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Abstract: Dual-task balance studies explore interference between balance and cognitive tasks. This
study is a descriptive analysis of accelerometry balance metrics to determine if a verbal cognitive
task influences postural control after the task ends. Fifty-two healthy older adults (75 ± 6 years old,
30 female) performed standing balance and cognitive dual-tasks. An accelerometer recorded move-
ment from before, during, and after the task (reciting every other letter of the alphabet). Thirty-six
balance metrics were calculated for each task condition. The effect of the cognitive task on postural
control was determined by a generalized linear model. Twelve variables, including anterior–posterior
centroid frequency, peak frequency and entropy rate, medial-later entropy rate and wavelet entropy,
and bandwidth in all directions, exhibited significant differences between baseline and cognitive
task periods, but not between baseline and post-task periods. These results indicate that the verbal
cognitive task did alter balance, but did not bring about persistent effects after the task had ended.
Traditional balance measurements, i.e., root mean square and normalized path length, notably lacked
significance, highlighting the potential to use other accelerometer metrics for the early detection of
balance problems. These novel insights into the temporal dynamics of dual-task balance support
current dual-task paradigms to reduce fall risk in older adults.

Keywords: accelerometry; balance; dual-task; older adults; posture

1. Introduction

One third of people aged 65 and older fall each year, accounting for the majority
of injury-related hospitalizations and deaths in older adults [1] and costing $500 billion
annually in the US [2]. Falls are associated with decreased independence and lower life
expectancy [1]. Older adults are more likely to fall when balance deficits are present.
Postural control, i.e., the control of bodily position to maintain balance, was previously
considered a relatively automatic process. However, dual-task studies have shown that
postural control is altered during various cognitive tasks, indicating that postural control
can require demonstrable attentional resources [3]. Additionally, the automaticity of postu-
ral control can decrease with age, leading to greater attentional demand to compensate.
Cognitive tasks requiring more attention may cause competition for neural resources and
lead to postural control disruptions [4]. It is well-known that cognitive function, partic-
ularly attention, also declines with age [5]. These age-related changes in cognition and
postural control contribute to increased fall risk in older adults [3,6], but this relation is
not well understood. Many dual-task studies have examined postural stability using a
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secondary task that requires some information processing. Changes in performance deter-
mine how much interference exists between the attentional requirements of the two tasks.
The severity of these balance performance changes are highly variable and have shown
conflicting results [3]. Additionally, the temporal dynamics of cognitive interference on
postural control are currently unknown. Therefore, further research is necessary to clarify
how and the extent to which cognitive tasks may affect postural control to reduce fall risk.

Dual-task studies of postural control of older adults have focused on effects during task
performance [7–9] and the impact of various interventions [10,11]. To date, dual-task effects
on postural control after task performance have not been examined. Commonly, dual-task
paradigms will randomize the order of single-task and dual-task conditions [7,8,10,11]. If
there are carry-over effects on postural control, single-task balance data collected after dual-
task conditions could be biased and not represent true single-task measurements. Persistent
effects also could have implications for fall risk, as an individual’s balance would be of
concern not only while performing another task, but also for some time afterwards. The re-
search presented in this paper is a secondary analysis of data collected for gait experiments.
This study specifically investigated the time course of dual-task interference from pretask,
during task, and immediate post-task on postural control performance by measuring center
of mass accelerations. Previous studies have quantified balance using accelerometry, but
the main outcomes are often limited—with root mean square, normalized path length, and
sample entropy as some of the most common measurements [12]. Additional features in
time, frequency, time-frequency, and information theory domains may provide important
balance information that traditional measurements fail to capture. Thus, a comprehensive
list of novel accelerometry features was extracted to describe standing balance with and
without a dual-task. Compared to the current measurement techniques, such as force
plates and motion capture systems, assessing balance using a single accelerometer could
provide clinicians with a more accessible, affordable, and portable measurement tool. The
goal of this study was twofold: (1) conduct an exploratory, descriptive analysis of balance
performance accelerometry measures to find which measures are potentially useful for
balance assessment using a single accelerometer; and (2) test the hypothesis that perform-
ing a verbal cognitive task alters postural control during the task and once completed.
We hypothesized that postural stability would (A) change during the cognitive task and
(B) fail to return to baseline levels after the cognitive task was completed. We tested our
hypotheses by comparing accelerometry features from the pretask period (baseline) to
those from (A) the cognitive task period and (B) the post-task period.

