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Abstract: The massive amount of data generated daily by various sensors equipped with connected
autonomous vehicles (CAVs) can lead to a significant performance issue of data processing and
transfer. Network Function Virtualization (NFV) is a promising approach to improving the perfor-
mance of a CAV system. In an NFV framework, Virtual Network Function (VNF) instances can be
placed in edge and cloud servers and connected together to enable a flexible CAV service with low
latency. However, protecting a service function chain composed of several VNFs from a failure is
challenging in an NFV-based CAV system (VCAV). We propose an integer linear programming (ILP)
model and two approximation algorithms for resilient services to minimize the service disruption
cost in a VCAV system when a failure occurs. The ILP model, referred to as TERO, allows us to obtain
the optimal solution for traffic engineering, including the VNF placement and routing for resilient
services with regard to dynamic routing. Our proposed algorithms based on heuristics (i.e., TERH)
and reinforcement learning (i.e., TERA) provide an approximation solution for resilient services in a
large-scale VCAV system. Evaluation results with real datasets and generated network topologies
show that TERH and TERA can provide a solution close to the optimal result. It also suggests that
TERA should be used in a highly dynamic VCAV system.

Keywords: NFV; VCAV; resilient service; optimization; reinforcement learning; connected
autonomous vehicles

1. Introduction

Recently, emerging Internet of Things (IoT) applications, such as connected au-
tonomous vehicles (CAV), smart home, mobile augmented reality, smart agriculture, be-
came increasingly popular [1]. A CAV system relies upon computer vision using a series
of video cameras, radars, and Light Detection and Ranging (LIDAR) that allow the car to
perceive the world around it. The system processes a massive amount of data collected
from sensors to provide its application services composed of several application functions,
including video capturing, sensor fusion, object tracking, localization, path planning, and
control components. For example, a video camera on an autonomous car could generate
hundreds of gigabytes in an hour of driving for a 720p video. A critical issue for a CAV
system is how to transfer and process the massive amount of data generated daily in a
timely fashion.

Network Function Virtualization (NFV) has been raised as a promising approach
to tackling this issue [2]. A virtualized network function (VNF), including a traditional
network function and general computation task, can be deployed as an instantiable software
component running in a commercial off-the-shelf server. A VNF instance can be placed in
edge devices to enable application services with low latency. Several VNFs on different
edge and cloud devices can be connected as a service function chain (SFC) to enable real-
time and flexible services. While an NFV-based CAV system, referred to as VCAV, is able to
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provide a flexible CAV service with low latency, it is challenging to protect a service from
any system failure.

The issue of resilient services has been discussed in a specification published by
The European Telecommunications Standards Institute (ETSI) [3]. The main challenge of
providing a resilient service in a VCAV system is to optimize the placement and routing
of VNFs in response to a failure in an NFV infrastructure (NFVI). Previous researches
have considered various techniques to address several aspects of the resilient service
problem [4–9]. However, all previous approaches could not be applied to a VCAV system
due to the high dynamics of VCAV data traffic. In addition, most previous work assumes a
fixed mapping of routing paths onto NFVI and implicit paths connected between VNFs in
an SFC, which is not practical. Our work aims to optimize traffic engineering, including the
VNF placement and routing for resilient services in a VCAV system, to minimize the service
disruption cost, considering the dynamics of routing paths and service function chaining.

The main contributions of this paper are three-fold:

• We proposed an integer linear programming (ILP) model for the resilient service prob-
lem, referred to as TERO. The TERO model provides the optimal VNF placement and
routing for a set of service demands when a failure occurs in a VCAV system.

• We developed a heuristic algorithm (i.e., TERH) and Reinforcement Learning (RL) based
algorithm (i.e., TERA) to find an approximation solution for the resilient service problem
in an extensive network. The approximation solution provided by TERH and TERA is
close to the optimal solution. In comparison with TERH, TERA can achieve a similar
cost with significantly reduced time in a dynamic failure scenario.

• We validate our proposed models and algorithms in real datasets and generated network
topologies. The evaluation results suggest that TERA should be used to minimize the
service disruption cost of a VCAV system concerning the high dynamics of data traffic.

The rest of the paper is organized as follows. Section 2 reviews some related works.
Section 3 describes the system and states the optimization problem of traffic engineering
for resilient services in a VCAV system. Section 4 presents the TERO model that provides
the optimal traffic engineering for resilient services, including VNF placement and routing
when a failure occurs in a VCAV system. Section 5 describes the TERH and TERA algo-
rithms based on heuristic and reinforcement learning to find an approximation solution
for the resilient service problem. We present the evaluation of our proposed model and
algorithms in In Section 6. Finally, the conclusion is presented in Section 7.

2. Related Work

Network Function Virtualization (NFV) has been raised as a potential approach to a
flexible and efficient solution for processing a massive volume of data in an IoT system.
For the evolution of an IoT system with NFV, we refer the readers to [10]. The reliability
of services on the Internet and in an IoT system is a crucial problem that has been widely
studied (e.g., [11–16]). However, existing solutions are not suitable for an NFV-based IoT
system, where functional modules can be deployed in different data centers and connected
together to create a flexible service.

The challenge of developing a solution for resilient services in an NFV-based IoT
system is to find the optimal resource allocation for data routing and processing when a
failure occurs in a distributed system. So far, a few studies have considered the design
of a resilient NFV-based IoT system [17–20]. Huang et al. devised a proactive fail-over
mechanism based on failure prediction to enhance the resilience of NFV services deployed
in a distributed edge network [17]. Ergenc et al. analyzed the complexity and boundaries of
the problem as well as developed heuristics to increase the fault tolerance of an IoT network
when there are some node and link failures [18]. Bakhshi et al. proposed a mathematical
model for an SDN-based fault-tolerant architecture in an IoT environment [19]. Sanabria
et al. used machine learning techniques to provide prediction and alert capabilities for
telemedicine applications [20]. They proposed a hybrid Edge/Cloud architecture training
of the deep learning prediction model. Several optimization models have been proposed
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for resilient services in the Mobile Edge Computing [21]. However, these solutions lack
considering service function chaining that is a key feature of NFV. In addition, the dynamic
routing path has not been tackled while it is an essential feature of a CAV system. Some
studies have discussed an efficient design for data processing and routing in a VCAV
system (e.g., [22–24]) However, a solution to the traffic engineering problem for resilient
services in a VCAV system has not been provided.

