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Abstract: Modern data augmentation strategies such as Cutout, Mixup, and CutMix, have achieved
good performance in image recognition tasks. Particularly, the data augmentation approaches,
such as Mixup and CutMix, that mix two images to generate a mixed training image, could generalize
convolutional neural networks better than single image-based data augmentation approaches such
as Cutout. We focus on the fact that the mixed image can improve generalization ability, and we
wondered if it would be effective to apply it to a single image. Consequently, we propose a new
data augmentation method to produce a self-mixed image based on a saliency map, called SalfMix.
Furthermore, we combined SalfMix with state-of-the-art two images-based approaches, such as
Mixup, SaliencyMix, and CutMix, to increase the performance, called HybridMix. The proposed
SalfMix achieved better accuracies than Cutout, and HybridMix achieved state-of-the-art perfor-
mance on three classification datasets: CIFAR-10, CIFAR-100, and TinyImageNet-200. Furthermore,
HybridMix achieved the best accuracy in object detection tasks on the VOC dataset, in terms of mean
average precision.

Keywords: deep learning; data augmentation; convolutional neural network (CNN); image classification

1. Introduction

Deep learning has achieved remarkable performances in various computer vision
tasks such as image classification [1–4], segmentation [5,6], detection [7–11], and image
quality assessment [12]. Generally, deep neural networks (DNNs) require large training
data to achieve high performance. Data augmentation techniques can increase the limited
size of training data and are important elements in the training process of DNNs to
improve their generalization performances. Data augmentation techniques have been
used to train AlexNet [13], and geometric data augmentation approaches have been used
to reduce Top-5 error rates of ImageNet classification tasks, such as flip, rotation, crop,
and translation [13,14]. In 2014, VGG neural networks were proposed, and the scale
jittering data augmentation technique was introduced by [15]. The Cutout method, which is
a representative data augmentation approach, performs regional dropout, where pixel
values of a randomly selected region of an input image are removed [16]. Regional dropout
approaches have shown better recognition rates than previous geometric transformation
strategies [16,17]. These data augmentation approaches are performed on a single image,
as shown in Figure 1.

In the recent data augmentation studies, two training images are selected and mixed
during network training, and mixed images are used for training a convolutional neural
network (CNN), such as Mixup [18] and CutMix [19]. These techniques further improve
generalization performance than traditional single image-based approaches. Most recent
research works such as SaliencyMix [20], PuzzleMix [21], ResizeMix [22], and SnapMix [23]
focus on the mixing of two images for data augmentation. Especially, when CutMix mixes
images, random patches are cut and pasted on other images; however, saliency-guided
approaches have recently been proposed and achieve better performances than the original
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CutMix [20,21,23]. However, when using saliency-guided approaches [20,23], there are still
cases where the important feature of the image is lost when the salient regions of the two
images to be mixed overlap at the same location. because they do not increase important
features in the image itself.

Figure 1. Conceptual comparison between our proposed SalfMix method and other single image-
based data augmentation methods. Our proposed SalfMix transforms a single image into a self-mixed
image guided by a saliency map.

In this paper, we present two kinds of data augmentation strategies. The SalfMix uses
a saliency map for self-guidance. It is important to extract important features that can
predict the class of input images. The saliency map represents the importance of the image
in training and can be utilized to augment the image including more important features.
It produces a self-mixed image based on a single training image. The performance of the
approach outperforms the Cutout method, which is one of the state-of-the-art single image-
based data augmentation techniques [16] (e.g., 19.89%, SalfMix VS 21.46%, Cutout error
rates in CIFAR-100 with PreActResNet-101). Additionally, we prove that the SalfMix data
augmentation technique could increase the state-of-the-art performance of two images-
based data augmentation approaches, such as Mixup, SaliencyMix, and CutMix, by linearly
combining two approaches without any modification. We call it HybridMix. HybridMix
does not lost important features even if the salient regions of the two images to be mixed
overlap at the same location, because it applies SalfMix together. We summarize the key
differences among state-of-the-art data augmentation techniques, including our proposed
approaches, in Table 1.

Table 1. Key differences among state-of-the-art data augmentation techniques.

Approach Mixed? Single-Image? Saliency?

Cutout [16] 8 4 8

Mixup [18] 4 8 8

CutMix [19] 4 8 8

SaliencyMix [20] 4 8 4

SnapMix [23] 4 8 4

ResizeMix [22] 4 8 8

PuzzleMix [21] 4 8 4

Self-Augmentation [24] 4 4 8

SalfMix 4 4 4

HybridMix 4 Both 4
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The contributions of this paper can be summarized as follows:

• A new single image-based data augmentation method SalfMix uses a self-guidance
method finding import region and conduct meaningful mixing in a single image.