2. Materials and Methods
2.1. Subjects

This study includes data from 52 subjects from two different studies using the same
experimental protocol. Twenty-eight older adults (M = 13, F = 15, 75 ± 6 years, range:
67–87 years) were recruited from a study of amyloid deposition in cognitively healthy older
adults [13]. Primary inclusion criteria were at least 65 years old, no current or history of
neurological or psychiatric disease, no history of stroke, magnetic resonance imaging (MRI)
eligible, and able to walk unassisted. Twenty-four older adults (M = 9, F = 15, 74 ± 6 years,
range: 68–91 years) were recruited from a longitudinal study of risk for mild cognitive
impairment [14]. Primary inclusion criteria were at least 65 years old, no dementia, MRI
and positron emission tomography eligible, and able to walk unassisted. This was a fixed
sample derived from existing data that were developed for gait outcomes. Subjects between
studies were compared on age, gait speed, and sex and the data were found to be similar so
that the two data sets could be combined. The IRB of the University of Pittsburgh approved
these procedures and all subjects gave informed consent.

2.2. Dual-Task Procedures

This research is a secondary analysis of data that were collected for a gait study. All
subjects performed a mobility protocol described in detail in Hoppes et al. 2020 [15]. This
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study focused on standing portions of the protocol which were performed consecutively:
(1) quiet standing (pretask), (2) standing and cognitive task (task), and (3) quiet standing
(post-task). Each task was 20 s long. The cognitive task was reciting every other letter
of the alphabet starting with the letter ‘B’. Subjects were instructed to start back at ‘B’
if they complete the alphabet before the 20 s is over. This task was selected to parallel
carrying a conversation [15]. Subjects performed one set of the consecutive tasks twice
during each of four walking trials for a total of eight completed sets. For each walking
trial, subjects completed two loops of a track, with the standing sets randomly interspersed
among walking on even and uneven surfaces as single- or dual-task conditions with the
same cognitive task. Subjects were instructed to stand quietly; no instructions were given
regarding foot placement during standing or task prioritization.

Alphabet performance, a measure of cognitive ability, was quantified by dividing the
number of correct letters by the duration of the cognitive task (20 s) and was averaged
over the eight trials. To quantify a participant’s general physical function, gait speed was
measured by timing subjects on a flat 15-m straight pathway. Four trials were measured in
m/s and then averaged per subject.

2.3. Postural Control Metrics

A tri-axial accelerometer (ActiGraph wGT3X, ActiGraph LLC, Pensacola, FL, USA)
placed over the L3 segment of the lumbar spine measured linear accelerations of the
approximated center of mass (CoM) [16] in the medial-lateral (ML), vertical (V), and
anterior–posterior (AP) axes. We chose to include vertical signals since these were ex-
ploratory analyses and the vertical direction is not typically represented in literature on
balance. Accelerometry has been validated to evaluate postural control performance [17].
For the pretask and post-task conditions, the signals were trimmed to avoid overlap with
walking tasks. The last 15 s of the pretask (PRE) condition signal and the first 15 s of the
post-task (POST) condition signal were used. All 20 s of the task (COG) condition signal
were used.

Acceleration signals were sampled at 100 Hz for 39 subjects; the remaining 14 subjects
were sampled at 30 Hz due to technical issues. For those measured at 30 Hz, the signals
were up-sampled to 100 Hz by first zero-padding the signals and then using a finite-impulse
response anti-aliasing low pass filter method that employs a Kaiser window. This method
preserves the frequency content of the signals [18,19]. Impulse-like artifacts were then
removed using a median-filter [20]. The signals were then processed with a 4th order,
low-pass Butterworth filter with a cutoff frequency of 2 Hz [21]. The effect of gravity
was removed using coordinate transformations to account for accelerometer tilt [22] and
subtracting the mean from each signal [20]. Root-mean-square (RMS) and normalized path
length (NPL) were selected as primary postural control features [17,23,24]. In addition to
the two time-domain measures, three frequency, one time-frequency, three statistical, and
three information theory features were extracted based on their use in gait accelerometry
analysis [25]. Altogether, 12 different signal processing features were implemented. These
features were extracted from all three directional signals for each task and averaged over
the eight trials for a total of 36 signal features per subject. All signal processing was
done using custom Matlab code (version 2020a, MathWorks, Natick, MA, USA). The data
processing pipeline is outlined in Figure 1. Definitions, descriptions, and acronyms of the
different features are in Table A1.