This paper offers a new ILP formulation for a traffic engineering solution, including
the VNF placement and routing when node or link failures occur in a VCAV system.
Moreover, we take into account the dynamic routing path at the request time. We also
propose two algorithms based on heuristics and reinforcement learning to provide an
approximation solution in a large-scale VCAV system.

3. System Description

In a VCAV system, system and safety functions are deployed locally in an autonomous
vehicle. Light workload functions such as planning and sensor fusion can be run in edge
nodes. Some functions that require a heavy computational task and process a massive
volume of data collected from many cars can be implemented in the cloud layer (Figure 1).
These functions can be connected in an order list to create an application service. An ex-
ample of an SFC in a VCAV system is sensor fusion, world model, behavior generation,
planning, and vehicle control. A VCAV system allocates its resource in the edge and cloud
layers for a set of service demands required by vehicles. When a failure occurs, system
resources are rapidly reallocated to maintain application services supplied to vehicles.

Sensor fusion

Planning

Smart automation

World model

EDGE

CLOUD

Light workload

functions

Heavy workload

functions

System and safety functions

Radar, Lidar,

cameras, GPS,

vehicle internal state

Internal state monitor

Emergency braking

Figure 1. Functional components in an NFV-based connected autonomous vehicle.

A CAV system based on NFV includes three main elements: the NFV infrastructure
(NFVI), the VNFs, and the management and orchestration of NFVs (MANO). NFVI consists
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of the shared and virtualized resources of physical networking, computing, and storage.
A VNF can be any functional module of a VCAV system, e.g., sensor fusion, world model,
and planning. The MANO element handles all automatic processes for loading and
managing VNFs. A traffic engineering solution for resilient services can be incorporated
into the NFV architecture as a part of MANO.

We represent a VCAV system as a directed graph G = (V, E) where V and E denote
the set of physical nodes and links. We define rn

v to be node v’s resource capacity, and rl
e to

be link e’s bandwidth capacity. The beginning node and ending node of link e are denoted
by ie and je. The node’s processing resource considered in this work is the number of CPU
cores. We can use similar formulas of the processing resource in the model to include
additional types of resources (e.g., memory, storage). We represent different network
topologies by setting the parameters of links and nodes in the model. We denote by F
the set of VNF types. ηu is the number of cores required by VNF type u ∈ F to process
a traffic volume. The routing delay βv is the time duration needed by node v to route an
amount of traffic. The processing delay µvu is the time duration required to provide VNF
type u at node v. We denote by w = (we) the weight vector of NFVI where we is an integer
number representing link e’s weight. We define λn

v to be the failure state of node v, and
λl

e to be the failure state of link e. λn
v = 0 if node v fails, otherwise λn

v = 1. λl
e = 0 if link

e fails, otherwise λl
e = 1. A link failure can be caused by hardware problems, software

issues (e.g., too many connections, configuration changes, denial of service attacks), or the
mobility of vehicles.

We define Ω = {Si} to be all system-supported SFC. An SFC is denoted by Si =(
ui1, . . . , uij, . . . , uin

)
where uij is the jth VNF of SFC Si. The service demand set is denoted

by Γ = {d}. The parameter set of service demand d ∈ Γ includes arrival node sd, departure
node td, SFC Sd ∈ Ω, SFC delay αd, and bandwidth volume bd. An arrival node is an NFV
node that provides an entry of a service demand into a VCAV system. A departure node
is an NFV node at which the demand traffic leaves a VCAV system. A middle node is
an NFV node between an arrival node and a departure node on an SFC path realizing
a service demand. An NFV node either provides a VNF instance or routes traffic of a
service demand.

When a failure happens, a VCAV system needs to modify some paths of service
demands and VNF placement on these paths to meet the requirement of service demands
and avoid an overload of some nodes. The process is referred to as the traffic engineering
problem for resilient services. Optimizing VNF placement and routing could significantly
impact the cost efficiency and performance of a VCAV system. The problem is stated
as follows:

Problem 1 (Traffic Engineering for Resilient Services (TER)). Given a VCAV system G, find a
traffic engineering solution for fulfilling a service demand set Γ, in order to minimize the system
interruption when failures occur under constraints on service functions chaining and the restriction
rule of routing reallocation.

4. Optimization Model for Resilient Services

We propose an optimization model based on ILP to find the optimal result of the TER
problem. The model is referred to as TERO. The main variables of TERO are as follows:

• x2 = (x2ed) is the routing solution satisfying the service demand set when a failure
occurs in a VCAV system. If demand d uses link e, x2ed = 1, otherwise, x2ed = 0.

• y2 = (y2vdi) is the VNF placement solution in the failure state. If node v provides the
ith VNF of demand d, y2vdi = 1, otherwise, y2vdi = 0.

We summarize the main mathematical notations of TERO in Table 1.
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Table 1. Summary of main notations.

Input Parameters

G = (V, E) A directed graph representing a VCAV system where V and E is denoted the set of
physical nodes and physical links, respectively.

rn
v Node v’s resource capacity

rl
e Link e’s bandwidth capacity

ie Link e’s beginning node

je Link e’s ending node

F The VNF type set

ηu The number of CPU cores required by VNF type u ∈ F to process a volume of data
traffic

Ω The system-supported SFC set: Ω = {Si}, Si =
(

ui1, . . . , uij, . . . , uin

)
; uij is the jth VNF

of SFC Si.

