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Abstract: As a standard digital signature may be verified by anybody, it is unsuitable for personal or
economically sensitive applications. The chameleon signature system was presented by Krawczyk
and Rabin as a solution to this problem. It is based on a hash then sign model. The chameleon hash
function enables the trapdoor information holder to compute a message digest collision. The holder
of a chameleon signature is the recipient of a chameleon signature. He could compute collision on the
hash value using the trapdoor information. This keeps the recipient from disclosing his conviction
to a third party and ensures the privacy of the signature. The majority of the extant chameleon
signature methods are built on the computationally infeasible number theory problems, like integer
factorization and discrete log. Unfortunately, the construction of quantum computers would be
rendered insecure to those schemes. This creates a solid requirement for construct chameleon
signatures for the quantum world. Hence, this paper proposes a novel quantum secure chameleon
signature scheme based on hash functions. As a hash-based cryptosystem is an essential candidate
of a post-quantum cryptosystem, the proposed hash-based chameleon signature scheme would
be a promising alternative to the number of theoretic-based methods. Furthermore, the proposed
method is key exposure-free and satisfies the security requirements such as semantic security, non-
transferability, and unforgeability.

Keywords: digital signature; chameleon signature; hash-based cryptography; homomorphic hash
function; Preimage Resistance; key exposure free; random oracle model

1. Introduction

An ordinary digital signature is not suitable for all applications that are personally
or commercially sensitive. Consider the scenario where a software company issues a
license of the software to the customer. When the company embeds an ordinary signature
into its product to assure the customer Alice that the vendor provides the software, Alice
can make several copies of the software and sell them at a lower price. She can prove
that the software is from the vendor by presenting the vendor’s signature on the prod-
uct. A privacy-protecting signature can be embedded in the product by protecting the
company’s reputation and assuring the customer of having quality software. Though un-
deniable signature [1] proposed by Chaum et al. provides controlled dissemination of
signature, a group of verifiers can verify it simultaneously, without telling the prover that
he is proving the signature to too many people. This is done by setting the challenge collec-
tively so that no subset of the verifiers could set the challenge on their own. To overcome
the above-mentioned limitations of undeniable signature, Krawczyk & Rabin introduced
chameleon signature [2], which prevents the dissemination of signed information by the
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recipient of the signature. It also preserves the non-repudiation property in the event of
legal disputes.

Though undeniable signature and chameleon signature both provide non-transferability
and non-repudiation, the former requires an interactive protocol between the signer and the
verifier for the purpose of verifying the signature, which is based on zero-knowledge proof.
It is quite natural that such additional properties and techniques increase the complexity of
undeniable signature relative to ordinary signature in terms of computational and commu-
nication costs. As the chameleon signature scheme is non-interactive, it does not require the
zero-knowledge paradigm, and hence its computational complexity is less compared to the
undeniable signature scheme. Like an ordinary digital signature scheme, the chameleon
signature scheme is constructed with the basic approach of the hash-and-sign paradigm.
First, the message digest is computed using a special hash function called chameleon hash
function, which uses the public key of the recipient of the signature. Like a cryptographic
hash function, it provides collision resistance except for the trapdoor holder (recipient) of
the public key. As a result, finding collisions to chameleon hash value is computationally
infeasible even for the signer who produces the hash value, but it is feasible for the recipi-
ent to compute collisions using his trapdoor key. When a recipient receives a chameleon
signature on a message, through collision finding, the recipient is able to produce different
messages for the same signing value as the original one. Thus, the underlying chameleon
hash function allows the recipient to forge the signature generated by the signer. The signa-
tures generated by the signer and by the recipient are indistinguishable. This ability of the
recipient to forge an indistinguishable signature prevents him from revealing the validity of
the original signature made by the signer to a third party. Thus, the chameleon hash function
is non-transferable. However, in the case of disputes, the signer can easily prove that the
contested signature by the recipient is a forgery by producing a message–signature pair
that has the same hash value as that of the contested message–signature pair. As the signer
cannot compute a collision, the message–signature pair produced by the signer is taken as
original, while the contested signature is considered forgery. The early designs of chameleon
signature schemes are key-exposure, i.e., collisions that reveal the recipient’s secret key.
Because the key is exposed, the recipient is unable to use the signature scheme. Calculating
hash collisions, putting the principle of non-transferability to the test. As a result, the major
key exposure concern, as well as its related issues such as revocation and redistribution of
keys, must be addressed. Henceforth, a key-exposure-free chameleon hash is proposed in a
graph setting. It uses a double trapdoor mechanism. The proposed chameleon hash system
is used to create a chameleon signature scheme. The non-transferability of the signature
thus produced is simply achieved from the underlying chameleon hash.