• The proposed SalfMix can replace the least salient region with most salient region
considering spatial importance from a saliency map.

• We propose HybridMix, which simply combines SalfMix and two images-based
approaches, and shows the best performance among state-of-the-art data augmenta-
tion methods.

2. Related Work
2.1. Randomly Patched Data Augmentation

Cutout and Random regional dropout [16,17] are techniques that remove random rect-
angular parts of an input image and fill it with zeros or random values. Unlike the
dropout [25], the approaches remove regionally continuous parts in the input layer.
These techniques improve the generalization performance of a model in classification
and object localization tasks.

Mixup [18] is data augmentation technique to mix two random images. Mixup blends the
images and their labels using linear interpolation. It improved the classification perfor-
mance of a model and demonstrated its robustness to adversarial attacks through training
using mixed images. However, Mixup produces an image revealing locally ambiguous
and unnatural characteristics that can confuse localization.

CutMix [19] was published in 2019 by supplementing Cutout and Mixup. CutMix is a data
augmentation strategy that uses patches that are cut and pasted on images. Image patches
are randomly selected, and image labels are mixed. Compared to Cutout, this strategy
minimizes information loss by replacing the removed areas with patches from other images
and provides good performance in various image recognition tasks.

ResizeMix [22] was published in 2020 to preserve more substantial object information than
CutMix. ResizeMix proposed a method that mixes not a cutting-based image but resized
image. The resized image might have the original object’s identities, and this might be
helpful for improving performance in image classification and object detection compared
to CutMix.

Self-Augmentation [24] firstly proposed a self-mix method that cuts a random patch
from an image and pastes into the same image. The goal of the research is to improve
generalization ability in a few-shot learning scenario. They did not show improvements in
large-scale image recognition tasks like classification, segmentation and object detection.
Although our approach looks similar tothis method, it’s not because we use a saliency map
containing importance for each pixel and extend it to a form mixed with two images-based
data augmentation.

2.2. Saliency-Guided Data Augmentation

PuzzleMix [21] significantly improves the performance of the existing data augmentation
technique Mixup using saliency information. In other words, the novel Mixup that explic-
itly utilizes saliency information was proposed, and achieves better generalization and the
adversarial robustness than other Mixup methods.

SnapMix [23] is a semantic proportional mixing method using a class activation map [26].
In CutMix, noisy labels can occur because CutMix may select a random region that does
not contain the object. SnapMix determines the label ratio based on semantic percentage
maps. Therefore, the noisy labels can be prevented. The proposed SnapMix achieves the
state-of-the-art performance for fine-grained recognition.

SaliencyMix [20] uses the saliency detection method which is a hand-crafted saliency
map designed for fast human detection in a scene [27]. SaliencyMix conducted a study
on how to mix patches based on the saliency map. Finally, SaliencyMix achieves the
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state-of-the-art performance in various image classification tasks, such as CIFAR-10, 100,
and ImageNet datasets.

3. Motivation and Problem Statement

We denote T as a data augmentation function. Ts(x1) and Tt(x1, y1, x2, y2) represent
single image-based and two images-based data augmentation functions, respectively,
with arbitrary training images x1, x2 and their labels y1, y2. The functions can be combined
as follows:

x̃ ← Tt(Ts(x1), y1, Ts(x2), y2). (1)

x̃ is used for training DNNs. Based on the equation, single image-based data augmen-
tation techniques such as Cutout can be integrated with two images-based approaches. Cur-
rently, various research studies focus on developing two images-based data augmentation
techniques. However, we believe that the single image-based data augmentation technique
still plays a big role to improve the generalization performance of DNNs. Our goal in this
research is to develop a new single image-based data augmentation technique, and the
developed algorithm may synergize with traditional two images-based data augmentation
approaches (e.g., Mixup, SaliencyMix, CutMix).

4. Proposed Method
4.1. Saliency-Guided Data Augmentation

To develop a new single image-based data augmentation technique, we adopt a
saliency map-based self-guidance method. The self-guidance method guides which part
of an image should be removed or duplicated. Based on the self-guidance, we generate
combined training samples for every epoch, which are used as training data. Figure 2
shows the overall process of the proposed method. First, two images are randomly selected
from a training dataset. Then, a saliency map for each image is computed based on the
trained network. The most salient region is cropped and pasted to the least salient region
in the same image. This step is repeated for the other selected image. Using the two
synthesized images, two images-based data augmentation is then used.