Any signal with more than 2 s of signal drop (consecutive 0 values) was deemed to
be of insufficient signal quality and removed from the analysis. Of the 64 subjects, 12 did
not have sufficient signal quality for each of the three dual-task conditions (PRE, COG,
POST) and were removed from analysis. Subjects with poor signal quality were compared
to included subjects to identify any systematic differences between groups. Age, gait speed,
alphabet performance, and sex were all examined in relation to amount of signal drop using
scatter plots and none showed trends of difference between those included and excluded.
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Figure 1. Flow diagram of the data processing pipeline to extract accelerometry features. Figure 1. Flow diagram of the data processing pipeline to extract accelerometry features.
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2.4. Statistical Analysis

The effect of cognitive task on postural control was determined by a generalized linear
regression model with the random effect of person to account for repeated measures. Model
fit was tested by assessing residual normality. F-values were reported for global differences
among PRE, COG, and POST conditions. β-estimates from the model showed differences
between pairs of conditions. Significance was determined at α = 0.05. Accelerometry
features with significant global differences among conditions were then examined for
associations with age, gait speed, and alphabet performance using Pearson correlations.
Specifically, values obtained during the PRE condition, change from PRE to COG, and
change from PRE to POST were assessed. To account for multiple comparisons, the Dunn-
Sidak correction for significance was calculated using an initial value of α = 0.05, resulting
in a corrected value of α = 0.0004. The general linear regression model was implemented
using SAS software (version 9.4, SAS Institute, Gary, NC, USA) and the correlations were
computed using Matlab (version 2020a, MathWorks, Natick, MA, USA).

3. Results

Table 1 summarizes descriptive characteristics of the 52 included subjects. Average
age for the combined sample was 75 ± 6 years (range of 67–91). Average gait speed was
1.03 ± 0.22 m/s and average alphabet performance was 0.61 ± 0.18 correct letters/s.

Table 1. Summary of demographic information and descriptive characteristics for subjects by study
and combined.

Variable Study 1 1

(n = 28)
Study 2 2

(n = 25)
Total

(n = 53)

Female (n, %) 15, 54% 15, 63% 30, 58%

White (n, %) 21, 75% 23, 96% 44, 85%

Age (years) 75 ± 6 74 ± 6 75 ± 6

Gait Speed (m/s) 0.98 ± 0.13 1.10 ± 0.28 1.03 ± 0.22

Alphabet Performance
(correct letters/s) 0.63 ± 0.22 0.58 ± 0.11 0.61 ± 0.18

1 Study of amyloid deposition in cognitively healthy older adults; 2 Longitudinal study of risk for mild
cognitive impairment.

The 36 accelerometry variables are summarized in Table 2. For our primary postural
control features, no significant differences among conditions were found for RMS or NPL
in any direction. Additionally, synchronization index (SI) and skewness (SKEW) lacked
significant differences.

The following variables did demonstrate statistically different values among the three
conditions (p < 0.05): centroid frequency (CFR), peak frequency (PFR), entropy rate (ENTR),
wavelet entropy (WE), and kurtosis (KURT) in the AP direction; PFR, ENTR, and WE in
the ML direction; Lampel-Ziv complexity (LZ) in the V direction; bandwidth (BND) in all
directions; and cross-correlations (CORR) between the ML and AP signals and between
the AP and V signals. PFR in the ML direction showed differences between the PRE and
POST task. WE in the AP direction showed that the three conditions were not equal,
but no significant differences were found between PRE and COG or PRE and POST. The
remaining 12 variables have differences between the PRE and COG task (Table 3). Specific
F-values and p-values can be found in Supplementary Materials (Table S1). Box plots
for the significant variables can be found in Supplementary Materials (Figure S1). Of the
14 significant variables, only AP BND during the PRE condition showed a significant,
moderate correlation with average gait speed (r = 0.490, p = 0.0002) after using the Dunn-
Sidak correction for multiple comparisons (α = 0.0004 ).
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Table 2. Averaged raw values across task type for each feature in each direction. * (medium gray) Differences are significant
between PRE and COG conditions; † (dark gray) Differences are significant between PRE and POST conditions; ‡ (light
gray) PRE, COG, and POST are not all equal.