Γ = {d} The service demand set

sd Demand d’s arrival node

td Demand d’s departure node

bd Demand d’s bandwidth volume

αd Demand d’s SFC delay

Sd Demand d’s SFC

βv The routing delay for a traffic unit at node v

µvu The processing delay of VNF type u at node v

γvv′udi The moving cost when moving ith VNF of demand d from v to v′

ρvv′ The cost of the minimum-weight path between v and v′

κu The size of the state and data of a VNF type u

λn
v The failure state of node v

λl
e The failure state of link e

y1 = (y1vdi) The current VNF placement solution: If node v provides the ith VNF of SFC Sd,
y1vdi = 1, otherwise, y1vdi = 0

x1 = (x1ed) The current routing solution: If demand d uses link e, x1ed = 1, otherwise, x1ed = 0

w = (we) The weight vector of NFVI where we is link e’s weight.

Output variables

x2 = (x2ed) The routing solution for satisfying demands in the failure state: If demand d uses link e,
x2ed = 1, otherwise, x2ed = 0

y2 = (y2vdi) The VNF placement solution in the failure state: If node v provides the ith VNF of SFC
Sd, y2vdi = 1, otherwise, y2vdi = 0

Auxiliary variables

lv1v2 The length of the path from node v1 to node v2

θ A large number

yσ
2vdi If a node between sd and v on the path realizing demand d provides the ith VNF of

demand d (i.e., udi), yσ
2vdi = 1, otherwise yσ

2vdi = 0.

ȳσ
2edi If link e is on the path realizing demand d, and a node between sd and ie on the path

provides udi, ȳσ
2edi = 1, otherwise ȳσ

2edi = 0.

λ′e λ′e = 1 if and only if a failure occurs on link e, at node ie, or at node je.

ϕed ϕed = 0 if and only if λ′e = 1 and link e is on the path realizing demand d.

ϕσ
d ϕσ

d = 0 if and only if there exists a link or node failure on the path used by demand d.

zvv′di zvv′di = 1 if and only if the ith VNF of SFC Sd is moved from node v to node v′,
otherwise, zvv′di = 0.
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4.1. Service Function Chaining Routing

The four conditions of service function chaining routing in a VCAV system are as fol-
lows: the flow balance, function provision, function chain, and delay constraints. The flow
balance condition guarantees to conserve the flow traffic of a service demand along its
path. The function provision condition assures that the VCAV system provides all VNFs
of a service demand. The function chain condition guarantees that all VNFs of a service
demand are connected in sequence. The delay constraint assures the fulfillment of the
end-to-end delay of an SFC.

We define lv1v2 to be the length of the path from node v1 to node v2. Let θ be a large
number. The balance condition is as follows:

∑{e:ie=v} x2ed −∑{e:je=v} x2ed = 0, ∀d, ∀v, v 6= sd, v 6= td, (1)

∑{e:ie=sd}
x2ed = 1, ∀d, (2)

∑{e:je=td}
x2ed = 1, ∀d, (3)

(x2ed − 1)θ 6 lietd − we − ljetd 6 (1− x2ed)θ, ∀d, ∀e. (4)

Equation (1) guarantees that there is one entering flow and one leaving flow at a
middle node on the path of a service demand. Equation (2) assures that there is one leaving
flow at the departure node of a service demand. Equation (3) assures that there is one
entering flow at the arrival node of a service demand. Equation (4) guarantees that there is
no cycles in a service demand path.

The function provision condition is as follows:

∑v y2vdi = 1, ∀d, ∀i, (5)

y2vdi 6 ∑{e:ie=v or je=v} x2ed, ∀v, ∀d, ∀i. (6)

Equation (5) assures that the VCAV system provides all VNFs required by a service
demand. Equation (6) ensures that the VCAV system only selects a node on the path of
demand d to allocate a VNF for the demand.

To represent the function chain condition, we add two additional binary variables
yσ

2vdi and ȳσ
2edi. If a node between sd and v on the path realizing demand d provides the ith

VNF of demand d (i.e., udi), yσ
2vdi = 1, otherwise yσ

2vdi = 0. If link e is on the path realizing
demand d, and a node between sd and ie on the path provides udi, ȳσ

2edi = 1, otherwise
ȳσ

2edi = 0. The constraint is as follows:

y2vdi 6 yσ
2vd(i−1), ∀e, ∀d, ∀i > 1, (7)

yσ
2vdi = y2vdi + ∑{e:je=v} ȳσ

2edi, ∀e, ∀d, ∀i, (8)

x2ed + yσ
2iedi − 1 6 ȳσ

2edi 6 x2ed, ∀v, ∀d, ∀i, (9)

ȳσ
2edi 6 yσ

2iedi, ∀e, ∀d, ∀i. (10)

Equation (7) guarantees that node v supplies demand d with udi if and only if ud(i−1)
is fulfilled by either node v or its preceding node that belongs to the demand d’s path.
Equation (8) guarantees that yσ

2vdi = 1 if and only if udi is delivered by a node between sd
and v and the node belongs to the path realizing demand d. Note that we have the sum of
ȳσ

2edi on the right-hand side of Equation (8) because there might be several incoming links
of node v. Equations (9) and (10) assures that ȳσ

2edi = 1 if and only if link e belongs to the
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path realizing demand d, and VNF udi is deployed at either ie or its preceding node that
belongs to the demand d’s path.

