https://cloud.google.com/blog/products/iot-devices/introducing-cloud-iot-device-sdk-a-new-way-for-embedded-iot-devices-to-connect-to-google-cloud-iot-core
https://cloud.google.com/blog/products/iot-devices/introducing-cloud-iot-device-sdk-a-new-way-for-embedded-iot-devices-to-connect-to-google-cloud-iot-core
https://github.com/GoogleCloudPlatform/iot-device-sdk-embedded-c
https://github.com/GoogleCloudPlatform/iot-device-sdk-embedded-c
https://publications.psacertified.org/program-overview/what-is-psa-certified/
https://publications.psacertified.org/program-overview/what-is-psa-certified/
https://publications.psacertified.org/program-overview/the-psa-certified-framework/
https://publications.psacertified.org/program-overview/the-psa-certified-framework/
https://os.kaspersky.com/
https://azure.microsoft.com/en-us/services/digital-twins/
https://azure.microsoft.com/en-us/services/digital-twins/
https://docs.microsoft.com/en-us/azure/defender-for-iot/
https://docs.microsoft.com/en-us/azure/defender-for-iot/
https://github.com/Azure/opendigitaltwins-dtdl/blob/master/DTDL/v2/dtdlv2.md
https://github.com/Azure/opendigitaltwins-dtdl/blob/master/DTDL/v2/dtdlv2.md
https://www.microsoft.com/enus/securityengineering/sdl/
https://www.ibm.com/docs/en/watson-iot-platform
https://www.ibm.com/docs/en/watson-iot-platform
https://www.intel.com/content/www/us/en/developer/tools/oneapi/commercial-base-iot.html#gs.i1fbr1
https://www.intel.com/content/www/us/en/developer/tools/oneapi/commercial-base-iot.html#gs.i1fbr1
https://www.intel.com/content/www/us/en/internet-of-things/products/programmable/overview.html?wapkw=IoT
https://www.intel.com/content/www/us/en/internet-of-things/products/programmable/overview.html?wapkw=IoT
https://www.plm.automation.siemens.com/global/en/products/iot/Analytics.html
https://www.plm.automation.siemens.com/global/en/products/iot/Analytics.html
https://www.plm.automation.siemens.com/global/en/products/iot/connectivity
https://www.plm.automation.siemens.com/global/en/products/iot/connectivity
https://www.plm.automation.siemens.com/global/en/products/iot/industrial-integrations.html
https://www.plm.automation.siemens.com/global/en/products/iot/industrial-integrations.html
https://developer.mindsphere.io/apis/connectivity-mindconnect/api-mindconnect-overview.html
https://developer.mindsphere.io/apis/connectivity-mindconnect/api-mindconnect-overview.html
https://www.omg.org/spec/MARTE/1.1/PDF
https://www.python.org/
https://www.postgresql.org/
https://docs.python.org/3/library/tkinter.html
https://www.postgresql.org/docs/13/plpgsql-statements.html
https://www.postgresql.org/docs/13/plpgsql-statements.html
https://pypi.org/project/psycopg2/
https://docs.python.org/3/library/tkinter.html

Sensors 2021, 21, 8451 41 of 41

54. Pygubu. Official Website of the Pygubu Tool—A RAD Tool to Enable Quick & Easy Development of User Interfaces for the
Python Tkinter Module. Available online: https://pypi.org/project/pygubu/ (accessed on 22 October 2021).

55. Networkx. Official Website of Networkx—A Python Package for the Creation, Manipulation, and Study of the Structure,
Dynamics, and Functions of Complex Networks. Available online: https://networkx.org/ (accessed on 22 October 2021).

56. JSON. Official Website of the Json Package that Represents Python Dictionaries in JSON Format. Available online: https:
//docs.python.org/3/library/json.html (accessed on 22 October 2021).

57. Functools. Official Website of the Functools Module of Python That Allows the Use and Extension of Callable Objects without
Completely Rewriting Them. Available online: https://docs.python.org/3/library/functools.html (accessed on 22 October 2021).

58. Time. Official Website of the Time Module of Python That Provides Various Time-Related Functions. Available online:
https://docs.python.org/3/library/time.html (accessed on 22 October 2021).

https://pypi.org/project/pygubu/
https://networkx.org/
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/time.html

	Introduction
	Related Work
	Hierarchical Model
	Microcontroller-Based Physical Security Systems
	Attackers, Attack Actions and Security Elements
	Connections between Models

	Design Approach
	Proposed Methodology
	Algorithm for the Formation of Requirements to the System
	Algorithm for the Formation of the System Components Composition
	Algorithm for the Design of the Abstract Model of the System
	Algorithm for the Design of the Detailed Model of the System

	Experimental Evaluation
	Use Case
	Server
	Charging Station
	Mobile Robot

	Software Prototype
	Experimental Results
	Results Analysis

	Discussion
	Conclusions
	References