PRE COG POST

Feature Direction Mean ± STD Mean ± STD Mean ± STD

RMS
(G)

ML 0.011 ± 0.007 0.011 ± 0.005 0.009 ± 0.006
V 0.003 ± 0.003 0.004 ± 0.003 0.003 ± 0.003

AP 0.029 ± 0.021 0.028 ± 0.011 0.027 ± 0.015

NPL
(G/s)

ML 0.023 ± 0.018 0.023 ± 0.011 0.019 ± 0.015
V 0.011 ± 0.075 0.018 ± 0.021 0.013 ± 0.023

AP 0.031 ± 0.017 0.038 ± 0.018 0.031 ± 0.019

CFR
(Hz)

ML 0.47 ± 0.15 0.45 ± 0.17 0.52 ± 0.25
V 1.10 ± 0.31 1.06 ± 0.28 1.13 ± 0.34

AP * 0.29 ± 0.08 0.25 ± 0.07 0.29 ± 0.09

PFR
(Hz)

ML † 0.19 ± 0.11 0.17 ± 0.13 0.26 ± 0.26
V 0.64 ± 0.41 0.81 ± 0.50 0.62 ± 0.47

AP * 0.14 ± 0.06 0.08 ± 0.05 0.14 ± 0.09

BND
(Hz)

ML * 0.92 ± 0.32 0.74 ± 0.26 0.95 ± 0.43
V * 1.63 ± 0.73 1.00 ± 0.44 1.70 ± 0.66

AP * 0.82 ± 0.27 0.69 ± 0.27 0.87 ± 0.34

ENTR
ML * 0.88 ± 0.015 0.90 ± 0.020 0.88 ± 0.009

V 0.86 ± 0.030 0.86 ± 0.031 0.86 ± 0.030
AP * 0.89 ± 0.009 0.91 ± 0.008 0.89 ± 0.010

WE
ML * 0.40 ± 0.23 0.57 ± 0.38 0.44 ± 0.26

V 0.67 ± 0.32 0.77 ± 0.33 0.66 ± 0.38
AP ‡ 0.30 ± 0.18 0.37 ± 0.26 0.26 ± 0.17

SI
ML-V 0.86 ± 0.06 0.88 ± 0.06 0.86 ± 0.07

ML-AP 0.87 ± 0.05 0.85 ± 0.05 0.87 ± 0.05
AP-V 0.87 ± 0.06 0.88 ± 0.06 0.87 ± 0.07

CORR
ML-V 0.35 ± 0.08 0.32 ± 0.13 0.36 ± 0.09

ML-AP * 0.42 ± 0.07 0.39 ± 0.09 0.45 ± 0.11
AP-V * 0.37 ± 0.15 0.31 ± 0.11 0.37 ± 0.15

SKEW
ML 0.11 ± 0.69 −0.04 ± 1.07 −0.02 ± 0.97
V −0.63 ± 0.85 −0.63 ± 1.20 −0.60 ± 0.91

AP −0.06 ± 0.51 −0.04 ± 0.73 0.01 ± 0.50

KURT
ML 5.37 ± 2.74 7.36 ± 5.96 6.40 ± 6.20
V 10.13 ± 6.30 9.57 ± 9.21 10.10 ± 6.60

AP * 3.33 ± 0.90 3.89 ± 1.31 3.28 ± 1.16

LZ
ML 0.32 ± 0.04 0.31 ± 0.05 0.32 ± 0.04
V * 0.32 ± 0.06 0.35 ± 0.05 0.31 ± 0.06
AP 0.31 ± 0.04 0.30 ± 0.04 0.30 ± 0.05

Table 3. Summary of significant features from the generalized linear regression model. - (white)
Indicates no significant differences. 4 (light gray) Indicates that the three conditions were not all
equal. 3 (medium gray) Indicates that the PRE condition was different from the COG condition. 5

(dark gray) Indicates that the PRE condition was different from the POST condition.

Feature ML V AP

RMS - - -
NPL - - -
CFR - - 3
PFR 5 - 3
BND 3 3 3

ENTR 3 - 3
WE 3 - 4
SI (ML-V)- (AP-V)- (ML-AP)-

CORR (ML-V)- (AP-V)3 (ML-AP)3
SKEW - - -
KURT - - 3

LZ - 3 -
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4. Discussion

We found that 14 out of 36 accelerometry features differed during a standing dual-task
protocol. Differences were observed from pretask to during task and returned to pretask
levels during the post-task phase for all variables except for PFR in the ML direction and
WE in the AP direction.