The SFC delay represents the sum of the routing delay and VNF processing delay at
every node that belongs to the demand path. We express the condition as follows:

∑e βie x2edbd + ∑v µvudi ∑i y2vdi 6 αd, ∀d. (11)

4.2. Restriction Rule in Flow Reallocation

First, the demand traffic cannot routed through a failed node or link. The condition is
as follows:

∑d bdx2ed 6 rl
eλl

e, ∀e, (12)

∑v,d,i bdy2vdiηudi 6 rn
v λn

v , ∀v. (13)

Equation (12) guarantees that the total traffic of all demands passing through a link
cannot surpass its bandwidth capacity. Equation (13) guarantees that the number of cores
that a node allocates to the VNFs of all demands cannot surpass the node capacity. Note that
when a node and link fail, the system loses all capacity of the node and link.

Second, the resource allocation for a service demand without failures on its paths
should not be changed. We introduce three binary variables λ′e, ϕed and ϕσ

d . λ′e = 1 if and
only if a failure occurs on link e, at node ie, or at node je. ϕed = 0 if and only if λ′e = 1
and link e is on the path realizing demand d. ϕσ

d = 0 if and only if there exists a link or
node failure on the path used by demand d. Let x1 = (x1ed) be the current routing solution.
If demand d uses link e, x1ed = 1, otherwise, x1ed = 0. The condition is given by:

λl
e 6 λ′e, ∀e, (14)

λn
ie 6 λ′e, ∀e, (15)

λn
je 6 λ′e, ∀e, (16)

λ′e 6 λl
e + λn

ie + λn
je , ∀e, (17)

ϕσ
d x1ed 6 x2ed, ∀d, ∀e, (18)

ϕσ
d 6 ϕed, ∀d, ∀e, (19)

1− λ′e 6 ϕed, ∀d, ∀e, (20)

1− x1ed 6 ϕed 6 2− x1ed − λ′e, ∀d, ∀e. (21)

Equations (14)–(17) guarantee that λ′e = 1 if and only if we have either λl
e = 1, λn

ie = 1,
or λn

je = 1, and λ′e = 0 if and only if we have λl
e = 0, λn

ie = 0, and λn
je = 0. Equation (18)

guarantees that the routing solution for demand d does not change if there is no failures on
its path. Equation (19) ensures that ϕσ

d = 0 if and only if ϕed = 0 for one of links along the
path used by demand d. Equations (20) and (21) ensure that ϕed = 0 if and only if λ′e = 1
and x1ed = 1.

4.3. Objective Function

Our objective is to minimize the service disruption cost. The service disruption cost
of a service demand is the cost of moving its VNF state and data to a new node. It is in
proportion to the time required to provide all services normally. Its unit of measurement is
a derived unit of time. We denote by γvv′udi

the cost when moving ith VNF of demand d
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from v to v′. Let ρvv′ be the cost of the minimum-weight path from v to v′. κu is the size of
the state and data of a VNF type u.

The service disruption cost of a VNF instance is given by:

γvv′udi
= ρvv′κudi . (22)

We add an additional variable zvv′di to compute the service disruption cost in a VCAV
system when a failure occurs. In a failure state, if the ith VNF of SFC Sd is moved from
node v to node v′, zvv′di = 1, otherwise, zvv′di = 0. Let y1 = (y1vdi) be the current VNF
placement solution. If node v provides the ith VNF of SFC Sd, y1vdi = 1, otherwise,
y1vdi = 0. The constraints on the value of zvv′di are given by:

zvv′di 6 y1vdi, ∀v, ∀v′, ∀d, ∀i, (23)

zvv′di 6 y2v′di, ∀v, ∀v′, ∀d, ∀i, (24)

y1vdi + y2v′di − 1 6 zvv′di, ∀v, ∀v′, ∀d, ∀i. (25)

Equations (23)–(25) guarantee that v′, zvv′di = 1 if and only if we have y1vdi = 1 and
y2v′di = 1, otherwise, zvv′di = 0.

The service disruption cost of a resource allocation solution when a failure happens is
given by:

U = ∑v,v′ ,d,i zvv′diγvv′udi
. (26)

4.4. ILP Model for Resilient Services

The TER problem is to find a traffic engineering solution for minimizing a cost func-
tion of service disruption when a failure occurs in a VCAV system. The TERO model
provides the optimal VNF routing and placement for the TER problem in a failure state.
The formulation of the TERO model includes the objective function given by Equation (26)
and the constraints given by Equations (1)–(25).

5. Approximation Algorithms

In the previous section, we proposed the TERO model to obtain the optimal solution
for traffic engineering in a VCAV system when a failure occurs. An ILP solver is not
able to handle a scenario with hundreds of nodes and thousands of demands since the
number of variables in TERO comes to billions in such a large scenario. Hence, we propose
two algorithms based on a heuristic approach and reinforcement learning to find an
approximation solution for the TER problem in a large-scale VCAV system. The two
algorithms use the similar input parameters of the TER problem, which are presented in
Table 1.

5.1. Heuristic Algorithm

We propose a heuristic algorithm, namely TERH, based on the Simulated Annealing
(SA). In TERH, we develop the structure of the resource allocation solution and the function
of neighborhood selection for the TER problem. SA is a heuristic technique that finds the
optimum for a global optimization problem [25]. The search method accepts a worse
scenario with a certain probability of overcoming a local optimum.