Figure 2. Overall process of the proposed approach. Self-mixed images are created by replacing
the least salient region with the most salient region. Then, a two images-based data augmentation
approach is performed to create HybridMix result.
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4.2. Saliency Map Extraction

In this step, we would like to calculate a spatial importance score of a given image for
self-guidance. The least important region will be removed and replaced using the most
important region. A saliency map is one of the choices to compute the spatial importance
score. We compute gradients to generate the saliency map as follows [28]:

g =
∂L( f (x, θ), y)

∂x
, (2)

where the L(·) is a cross-entropy loss function, and x ∈ RW×H×3 and y denote an input
image and its true label, respectively. W and H are the width and height of an input
image, respectively. f : x → y denotes a CNN function and θ is set of parameters of f .
The loss value is obtained by passing through the CNN function. Next, we proceed with
the backpropagation with the obtained loss value and obtain the gradient value g.

Based on the g ∈ R×W×H×3, we create a saliency map M ∈ RW×H that indicates the
importance of pixels in the input image. g(i, j, c) is the gradient value of the c-th channel
(e.g., RGB channel), i-th column and j-th row corresponding to the input image. The (i, j)-th
pixel value of the saliency map is the maximum absolute value of the corresponding pixel
values on all channels:

Mij = max(|g(i, j, 0)|, |g(i, j, 1)|, |g(i, j, 2)|), (3)

where the numbers 0, 1, 2 indicate the red, green and blue channels, respectively.

4.3. SalfMix

The next step is to perform average pooling to the saliency map. Average pooling is
used to determine the importance of a region rather than a pixel. Then, M is transformed
as illustrated in the average-pooled of Figure 2. We denote it as M̄. In Figure 2, the second
image, which name is the saliency map, means M and the third image, which name is
Average pooled, means M̄. When we use average pooling, we use bH

n c for kernel size and
stride and not padding. Then The size of M̄ is n× n. We compute the location with the
largest and smallest values in M̄ using the following equation:

īm, j̄m = argmax
i,j

M̄ij,

īl , j̄l = argmin
i,j

M̄ij.
(4)

To convert the coordinates to the original coordinate in an image, we compute im =
īm × W

n , jm = j̄m × H
n , il = īl × W

n , jl = j̄l × H
n . We uniformly and randomly select a square

patch Pm that includes the area Rm from (im, jm) to (im + W
n , jm + H

n ). In other words,
Pm represents the wider area than Rm, where Rm ⊂ Pm. We use a parameter r to determine
the patch size of o× o using o = bW × rc.

Pl is selected via the same way, except for using il and jl instead of im and jm. The re-
gion Rl is defined from (il , jl) to (il + W

n , jl + H
n ). Finally, we replace patch Pl with patch

Pm. The procedure of SalfMix is demonstrated in Figure 3. Algorithm 1 shows the final
algorithm of SalfMix. The f is the model to be trained, and it is used to calculated the
saliency map through Equation (2) of line 4 of Algorithm 1. We obtain the self-mixed image
x̂ using this algorithm.
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Figure 3. Procedure of SalfMix. The saliency map calculated by Equation (2), next, average-pooled
image is created through an average pooling process. Then, the most and least salient regions are
detected in the average-pooled image. Patches Pm and Pl are randomly chosen, and the patches must
include the detected regions Rm and Rl . Finally, the pixel values in Pm are copied to the region of Pl
in the same image.

Algorithm 1 SalfMix

1: Input: f , x, y, n, r // training image, label, parameters
2: Output: x̂ // self-mixed image
3:
4: M← Compute saliency map using x and y in Equations (2) and 3.
5: M̄← Perform an average pooling to produce n× n image.
6: Pm, Pl ← Obtain the most and least salient patches with r.
7: x̂ ← Replace Pl with Pm in input image x.
8: return x̂

4.4. HybridMix

A self-mixed image x̂ was generated through the SalfMix process in Section 4.3.
The SalfMix can be integrated easily with two images-based data augmentation approaches,
such as Mixup, SaliencyMix, and CutMix, as shown in Equation (1). Consequently,
we present three types of HybridMix as shown in Table 2.

Table 2. Three types of HybridMix.