RMS and NPL are some of the most common signal features extracted from force plate
measurements, and previous research has shown that accelerometry measures correlate
well with those from force plates [17]. RMS is a measure of variability of signal amplitudes
relating to the dispersion of the amount of sway. NPL is a measure of how fast the person
is moving, giving an indication of how fast and how often the person is correcting their
balance. No significant differences were found among conditions for RMS or NPL in
any direction. The lack of significant differences among conditions could be a reflection
of the time variance of postural sway [26]. Even though the traditional features are not
informative for the balance protocols used in this study, we were able to detect differences
in several other features.

CFR and PFR in the AP direction and PFR in the ML direction showed significant
differences among the conditions. CFR is the frequency at which the power in the spectrum
above that frequency is equal to the power in the spectrum below that frequency. PFR is the
frequency at which the highest amount of power is attributed. Average CFR and PFR in the
AP direction decreased during COG condition but generally returned to baseline during
POST condition. This may reflect that subjects while under cognitive load are exhibiting
slower oscillations. The shift to lower frequencies may also indicate a less stiff sway [27], as
attention is shifted to the cognitive task during the COG condition. Conversely, increases in
ML PFR in the POST condition compared to the PRE condition may indicate and increased
postural stiffening. BND for each direction was lower during the COG task than the PRE
task and returned to baseline by POST task. Smaller BND values indicate a narrower
frequency response to maintain balance during the COG task. These BND results could be
interpreted as subjects being less adaptable during the COG task as they are limiting their
potential balance responses.

ENTR measures the regularity of the signals by examining the relatedness of con-
secutive points, with higher values being associated with higher regularity and lower
values with randomness [25]. ENTR in the ML and AP directions showed increases—
i.e., higher regularity—during COG condition and returned to baseline during POST con-
dition. Higher regularity is associated with less automatic control and more ineffective
postural strategies [28] as attentional resources are diverted to the cognitive task [29].
Younger adults usually show decreased regularity during cognitive tasks, as the task pulls
attention from balance and increases automaticity and efficiency [30]. Thus, our could
results indicate that the attentional resources diverted away from postural control may be
necessary to compensate for the postural control automaticity that is lost with age. WE
in the ML and AP directions also showed significant differences among conditions. WE
measures how disordered a signal is by measuring the contribution of different frequency
bands on the wavelet representation of the signal. Higher WE values indicate more dis-
ordered, random signals [25]. Results from the linear model showed that WE AP in the
three conditions were not equal, but no significant differences were found between PRE
and COG conditions nor between PRE and POST conditions. Due to the limitations of the
model, we did not test for differences between COG and POST conditions. In contrast,
WE ML had significant increases during the COG condition, indicating higher disorder
and randomness, before returning to baseline. It is important to note that ENTR and WE
analyze randomness on different scales. ENTR measures randomness between consecu-
tive points which is a more local metric; while WE is a more global metric and measures
randomness across time-frequency bands.

CORR measures the similarity between two signals. CORR ML-AP and CORR AP-V
showed decreased values during the COG condition and similar values for POST and
PRE conditions. Decreased CORR means the signals were less coupled during the COG
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condition but they returned to baseline during the POST condition. KURT is a statistical
metric that quantifies how spread out signal amplitudes are from the mean. KURT in the
AP direction was significantly higher during the COG condition compared to the PRE
condition. Higher values mean more peaked distributions (fewer outliers) and indicate less
variable sway. LZ measures the predictability of the signal and higher values indicate more
predictable, less complicated signals [25]. LZ in the V direction was significantly higher
during COG condition, with a return to baseline during the POST condition, pointing to
less complex postural control while under cognitive load.

The lack significant findings in our primary outcomes (RMS and NPL) and the slight
disagreement between the significant features in terms of returning to baseline levels of
balance performance could indicate that the dual-task conditions were not difficult enough
to elicit strong differences in this relatively healthy sample [3]. Additionally, the changes in
postural control performance may be too minute to strongly alter balance performance. On
the other hand, the RMS and NPL results may show a floor effect meaning that the other
accelerometry metrics may be more sensitive to changes in balance.