We represent a resource allocation solution for a service demand set in a VCAV system
as a list of tuples, which is denoted by Om = ((d, i, v) : d ∈ D, i ∈ Sd, v ∈ V). The solution
shows that node v provides the ith VNF of demand d. The details of the TERH algorithm
are presented in Algorithm 1.
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Algorithm 1 Simulated Annealing-based approximation algorithm for TER

1: function TERH(G, Γ, y1)
2: Initialize T, T0, Tn, φ, τ
3: Find an initial solution Om
4: O∗m ← Om
5: Compute y∗2 from O∗m
6: while T ≥ Tn do
7: for n← 1 to φ do
8: repeat
9: (d, i, v)← a random tuple in Om

10: v′ ← a random node in V
11: O

′
m ← REPLACE(d, i, v, v′, Om)

12: Compute x′2 and constraints in a failure scenario
13: until O′m is feasible
14: Compute y2 from Om
15: Compute y′2 from O′m
16: if U(y′2, y1) < U(y2, y1) then
17: Om ← O′m
18: if U(y′2, y1) < U(y∗2 , y1) then
19: O∗m ← O′m
20: x∗2 ← x′2
21: y∗2 ← y′2
22: end if
23: else
24: ∆← U(y′2, y1)−U(y2, y1)
25: ε← a random number between 0 and 1
26: if exp(−∆/T) > ε then
27: Om ← O′m
28: end if
29: end if
30: end for
31: T ← C(T)
32: end while
33: return y∗2 , x∗2
34: end function

The algorithm contains two main loops. The outer loop is controlled by the tempera-
ture parameter T, the start temperature parameter T0, the stop temperature parameter Tn,
and the cooling function C(T). For each T, the algorithm runs an inner loop that uses a
neighborhood function to move from the current solution to another. T decreases by C(T)
after one iteration of the outer loop. The algorithm completes its solution search when T is
smaller than Tn.

We define φ to be the number of iterations of the inner loop. Let Om be an initial
solution. We use the most common cooling function C(T) = τT, for some parameter τ
from interval (0, 1). The initial temperature is the maximal cost difference between any two
neighbor solutions. The end temperature typically is close to zero.

In the neighborhood selection (i.e., line 8–12), we define the Replace(d, i, v, v′, Om)
operator that substitutes node v′ for node v. We use the Replace operator for a random
tuple (d, i, v) ∈ Om and random target node v′ repeatedly until we find a feasible solution.

In the inner loop, if the objective value of a neighborhood solution is less than that
of a current solution, the iteration continues with the neighborhood solution as TERH is
moving towards a better solution (i.e., lines 16–22). Otherwise, TERH randomly accepts
the neighborhood solution with a probability in order to overcome local optimization
(i.e., lines 24–28). The acceptance probability decreases with T for a given value of ∆. Hence,
the uphill movement is more uncommon in a successive inner loop. After φ iterations,
the inner loop finishes its solution search. After the temperature is decreased, the inner
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loop is started again. The approximation of TERH’s solution can be controlled by adjusting
the number of iterations φ and cooling function C(T).

5.2. Reinforcement Learning Based Approximation Algorithm

We propose a Soft Actor-Critic (SAC) based approximation algorithm, called TERA,
to solve the TER problem in a large-scale VCAV system. SAC is a variant of actor-critic
methods for reinforcement learning. It aims to maximize expected rewards and entropy
in a large-scale continuous action space [26]. While earning as many rewards as possible,
it attempts to take actions as randomly as possible. This encourages the search process
to discover the environment, which accelerates training and decreases the probability of
going back to a visited action.

The mathematical formulation of SAC is a Markov decision process with a set of
parameters including the state spaceM, action space A, probability density p and reward
function r. The probability density p, defined byM×M×A → (0, ∞], is the probability of
the next state mt+1 ∈ M given the current state mt ∈ M and action at ∈ A. The reward r,
defined byM×A → [rmin, rmax] is an environment reward of a state transition. SAC seeks
a policy ω(mt|at) for maximizing the learning objective. The learning objective is the
expected sum of rewards and the policy’s entropy. SAC uses the hyperparameter λ, namely
temperature, to adjust the association between the reward and the entropy in the learning
objective. Let h be the entropy function with regard to the policy ω. The formulation of the
learning objective of SAC is as follows:

J(ω) = ∑
t
E(mt ,at)[r(mt, at) + h(ω(·|mt))λ] (27)

The primary step of developing a solution based on SAC is to formulate the three
key parameters: The state space, action space, and reward function. In TERA, the state
space should represent how a set of demands is satisfied when a failure happens. Hence,
we formulate it by a list of tuples, mt = {(d, u, v)} ∪ {λn

v} ∪
{

λl
v

}
. An element of mt show

that node v provides VNF u of service demand d in a failure scenario. An action in TERA
makes a movement between states, representing a possible resource allocation solution.
We represent an action by at =

(
v1, v2, . . . , v|mt |

)
where vi ∈ V is a resource allocation

solution for the ith tuple in the action space. As TERA optimizes the learning policy to
maximize the learning objective, we use the objective function Ua = −U to compute the
reward of a solution. Hence, we can evaluate the solution’s cost efficiency and learning
policy produced by TERA for minimizing the service disruption cost.

We present the main steps of TERA in Algorithm 2. The actor network returns a
resource allocation action according to an input state. The NFV environment runs the
action to move to a new state. The critic network uses the new state, its reward and the
previous state to compute the advantage of the new state, which is used to update the
weights of the actor and critic networks. The role of the critic network is the actor’s loss
function. We implement the actor and critic networks as neural networks. We will discuss
some details of selecting their parameters in Section 6.1.

Algorithm 2 Learning-based approximation algorithm for TER

1: function TERA(G, Γ, y1)
2: actor← Initialize the actor network
3: critic← Initialize the critic network
4: env← Initialize the VCAV environment
5: for i = 1, 2, . . . , φa do
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Algorithm 2 Cont.

6: at =
(

v1, v2, . . . , v|mt |

)
← actor(mt)

7: mt+1 = {(d, u, v)} ∪ {λn
v} ∪

{
λl

v

}
, rt+1 ← env(at, mt)

8: δ← critic(mt, mt+1, rt+1)
9: Use δ to update the actor and critic networks

10: end for
11: return actor
12: end function

6. Evaluation

We evaluate the service disruption cost and computation time of our proposed solution
approaches for traffic engineering in a failure scenario of a VCAV system. We used the
optimal solution obtained by TERO as a baseline solution for evaluating the approximation
solution achieved by TERH and TERA.