Version Two-Image-Based Mix Function Tt

HybridMix v1 Mixup (x1, y1, x2, y2)

HybridMix v2 SaliencyMix (x1, y1, x2, y2)

HybridMix v3 CutMix (x1, y1, x2, y2)

Finally, A training algorithm with Hybridmix is shown in Algorithm 2. In this al-
gorithm, X = {X1, . . . ,XNb} and Y = {Y1, . . . ,YNb} denote the total training set where
X1, . . . ,XNb and Y1, . . . ,YNb represent each mini-batch of training data and labels, respec-
tively. The number of mini-batches is Nb. Each mini-batch Xi = {Xi1, . . . ,XiNd} and
Yi = {Yi1, . . . ,YiNd} for arbitrary i where Nd is the number of examples in each mini-batch.
Ne is the total number of epochs. In line 8 of the Algorithm 2, z is an integer value to
represent the index of another image to be mixed.In line 9 of the Algorithm 2, i is each
index in mini-batch. id means the d-th data of the i-th mini-batch, and iz means the z-th
data of the i-th mini-batch, where z is randomly sampled index.
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Algorithm 2 Training with HybridMix

1: Input: X , Y , f , n, r // training set, CNN, parameters
2:
3: for e = 1, . . . , Ne do // epoch
4: for i = 1, . . . , Nb do // mini-batch
5: X̃i, Ỹi ← Xi,Yi
6: if e > 1 then
7: for d = 1, . . . , Nd do // data in a mini-batch
8: z← Randomly sampled within [1, Nd]
9: x1, y1, x2, y2 ← Xid,Yid,Xiz,Yiz

10: x̂1 = SalfMix( f , x1, y1, n, r)
11: x̂2 = SalfMix( f , x2, y2, n, r)
12: x̃, ỹ = Tt(x̂1, y1, x̂2, y2)
13: X̃id, Ỹid ← x̃, ỹ
14: end for
15: end if
16: Optimizing f using X̃i and Ỹi via backpropagation.
17: end for
18: end for

5. Experiments and Results
5.1. Experimental Settings

Dataset. To demonstrate the effectiveness of our proposed method, we evaluated the
proposed method on multiple datasets such as CIFAR-10, CIFAR-100, TinyImageNet-200,
and VOC 2007/2012 datasets [14,29,30]. The CIFAR-10, CIFAR-100, and TinyImageNet-200
dataset are used for evaluating classification performance, and the VOC 2007/2012 datasets
are used for evaluating object detection performance. The CIFAR-10 and CIFAR-100 each
comprise 50 K training images and 10 K test images, and each image has the same size as
32× 32. The numbers of classes in CIFAR-10 and CIFAR-100 are 10 and 100, respectively.
TinyImageNet-200, which is a smaller dataset than the original ImageNet dataset [14] with
fewer image classes (e.g., 200), comprises 100 K training images and 10 K test images,
and each image has the same size as 64× 64. VOC 2007/2012 dataset contains 20 object
categories, and we used 16 K and 1.2 K images for train and test, respectively.The summary
of dataset is shown in Table 3 below.

Table 3. Summary of Dataset for classification and object detection task. Num of Images means the
sum of the number of training images and test images.

Dataset Resolution Num of Images Num of Classes

CIFAR-10 32 × 32 60 K 10
CIFAR-100 32 × 32 60 K 100
TinyImageNet-200 64 × 64 110 K 200
VOC 2007/2012 - 17.2 K 20

Implementation. Our code was implemented using PyTorch [31] for the classification
task and Detectron2 [32] for the detection. The experiments were conducted on a Quadro
RTX 8000 GPUs for classification tasks and four A100 GPUs for object detection tasks.

Parameter Settings for Classification Task. We used PreActResNet-18, PreActResNet-50,
and PreActResNet-101 as baseline architectures for classification experiments [33]. The num-
ber means the number of layers of the architecture. (e.g., PreActResNet-50 means the
architecture has 50 layers.) The number of parameters for each model are 11 M, 24 M,
and 43 M, respectively. We trained the models for 300 epochs.

On the CIFAR [29] datasets, the initial learning rate was 0.05, and the learning rate was
multiplied by 0.1 at 150 and 225 epochs. On the TinyImageNet-200 [34], the initial learning
rate was the same as for CIFAR, but it was multiplied by 0.1 at 75, 150, and 225 epochs.



Sensors 2021, 21, 8444 8 of 15

The mini-batch size was set to 64 and 128 for CIFAR and TinyImageNet-200, respectively.
Stochastic gradient descent was used with a momentum of 0.9 and weight decay of 1× 10−4.
The size of the saliency map that passed average pooling was 4× 4 and 8× 8 for CIFAR
and TinyImageNet-200, respectively. The patch size of Pm and Pl were set according to
r = 0.3.

The parameter values for each data augmentation method were set as the default
values used in their corresponding studies [16,18,19,22]. Cutout uses regional dropout,
and its mask size is set to 0.5 ratio of the input image size. Mixup, CutMix, and SaliencyMix
use the same beta distribution as a ratio to mix two images. In ResizeMix, α and β
to determine the image patch size were set to 0.1 and 0.8, respectively. For geometric
data augmentation, random resized crop, random horizontal flip and normalization were
used for the CIFAR dataset, and additional color jittering and brightness were used for
TinyImageNet-200.