We are unable to determine whether the changes we observe represent maladaptive
effects on balance control (i.e., cognitive interference) or other adaptive strategies. For
example, higher complexity and randomness in the signal may reflect better online adjust-
ments, allowing the individual to adapt to perturbations more easily. LZ V points to lower
complexity, ENTR ML and AP point to higher local regularity, and WE ML points to higher
global randomness. Different explanations for changes in postural control performance
in older adults, cognitive task difficulty, stiffening method and signal-to-noise ratio, may
support our varied results.

Several neuromotor mechanisms potentially underly the observed results. Cognitive
mechanisms suggest that a concurrent information processing task requires cognitive re-
sources normally used to control posture, particularly executive functions [31–33]. Another
potential mechanism is generalized slowing with aging that can account for changes in
processes requiring cognition [31,34]. Dual-task postural responses can show increases
in sway and reduced sway, depending upon the cognitive and postural task. A number
of studies have shown increased sway amplitude with a concurrent cognitive task [3,4].
However, older adults can show reduced postural sway under dual-task [35]. A potential
biomechanical mechanism is postural stiffening, characterized by reduced sway distance
and higher frequency components, which indicates more frequent adjustments [36]. Un-
der these conditions, the cognitive task performance does not suffer and postural control
processing is believed to become automatic, thus less interference of shared associated
brain regions occurs [37]. Alternatively, deficits in postural control in older adults may
be due to decreased signal-to-noise ratio from declines in sensory systems and muscular
strength. This decreased signal-to-noise ratio would then require recruitment of more
neural resources to make up for reduced sensitivity of the sensory inputs and reduced
functionality of the motor outputs [37].

The trend of some variables indicating balance improvement and others indicating
deficits may be supported by several of these theories. Some subjects may have been
stiffening and improving their postural control performance [38]; others may have had
deficits in sensory integration [31] that resulted in poorer performance when attention was
deviated. Some subjects may have been more likely to use hip strategy than ankle strategy
and vice versa [39,40].

For this study, the cognitive task did not show carry-over effects. The changes that
occurred in postural sway during the concurrent cognitive task returned to their pretask
levels once the cognitive task had been completed. Previous studies have not examined the
time course of cognitive effects on postural control. The ramifications for these results are
twofold. Firstly, our results indicate that changes in postural stability are due specifically
to the cognitive task (i.e., once removed, the changes in sway return to baseline). This
is important not only for exploratory dual-task studies but also for interventions that
rely on single- and dual-task performance measurements to evaluate the effectiveness of
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the intervention. Secondly, this verbal cognitive task was intended to mimic attentional
demands of everyday activities such as carrying on a conversation, so these results have
important implications for fall risk. While performing a cognitive task may alter balance
in a way that could lead to higher incidence of falls, our results indicate that subjects do
not have continued diminished capabilities after the task. Confirming that effects from
cognitive tasks on postural stability do not persist may provide some relief for individuals
with fear of falling, a factor that contributes to increased fall risk. Additionally, this
information could guide caregivers to limit multitasking in patients with high fall risk.

The comprehensive list of accelerometry features in this study includes many that are
not common in the literature for balance assessments (e.g., bandwidth, wavelet entropy).
Our results show that these accelerometer metrics identify changes that do not show
up on traditional force plate measures. In the interest of early detection, accelerometry
may be a more sensitive way to look for very early balance problems. Early detection
of balance problems could serve as a biomarker for neurodegeneration because balance
deficits seem to predate neurodegeneration [6]. Accordingly, detecting balance changes
early enough is imperative to develop effective interventions for preventative care or
treatment. Integrating accelerometers into balance assessments would provide clinicians
with objective and sensitive measurements. Accelerometers also provide an opportunity
to expand accessibility of balance assessments due to their portability and commercial
availability. Not only would more clinics be capable of obtaining this technology, but
balance assessments could be administered in community settings for those who are unable
to travel to receive healthcare services.

Some limitations were due to experimental setup being optimized for gait and not
for standing postural control. The length of each trial was only 20 s. Healthy older adults
have more varied postural control during the first 30 s of quiet standing before leveling
out [41]. Additionally, there were problems with signal drop at low levels of activity due to
an “idle sleep mode” that caused the accelerometers to enter low battery mode. Signals
that contained more than 2 s of dropped signal were removed from analysis. This data
removal could have skewed the data towards more variant balance performance. Frequency
domain variables provided limited information due to low frequency resolution and length
of tasks. With signal lengths of 1200 to 1700 points, identifying specific frequencies is more
challenging. This study did not account for potential effects of vocalization on postural
sway. Vocalization affects mean sway frequency but not mean sway velocity or sway
area [42]. Thus, our frequency measures could have been altered by vocalization. In
future studies, more challenging postural tasks, like single-leg standing or translational
perturbations, and more attentionally demanding, nonverbal cognitive tasks could be used
to further explore potential for carry-over effects on posture.