6.1. Scenarios and Parameters Setting

Our objective is to evaluate the performance of TERO, TERH and TERA with respect
to the service disruption cost and computation time when we consider various network
topologies. The three main evaluation questions are as follows: What is the gap between
the optimal results and approximation solutions? How do different solution approaches
respond to the dynamics of failure scenarios? Can TERH and TERA efficiently provide a
VNF placement and routing solution in a large-scale scenario when a failure occurs? We use
eight topologies in our evaluation. Note that it is the diversity and size of topologies that
affect the answer to our questions rather than a specific topology. The first topology, referred
to as Abilene, is the US backbone network composed of 12 nodes and 15 links, described
in the Abilene dataset [27]. The second topology, namely Geant, is the Europe backbone
network of 22 nodes and 36 links, presented in the Geant dataset [28]. The other topologies
are synthetic topologies based on random graph generation algorithms, including the
Barabási-Albert (BA), Waxman (WA), Erdős-Rényi (ER) models [29]. We create a small
topology composed of 50 nodes and a large topology composed of 200 nodes for each
random graph generation algorithm. The random graph generation tool is FNSS [30].
A BA topology is created with four nodes at first. A new node is added by connecting to
four preceding nodes. The link density probability used to create a WA topology is 0.9.
The edge generation probability used to create an ER topology is 0.2. We denote the small
and large BA topologies by BA1 and BA2, the small and large WA topologies by WA1
and WA2, and the small and large ER topologies by ER1 and ER2. In a failure scenario,
we randomly generate one node and link failure in a network topology.

We randomly create 15 demands in the Abilene and Geant topologies and 100 service
demands in the BA, WA, ER topologies. The arrival and departure nodes of a service de-
mand are randomly selected. The SFC delay is varied between one and thirty milliseconds.
The range of the bandwidth demand is between 1 Gbps and 5 Gbps. We consider four
types of VNFs. The number of CPU cores demanded by a VNF type for one volume of
traffic is varied between one and two cores. The SFC of a service demand is randomly
selected in four VNF types. We assign a bandwidth value of 80 Gbps to the capacity of
all links. The edge and cloud nodes are randomly selected. The cloud node capacity is
200 cores. The edge node capacity is 50 cores. At a node, the processing delay of a VNF and
the routing delay for a traffic unit is randomly generated between 10 and 100 microseconds.
The value of link weight is varied between 1 and 3.

We now look at how to choose hyperparameters for the implementation of our pro-
posed algorithms. In TERA, the temperature hyperparameter is automatically configured
as described in [31]. We chose two layers for the actor and critic networks because we did
not obtain a better policy when the number of layers increases beyond two. After running
TERA with a varying number of neurons, we chose 32 neurons for each layer of the actor
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and critic networks because the policy did not significantly improve when we used a
bigger value.

In TERH, the value of the end temperature is 0.1. For each temperature, the number
of neighbor selections is φ = 100. For comparison purposes, we select the parameter τ
of the cooling function so that the iteration number of TERH and that of TERA is similar.
The parameter τ is computed as follows:

τ =

(
Tn

T0

) 1
φa

, (28)

where φa = 8000 since TERA can obtain a steady policy after eight thousand iterations.
We used an x86 computer in our evaluation. Its hardware configuration is a four-core

2.60 GHz Intel processor with 8 GB memory and an NVIDIA GeForce GTX 850M card.
We solved TERO in CPLEX [32]. We implemented TERH in Java and TERA in Python with
TensorFlow [33].

6.2. Evaluation Results

First, we compare the performance of different solution approaches when a failure
scenario is fixed. In a fixed failure scenario, we compute the service disruption cost and
computation time in only one failure scenario. We consider limited-size scenarios, including
the Abilene, Geant, BA1, WA1, and ER1 topologies, to compare approximation solutions
with optimal results. Figure 2a shows that TERO is better than TERH and TERA in terms
of the service disruption cost, but the difference is marginal. We also observe that TERH
and TERA can archive similar service disruption costs after 8000 iterations. In Figure 2b,
the computation time of TERA and TERH is higher than that of TERO, and the computation
time of TERA is slightly higher than that of TERH.

Second, we compare the performance of different solution approaches when a failure
scenario is changed. Specifically, we consider 8000 failure scenarios in our evaluation.
We compute the service disruption cost and computation time in each failure scenario and
plot their average value. Figure 3a shows that TERO, TERH, and TERA archive similar
service disruption costs. In Figure 3b, we use a base 10 logarithmic scale for the y-axis
and a linear scale for the x-axis to illustrate a variation in the computation time of TERO,
TERH, and TERA. The figure shows that the computation time of TERA is significantly
smaller than that of TERO and TERH. It is because TERA can remember its policy learned
from previous data while TERO and TERH are required to solve the TER problem for an
individual failure scenario.

Finally, we evaluate the TERH and TERA performance in a large-scale VCAV system
when a failure scenario is changed. Figure 4 plots the service disruption cost and com-
putation time for the BA2, WA2, and ER2 topologies with 200 nodes. In such large-scale
topologies, CPLEX cannot solve the TERO model to find the optimal solution. In Figure 4b,
we use a base 10 logarithmic scale for the y-axis and a linear scale for the x-axis to plot the
computation time. We observe that TERA is significantly faster than TERH. The service
disruption cost of TERH is slightly smaller than that of TERA, but it is negligible. It sug-
gests that we should use TERA to protect service demands from a failure in a real-time
VCAV system.
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Figure 2. Performance comparison of TERO, TERH and TERA when a failure scenario is fixed.
(a) Service disruption cost; (b) Computation time.
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Figure 3. Performance comparison of TERO, TERH and TERA when a failure is changed. (a) Service
disruption cost; (b) Computation time.
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Figure 4. The TERA and TERH performance in a large-scale VCAV system. (a) Service disruption
cost; (b) Computation time.