Parameter Settings for Detection Task. For the object detection task, ResNet architecture
with 50 layers was used. We trained the ResNet on the TinyImageNet-200 dataset, and the
experimental setting is the same as the TinyImageNet-200 experiment for classification
tasks. We transferred it to the detection task of VOC 2007/2012 datasets. Parameters for
batch size, learning rate, and training iterations were set to 8, 0.02 and 24 k, respectively.
The learning rate was multiplied by 0.1 at 18 k and 22 k iterations.

5.2. CIFAR-10/100 Classification

The experimental results are shown in Tables 4 and 5. We measured the Top-1 error
rates to compare with the competing methods. HybridMix v1, HybridMix v2, and Hy-
bridMix v3 outperform state-of-the-art data augmentation approaches, such as Mixup,
SaliencyMix, and CutMix. Particularly, HybridMix v3 achieved 3.38%, 2.89% and 2.75%
error rates, respectively, when using PreActResNet-18, 50, and 101 models on the CIFAR-10
dataset. It reduced 1.79%, 1.71%, and 1.74% error rates, respectively, compared to the
baseline and showed 0.58%, 0.18%, and 0.2% performance improvements compared to
CutMix. It also showed better performance than most recently proposed techniques such
as SaliencyMix and ResizeMix.

Table 4. Comparison of Top-1 classification error rates (%) for Baseline, Cutout, SalfMix, Mixup,
SaliencyMix, CutMix, ResizeMix, and HybridMix on CIFAR-10.

PreActResNet-18 PreActResNet-50 PreActResNet-101

Baseline 5.17 ± 0.27 4.6 ± 0.2 4.49 ± 0.18
+Cutout [16] 4.3 ± 0.09 3.77 ± 0.08 3.54 ± 0.11
+SalfMix 4.14 ± 0.25 3.61 ± 0.09 3.38 ± 0.11

+Mixup [18] 4.1 ± 0.39 3.56 ± 0.04 3.54 ± 0.08
+SaliencyMix [20] 3.8 ± 0.1 2.98 ± 0.1 2.82 ± 0.08
+CutMix [19] 3.96 ± 0.21 3.07 ± 0.09 2.95 ± 0.06
+ResizeMix [22] 3.74 ± 0.2 3.09 ± 0.11 2.85 ± 0.09
+HybridMix v1 3.85 ± 0.13 3.22 ± 0.04 3.04 ± 0.14
+HybridMix v2 3.74 ± 0.05 2.94 ± 0.09 2.78 ± 0.04
+HybridMix v3 3.38 ± 0.07 2.89 ± 0.11 2.75 ± 0.07

On the CIFAR-100 dataset, our method also achieves performance improvements at
all depths of the model, as shown in Table 5. The state-of-the-art on PreActResNet-18 was
an error rate of 20.02% achieved by SaliencyMix. HybridMix v2 outperformed with an
error rate of 19.88%. Additionally, we conducted additional experiments using the same
parameter settings in the PuzzleMix paper [21]. HybridMix v1, v2, and v3 achieved 19.37%,
19.09%, and 18.96% error rates, respectively, leading to 0.66% performance improvements
using HybridMix v3 compared to PuzzleMix.

We also conduct additional experiments using other architectures. PyramidNet-110 [35]
and RegNet-200M [36] were used, and the number of parameters are 1.7 and 2.3 million,
respectively. The experimental settings for PyramidNet-110 are the same as the CutMix
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paper [19]. Furthermore, the settings for RegNet-200M were adopted from the source code
(https://github.com/yhhhli/RegNet-Pytorch, accessed on 1 August 2021).

Table 5. Comparison of Top-1 classification error rates (%) for Baseline, Cutout, SalfMix, Mixup,
SaliencyMix, CutMix, ResizeMix, PuzzleMix, and HybridMix on CIFAR-100. (1200) means the number
of epochs.