Our study had several strengths. This is the first study to examine balance before,
during, and after a cognitive task to evaluate the temporal dynamics of changes in postural
control. Additionally, while most balance studies look at only a few outcomes, we extracted
signal features from a variety of domains to provide a more comprehensive understanding
of balance control. These novel insights in temporal dynamics and broader quantifica-
tion of postural control will inform future dual-task experiments, diagnostic tests, and
interventions that aim to improve balance.

5. Conclusions

Sustained alterations to postural control after completing recitation of alternating
letters of the alphabet did not occur in healthy, older adults. These findings have important
implications for dual-task paradigm design and for fall risk in older adults. With no
threat to balance after the cognitive task, the focus of dual-task interference lies solely
on the cognitive task condition. The lack of persistent effects on postural control after
the secondary task indicates that an individual’s balance would only be of concern while
performing another task.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21248428/s1. Table S1: Summary of the results from the generalized linear regression
model: F-value (p-value). Features in gray showed significant differences among the three conditions.
* (medium gray) Differences are significant between PRE and COG conditions; † (dark gray) Differ-
ences are significant between PRE and POST conditions; ‡ (light gray) PRE, COG, and POST are not
all equal. Figure S1: Box plots showing change from baseline for all significant variables. For each
subject, average PRE values are subtracted from their averaged COG and POST values. Baseline, or
initial values measured during the PRE condition, is indicated by the dashed line at 0. All variables
except PFR ML and WE AP deviate during the COG condition and then return to baseline during the
POST condition according to the results of the generalized linear regression model.
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Appendix A

Table A1. Acronym definitions and descriptions.

Acronym Definition Measurement Connection to Balance

COG Cognitive task - -

PRE Quiet standing before cognitive task - -

POST Quiet standing after cognitive task - -

ML Medial-lateral signal Linear acceleration left/right -

V Vertical signal Linear acceleration up/down -

AP Anterior–posterior signal Linear acceleration
forward/backward -

Accelerometry features

RMS Root mean square Measure of spread (G) Higher values indicate more sway

NPL Normalized path length Measure of speed (G/s)
Higher values indicate more distance

traveled, thus more frequent adjustments
and poorer postural control

CFR Centroid frequency Frequency that halves the power
spectrum (Hz) Lower values indicate poor postural control

PFR Peak frequency Frequency with the most power (Hz)
High values indicate more frequent postural

adjustments and thus poorer
postural control

BND Bandwidth Range of frequencies in the signal (Hz) The larger the range, the more frequencies
used to maintain balance

https://www.mdpi.com/article/10.3390/s21248428/s1
https://www.mdpi.com/article/10.3390/s21248428/s1
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Table A1. Cont.

Acronym Definition Measurement Connection to Balance

ENTR Entropy rate Measure of the regularity of the signal,
index from 0 to 1

Values closer to 1 indicate high signal
regularity, values closer to 0 indicate high

signal randomness

WE Wavelet entropy Measure of signal disorder,
randomness

Values closer to 0 indicate ordered signals,
high values indicate disordered signals with

equivalent contributions
from most frequencies

SI Cross entropy rate/Index of
synchronization

Measure of signal predictability using
past and present points from another

signal, index from 0 to 1

Values closer to 1 indicate signals are
highly synchronized

CORR Cross correlation Measure of similarity between two
signals, index from 0 to 1

Values closer to 1 indicate higher agreement
between signals

SKEW Skewness of signal Measure of asymmetry of amplitudes
about the mean

Higher absolute values (positive or negative)
indicate more asymmetry in postural control

KURT Kurtosis of signal Measure of how spread out the
amplitudes are from the mean

Higher values indicate more peaked
distributions and thus less variable sway

and fewer extreme outliers

LZ Lampel-Ziv complexity Measure of the complexity
of the signal

Higher values indicate more predictable,
less complicated, signals and thus smoother

postural control
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