7. Conclusions

We studied the optimization problem of traffic engineering for resilient services in a
VCAV system. We proposed an ILP model (i.e., TERO) to find the optimal VNF placement
and routing when a node or link failure occurs. The model captures essential features of
NFV such as service function chaining, the restriction rule of resource reallocation, and the
exact placement and routing solution for the service demand set. We developed the TERH
and TERA approximation algorithms based on heuristics and reinforcement learning to
provide an efficient traffic engineering solution for resilient services in a large-scale VCAV
system. The evaluation results show that TERO, TERH, and TERA can protect service
demands from node and link failures. The approximation results provided by TERH and
TERA are very close to the optimal results. The results also suggest that a network service
provider should consider TERA to provide resilient services in a real-time VCAV system.
Possible directions for extending our work comprise the consideration of various network
technologies supporting a VCAV system, an evaluation of other network topologies and
performance metrics, or an optimization model of a resilient service with a federation of
several VCAV providers as in [9,34].

Author Contributions: Conceptualization, T.-M.P.; methodology, T.-M.P.; software, T.-M.P.; valida-
tion, T.-M.P. and T.-M.N.; formal analysis, T.-M.P.; investigation, T.-M.P.; writing—original draft
preparation, T.-M.P. and T.-M.N.; writing—review and editing, T.-M.P. and T.-M.N.; supervision,
T.-M.P.; project administration, T.-M.P.; funding acquisition, T.-M.P. All authors have read and agreed
to the published version of the manuscript.

Funding: This research is funded by Vietnam National Foundation for Science and Technology
Development (NAFOSTED) under grant number 102.02-2020.13.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Sensors 2021, 21, 8446 15 of 16

Acknowledgments: The authors are sincerely grateful to the anonymous reviewers for many con-
structive helpful comments.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Lv, Z.; Xiu, W. Interaction of Edge-Cloud Computing Based on SDN and NFV for Next Generation IoT. IEEE Internet Things J.

2020, 7, 5706–5712. [CrossRef]
2. ETSI. Network Functions Virtualisation (NFV): Architectural Framework, GS NFV 002 V1.2.1; ETSI: Sophia Antipolis, France, 2014.
3. ETSI. Network Functions Virtualisation (NFV): Resiliency Requirements, GS NFV-REL 001 V1.1.1; ETSI: Sophia Antipolis, France, 2015.
4. Marotta, A.; Kassler, A. A Power Efficient and Robust Virtual Network Functions Placement Problem. In Proceedings of the 28th

International Teletraffic Congress (ITC 28), Würzburg, Germany, 12–16 September 2016; Volume 1, pp. 331–339.
5. Marotta, A.; Zola, E.; D’Andreagiovanni, F.; Kassler, A. A Fast Robust Optimization-based Heuristic for the Deployment of Green

Virtual Network Functions. J. Netw. Comput. Appl. 2017, 95, 42–53. [CrossRef]
6. Hmaity, A.; Savi, M.; Musumeci, F.; Tornatore, M.; Pattavina, A. Protection strategies for virtual network functions placement and

service chains provisioning. Networks 2017, 70, 373–387. [CrossRef]
7. Wen, R.; Feng, G.; Tang, J.; Quek, T.Q.S.; Wang, G.; Tan, W.; Qin, S. On Robustness of Network Slicing for Next-Generation Mobile

Networks. IEEE Trans. Commun. 2019, 67, 430–444. [CrossRef]
8. Bian, S.; Huang, X.; Shao, Z.; Gao, X.; Yang, Y. Service Chain Composition with Failures in NFV Systems: A Game-Theoretic

Perspective. In Proceedings of the IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019;
pp. 1–6.

9. Pham, T.M.; Fdida, S.; Nguyen, T.T.L.; Chu, H.N. Modeling and analysis of robust service composition for network functions
virtualization. Comput. Netw. 2020, 166, 106989. [CrossRef]

10. Pham, T.M.; Nguyen, T.T.L. Optimization of Resource Management for NFV-Enabled IoT Systems in Edge Cloud Computing.
IEEE Access 2020, 8, 178217–178229. [CrossRef]

11. Wang, Y.; Wang, H.; Mahimkar, A.; Alimi, R.; Zhang, Y.; Qiu, L.; Yang, Y.R. R3: Resilient Routing Reconfiguration. SIGCOMM
Comput. Commun. Rev. 2010, 40, 291–302. [CrossRef]

12. Cho, S.; Elhourani, T.; Ramasubramanian, S. Independent Directed Acyclic Graphs for Resilient Multipath Routing. IEEE/ACM
Trans. Netw. 2012, 20, 153–162. [CrossRef]

13. Yang, B.; Liu, J.; Shenker, S.; Li, J.; Zheng, K. Keep Forwarding: Towards k-link failure resilient routing. In Proceedings of the
IEEE Conference on Computer Communications (INFOCOM 2014), Toronto, ON, Canada, 27 April–2 May 2014; pp. 1617–1625.

14. Power, A.; Kotonya, G. Providing Fault Tolerance via Complex Event Processing and Machine Learning for IoT Systems.
In Proceedings of the 9th International Conference on the Internet of Things, Bilbao, Spain, 22–25 October 2019; ACM:
New York, NY, USA, 2019.