PreActResNet-18 PreActResNet-50 PreActResNet-101

Baseline 24.22 ± 0.22 22.02 ± 0.18 21.81 ± 0.24
+Cutout [16] 23.72 ± 0.27 21.64 ± 0.43 21.46 ± 0.25
+SalfMix 22.64 ± 0.13 20.48 ± 0.17 19.89 ± 0.13

+Mixup [18] 21.78 ± 0.4 18.91 ± 0.26 18.82 ± 0.37
+SaliencyMix [20] 20.02 ± 0.13 17.5 ± 0.16 17.33 ± 0.09
+CutMix [19] 20.51 ± 0.17 17.72 ± 0.17 17.61 ± 0.25
+ResizeMix [22] 20.96 ± 0.11 17.56 ± 0.09 17.36 ± 0.19
+HybridMix v1 21.42 ± 0.17 18.27 ± 0.12 17.45 ± 0.12
+HybridMix v2 19.88 ± 0.27 17.38 ± 0.27 17.22 ± 0.21
+HybridMix v3 19.84 ± 0.09 17.3 ± 0.25 17.25 ± 0.23

+PuzzleMix (1200) [21] 19.62 - -
+HybridMix v1 (1200) 19.37 ± 0.18 - -
+HybridMix v2 (1200) 19.09 ± 0.13 - -
+HybridMix v3 (1200) 18.96 ± 0.13 - -

As a results, HybridMix v3 achieved 17.65% and 24.99% using PyramidNet-110 and
RegNet-200M, respectively. Especially, HybridMix v3 significantly reduces the error rates
compared to the RegNet-200M baseline model (29.44%, Baseline VS 24.99%, HybridMix v3),
as shown in Table 6.

Table 6. Impact of HybridMix v3 using other architectures on CIFAR-100. Err. means error rates.

Model # Params Top-1 Err. (%) Top-5 Err. (%)

PyramidNet-110 (α̃ = 64) [35] 1.7 M 19.85 4.66
PyramidNet-110 + CutMix [19] 1.7 M 17.97 3.83
PyramidNet-110 + HybridMix v3 1.7 M 17.65 3.71

RegNet-200M [36] 2.3 M 29.44 9.7
RegNet-200M + CutMix [19] 2.3 M 26.04 8.07
RegNet-200M + HybridMix v3 2.3 M 24.99 7.58

5.3. TinyImageNet-200 Classification

Table 7 depicts the experimental results on the TinyImageNet-200 dataset. The largest
performance improvement was achieved with PreActResNet-101, which is the deepest
architecture. This is an improvement of 7.33% from the baseline and 1.58% from CutMix
using HybridMix v3. Similarly, HybridMix v1 and HybridMix v2 showed 2.29% and 0.58%
performance improvements over Mixup and SaliencyMix, respectively.

Similar to the experiment on CIFAR-100 dataset, we also compared to PuzzleMix
using the same settings in the PuzzleMix paper. HybridMix v1, v2, and v3 recorded
35.52%, 34.25%, and 33.75%, respectively. These are 1%, 2.27%, and 2.77% performance
improvements over Puzzle Mix.

https://github.com/yhhhli/RegNet-Pytorch
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Table 7. Comparison of Top-1 classification error rates (%) for Baseline, Cutout, SalfMix, Mixup, Salien-
cyMix, CutMix, ResizeMix, PuzzleMix, and HybridMix on TinyImageNet-200. (1200) means the number
of epochs.

PreActResNet-18 PreActResNet-50 PreActResNet-101

Baseline 42.33 ± 0.21 38.58 ± 0.24 38.04 ± 0.1
+Cutout [16] 42.04 ± 0.31 38.36 ± 0.21 37.96 ± 0.36
+SalfMix 40.28 ± 0.28 35.92 ± 0.07 35.49 ± 0.08

+Mixup [18] 40.22 ± 0.2 35.51 ± 0.15 35.05 ± 0.47
+SaliencyMix [20] 37.76 ± 0.05 32.83 ± 0.47 31.82 ± 0.15
+CutMix [19] 38.11 ± 0.32 33.54 ± 0.19 32.29 ± 0.28
+ResizeMix [22] 38.47 ±0.25 33.25 ± 0.12 32.16 ± 0.17
+HybridMix v1 38.46 ± 0.14 33.52 ± 0.11 32.76 ± 0.3
+HybridMix v2 37.52 ± 0.26 32.19 ± 0.21 31.24 ± 0.12
+HybridMix v3 36.86 ± 0.17 31.77± 0.06 30.71 ± 0.12

+PuzzleMix (1200) [21] 36.52 - -
+HybridMix v1 (1200) 35.52 ± 0.21 - -
+HybridMix v2 (1200) 34.25 ± 0.13 - -
+HybridMix v3 (1200) 33.75 ± 0.25 - -

5.4. Transferring to Object Detection Task

We used the ResNet50 model trained with HybridMix v1, v2, and v3 as the backbone
of Faster R-CNN [37]. Data augmentation techniques were used only to train the backbone,
ResNet50. ResNet50 models are pre-trained on the TinyImageNet-200 dataset and used
the pre-trained models as backbone networks for Faster R-CNN. The Faster R-CNN was
fine-tuned on VOC 2007/2012 training data. To confirm the effect of HybridMix on object
detection, ResNet models were independently trained using other two images-based
augmentation approaches, such as Mixup, SaliencyMix, CutMix, and ResizeMix [18–20,22].
We used mean average precision (mAP) as the evaluation metric. mAP50 and mAP75 mean
mAP were calculated at IoU = 0.5 and IoU = 0.75, respectively.