15. Wang, S.; Yuan, J.; Li, X.; Qian, Z.; Arena, F.; You, I. Active Data Replica Recovery for Quality-Assurance Big Data Analysis in
IC-IoT. IEEE Access 2019, 7, 106997–107005. [CrossRef]

16. Goudarzi, M.; Wu, H.; Palaniswami, M.; Buyya, R. An Application Placement Technique for Concurrent IoT Applications in Edge
and Fog Computing Environments. IEEE Trans. Mob. Comput. 2021, 20, 1298–1311. [CrossRef]

17. Huang, H.; Guo, S. Proactive Failure Recovery for NFV in Distributed Edge Computing. IEEE Commun. Mag. 2019, 57, 131–137.
[CrossRef]

18. Ergenc, D.; Rak, J.; Fischer, M. Service-Based Resilience for Embedded IoT Networks. In Proceedings of the 2020 50th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Valencia, Spain, 29 June–2 July 2020;
pp. 540–551. [CrossRef]

19. Bakhshi Kiadehi, K.; Rahmani, A.M.; TSabbagh Molahosseini, A. A fault-tolerant architecture for internet-of-things based on
software-defined networks. Telecommun. Syst. 2021, 77, 1572–9451. [CrossRef]

20. Sanabria-Russo, L.; Serra, J.; Pubill, D.; Verikoukis, C. CURATE: On-Demand Orchestration of Services for Health Emergencies
Prediction and Mitigation. IEEE J. Sel. Areas Commun. 2021, 39, 438–445. [CrossRef]

21. Luo, Q.; Hu, S.; Li, C.; Li, G.; Shi, W. Resource Scheduling in Edge Computing: A Survey. IEEE Commun. Surv. Tutor. 2021,
23, 2131–2165. [CrossRef]

22. Si, W.; Starobinski, D.; Laifenfeld, M. A Robust Load Balancing and Routing Protocol for Intra-Car Hybrid Wired/Wireless
Networks. IEEE Trans. Mob. Comput. 2019, 18, 250–263. [CrossRef]

23. Malik, F.M.; Khattak, H.A.; Almogren, A.; Bouachir, O.; Din, I.U.; Altameem, A. Performance Evaluation of Data Dissemination
Protocols for Connected Autonomous Vehicles. IEEE Access 2020, 8, 126896–126906. [CrossRef]

24. Muhammad, A.; Saqib, M.; Song, W.C. Sensor Virtualization and Data Orchestration in Internet of Vehicles (IoV). In Proceedings
of the 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), Bordeaux, France, 17–21 May 2021;
pp. 998–1003.

25. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [CrossRef]

http://doi.org/10.1109/JIOT.2019.2942719
http://dx.doi.org/10.1016/j.jnca.2017.07.014
http://dx.doi.org/10.1002/net.21782
http://dx.doi.org/10.1109/TCOMM.2018.2868652
http://dx.doi.org/10.1016/j.comnet.2019.106989
http://dx.doi.org/10.1109/ACCESS.2020.3026711
http://dx.doi.org/10.1145/1851275.1851218
http://dx.doi.org/10.1109/TNET.2011.2161329
http://dx.doi.org/10.1109/ACCESS.2019.2932259
http://dx.doi.org/10.1109/TMC.2020.2967041
http://dx.doi.org/10.1109/MCOM.2019.1701366
http://dx.doi.org/10.1109/DSN48063.2020.00066
http://dx.doi.org/10.1007/s11235-020-00750-1
http://dx.doi.org/10.1109/JSAC.2020.3021570
http://dx.doi.org/10.1109/COMST.2021.3106401
http://dx.doi.org/10.1109/TMC.2018.2832208
http://dx.doi.org/10.1109/ACCESS.2020.3006040
http://dx.doi.org/10.1126/science.220.4598.671


Sensors 2021, 21, 8446 16 of 16

26. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with
a Stochastic Actor. In Proceedings of the 35th International Conference on Machine Learning, Stockholm Sweden, 10–15 July
2018; Volume 80, pp. 1856–1865.

27. Pióro, M.; Wessäly, R. SNDlib. Available online: http://sndlib.zib.de (accessed on 8 December 2021).
28. Uhlig, S.; Quoitin, B.; Lepropre, J.; Balon, S. Providing public intradomain traffic matrices to the research community. SIGCOMM

Comput. Commun. Rev. 2006, 36, 83–86. [CrossRef]
29. Drobyshevskiy, M.; Turdakov, D. Random Graph Modeling: A Survey of the Concepts. ACM Comput. Surv. 2019, 52, 131.

[CrossRef]
30. Saino, L.; Cocora, C.; Pavlou, G. A Toolchain for Simplifying Network Simulation Setup. In Proceedings of the 6th International

ICST Conference on Simulation Tools and Techniques (SIMUTOOLS ’13), Cannes, France, 5–7 March 2013; ICST: Brussels,
Belgium, 2013.

31. Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al. Soft Actor-Critic
Algorithms and Applications. arXiv 2019, arXiv:1801.01290.

32. IBM. IBM ILOG CPLEX Optimizer. Available online: https://www.ibm.com/analytics/cplex-optimizer/ (accessed on
8 December 2021).

33. Google Brain Team. TensorFlow. Available online: https://www.tensorflow.org (accessed on 8 December 2021).
34. Pham, T.M.; Chu, H.N. Multi-Provider and Multi-Domain Resource Orchestration in Network Functions Virtualization.

IEEE Access 2019, 7, 86920–86931. [CrossRef]

http://sndlib.zib.de
http://dx.doi.org/10.1145/1111322.1111341
http://dx.doi.org/10.1145/3369782
https://www.ibm.com/analytics/cplex-optimizer/
https://www.tensorflow.org
http://dx.doi.org/10.1109/ACCESS.2019.2926136

	Introduction
	Related Work
	System Description
	Optimization Model for Resilient Services
	Service Function Chaining Routing
	Restriction Rule in Flow Reallocation
	Objective Function
	ILP Model for Resilient Services

	Approximation Algorithms
	Heuristic Algorithm
	Reinforcement Learning Based Approximation Algorithm

	Evaluation
	Scenarios and Parameters Setting
	Evaluation Results

	Conclusions
	References