Table 8 shows the object detection experimental results on VOC 2007/2012 dataset.
HybridMix-trained backbone network showed 1.47%, 3.65%, and 4.52% performance
improvements in terms of mAP50, compared to the baseline, respectively. Each version of
HybridMix also showed performance improvements over other two images-based data
augmentations. HybridMix v3 which is a combination of CutMix and SalfMix led to
1.34% performance improvement over CutMix, and it has the best performance in terms
of mAP50. Compared to the Cutout-trained model, the SalfMix-trained model showed a
0.89% performance improvement in terms of mAP50. This means that copying and pasting
in a single image is effective for improving the object detection accuracies.

Table 8. Comparison of transfer learning performance to object detection task using various
data augmentation strategies, such as Cutout, SalfMix, Mixup, SaliencyMix, CutMix, ResizeMix,
and HybridMix.

Backbone Network
Faster-RCNN

mAP (%) mAP50 (%) mAP75 (%)

ResNet50 (Baseline) 37.04 65.86 36.69
Cutout-trained [16] 36.9 65.4 36.74
SalfMix-trained 37.23 66.29 36.85

Mixup-trained [18] 37.21 65.63 36.23
SaliencyMix-trained [20] 40.31 69.46 40.71
CutMix-trained [19] 39.72 69.04 39.9
ResizeMix-trained [22] 39.2 68.05 39.23
HybridMix v1-trained 38.66 67.33 38.21
HybridMix v2-trained 40.45 69.51 40.87
HybridMix v3-trained 40.78 70.38 40.64
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6. Ablation Study
6.1. Visualization of Training Graph

We visualize training graphs on TinyImageNet-200 experiments performed in Section 5.3,
as shown in Figure 4. The graphs were based on the PreActResNet-50 model, and we
compared HybridMix v1, v2, and v3 with two images-based data augmentation approaches
such as Mixup, SaliencyMix and CutMix, respectively. Interestingly, error rates of Hy-
bridMix for training data are higher than the error rates of Mixup and CutMix, but the
HybridMix v1 and v3 have achieved low test error rates. The high training error rates were
caused by adding the SalfMix process, and it provides better generalization capability.

Figure 4. Top-1 classification error rates for two images-based data augmentation (Mixup [18], Salien-
cyMix [20], and CutMix [19]) and HybridMix v1, v2, and v3 on TinyImageNet-200 with PreActResNet-50.

6.2. Effectiveness of the Saliency Map

Cutout [16], which is a representative single image-based data augmentation approach,
performs regional dropout. When Cutout drops a region of an image, the algorithm does
not consider its saliency. We compared Cutout with and without the saliency map to
show the effectiveness of the saliency map. We obtained a saliency map from an image
and dropped out the least salient region Pl . Table 9 shows the experimental results using
PreActResNet-101. Interestingly, the saliency map is also effective in improving Cutout.
In other words, Cutout showed better performance with the saliency map than without the
saliency map. It achieves 0.11%, 0.59% and 0.31% performance improvements on the CIFAR-
10, CIFAR-100, and TinyImageNet-200 datasets, respectively. Similarly, we experimented
with the effectiveness of the saliency map in SalfMix. Original SalfMix replaces the Pm
patch with the Pl patch using the saliency map. For SalfMix without the saliency map,
Pm and Pl are randomly selected. SalfMix achieved 0.07%, 0.81%, and 1.86% performance
improvements on the CIFAR-10, CIFAR-100 and TinyImageNet-200 datasets, respectively.
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Table 9. Comparison of Top-1 classification error rates (%) for Cutout and SalfMix with and without the saliency map when
using PreActResNet-101. Sal. means saliency map.

Dataset Cutout Cutout w/Sal. SalfMix w/o Sal. (The Method Is Similar to the
Method Shown in the Paper [24]) SalfMix

CIFAR-10 3.54 3.43 3.45 3.38
CIFAR-100 21.46 20.87 20.7 19.89
TinyImageNet-200 37.96 37.65 37.35 35.49

6.3. Effectiveness of SalfMix

We demonstrated better performance by dropping the least salient region than by
randomly dropping a region in Cutout. This means that salient regions are important
for training and it is better to remove the least salient regions during data augmentation.
The drawback of Cutout is that some features are filled with zeros or random values,
whereas SalfMix copies and fills this dropped region with the most salient region. We com-
pared the Top-1 classification error rates when using Cutout with a saliency map and
SalfMix on the three datasets, and the results are listed in Table 9. SalfMix achieved perfor-
mance improvements of 0.05%, 0.98%, and 2.16% compared to Cutout with a saliency map,
on CIFAR-10, 100, and TinyImageNet-200, respectively.

6.4. Hyperparameter r

Hyperparameter r is important for determining the performance of the proposed
method. We varied the hyperparameter r, which determines the patch size, on CIFAR-
10. Varying r in the interval [0.1, 0.9] with increments of 0.1, the best performance was
achieved when r is within 0.3 and 0.5 intervals, as shown in Figure 5. The experiment has
shown that our method can achieve better performance than CutMix, Mixup, SaliencyMix,
and ResizeMix, which are state-of-the-art data augmentation techniques, without carefully
choosing r.

Figure 5. Top-1 classification error rates for HybridMix v3 with varying r on CIFAR-10
with PreActResNet-18.

6.5. Effectiveness of Average Pooling

When SalfMix is applied to the input image during training, a saliency map is obtained.
Then, we apply average pooling to a certain size (e.g., 4× 4 or 8× 8 ), as shown in Figure 2.
When we find (im, jm) and (il , jl) in the SalfMix process, we compare and analyze the
proposed method with the saliency map using and not using average pooling.

The experimental setup is the same as in Section 5.1, and the datasets used in the
experiments are CIFAR-10, CIFAR-100, and TinyImageNet-200. We used HybridMix v3
and PreActResNet-101 for experiments. The size of saliency map without average pooling
is 32× 32 for CIFAR datasets, 64× 64 for TinyImageNet-200, and the SalfMix process is
the same afterward. Experimental results showed that the method using average pooling
performed better on the CIFAR-10, CIFAR-100, and TinyImageNet-200 with a difference of
0.05%, 0.11% and, 0.64%, respectively, as shown in Table 10.



Sensors 2021, 21, 8444 13 of 15

The regions of the highest score and lowest score are found in pixels because the
saliency map withoutaverage pooling is the same size as the image. However, using the
saliency map with average pooling, we can find the regions of the highest score and lowest
score. This is considered to be a better performance because it smoothens the saliency map.

Table 10. Comparison of Top-1 classification error rates (%) for HybridMix v3 without average
pooling and with average pooling using PreActResNet-101.

Dataset w/o Average Pooling w/Average Pooling

CIFAR-10 2.8 2.75
CIFAR-100 17.36 17.25
TinyImageNet-200 31.35 30.71

6.6. Visualizing Augmented Data

In the case of SalfMix, images are randomly mixed at the beginning of training because
the saliency map is not accurate. Based on the visualization of augmented data, we can find
a relatively accurate saliency map after a small number of epochs (e.g., e < 10), as shown in
Figure 6. For the flagpole image in the first, second, and third columns, SalfMix randomly
selected the patches at epoch #1. After 10 epochs, the part containing a flagpole was
correctly detected as the most salient region. Similarly, for the second image shown in the
fourth, fifth, and sixth columns, the extracted region was not good at epoch #1, but after a
few epochs, SalfMix could estimate the saliency map accurately. For the two labels lady
bug and labrador retriever, the tendency was similar.

Figure 6. Visualization of augmented data on TinyImageNet-200. The original image size is 64× 64.
The saliency map becomes more accurate according to the epoch.

7. Conclusions and Future Works

In this paper, we proposed a novel single image-based data augmentation technique
using a saliency map. The proposed technique replaces the least salient region with the most
salient region in a single image during a training process. Through several ablation studies,
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we have proved the effectiveness of the saliency map and SalfMix. Finally, we showed
that SalfMix outperforms Cutout, which is one of state-of-the-art single image-based data
augmentation techniques, on the CIFAR-10, CIFAR-100, TinyImageNet-200, and VOC
2007/2012 datasets. Furthermore, the HybridMix technique, which combines SalfMix with
two images-based data augmentation strategies, achieved performance improvements
on three datasets, such as CIFAR-10, CIFAR-100, and TinyImageNet-200. Particularly,
HybridMix v3 using PreActResNet-101 showed state-of-the-art performance on the CIFAR-
10, CIFAR-100, and TinyImageNet-200 datasets, respectively. Additionally, the HybridMix
v3-trained model led to a performance improvement by 1.34% in terms of mAP50 over
CutMix on the VOC 2007/2012 dataset. Our future work will be considering to improve
the training speed and also experiment on segmentation tasks.
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