2. Related Work

Krawczyk & Rabin proposed the first chameleon signature scheme in [2]. It suffers
from a key exposure problem which means that, when the recipient does forgery through
collision computation, the signer can easily retrieve the recipient’s secret key. This creates a
strong disincentive for the recipient to forge chameleon signatures which partially under-
mines the concept of non-transferability. Zhang et al. presented chameleon hash schemes
in an ID-based setting in [3]. The proposed two schemes from bilinear pairings are not key-
exposure-free. Ateniese & de Medeiros in [4] identified that the problem of key exposure on
forgeries threatened the claim of non-transferability and provided a solution to the problem
through an identity-based chameleon hash function. In their scheme, the signature forgery
by the recipient results in the recovery of the recipient’s trapdoor information associated
with that single transaction by the signer. However, in other transactions, the signer could
not be able deny the signature on any message. Thus, the authors provide a solution
but do not solve the problem of key exposure completely. To overcome this drawback,
Chen et al. proposed the first complete key-exposure free chameleon hash function in the
gap Diffie–Hellman group with bilinear pairings [5].
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In [4], Ateniese & de Medeiros introduced three nonpairing based key exposure-free
systems, two of which are based on Integer Factorisation Problem (IFP) and one on Diffie–
Hellman and the Discrete Logarithm Problem (DLP). Gao et al. developed a factoring-
based chameleon hash function [6] and demonstrated its security by using a modified
Rabin signature technique. Later, Gao et al. introduced a DLP-based key-exposure free
chameleon hash function [6]. They modified the basic construction of the chameleon hash
method [2] to allow a multi-trapdoor by considering the hash algorithm as a one-round
protocol that runs between the signer and the specified recipient. This architecture differs
slightly from Krawczyk & Rabin’s original concept of chameleon hash. Later, Chen et al.
suggested a DLP-based key-exposure-free chameleon hash and signature system that did
not need the gap Diffie–Hellman groups [7]. Pan et al. proposed a family of chameleon
hash functions and strongly unforgeable one-time signature schemes based on DLP over
inner automorphism groups [8].

Integer factorization and discrete logarithm problems provide a secure basis for
the above schemes and are threatened by quantum computers by Shor’s algorithm [9].
Therefore, it is necessary to come up with alternative schemes that resist quantum computer
attacks. Although quantum computers are currently in their infancy [10,11], the ongoing
development of quantum computers and their theoretical ability to compromise modern
cryptographic schemes has prompted the development of post-quantum cryptographic
schemes. A cryptographic technique connected with a computational problem that cannot
be solved in polynomial time on a quantum computer is currently referred to as post-
quantum security. This includes the fact that addressing the problem on a traditional
computer is impossible. Because lattice-based signatures are thought to be secure against
quantum computers, they have become fascinating alternatives to the current techniques,
such as RSA, ECDSA, and others. Several lattice-based cryptographic signature techniques
have been proposed since Ajtai’s original work [12]. In hard random lattices, Xie et al.
suggested a homomorphic chameleon function based on the Small Integer Solution (SIS)
problem [13].

Other promising post-quantum signature schemes are hash-based signature schemes.
Hash functions are sufficient to have an efficient and a secure transmission of data. As
hash functions are one-way, hash-based signatures provide certain advantages over digital
signatures based on trapdoor functions. The following are the advantages of hash-based
signatures: they require less security assumptions than number-theoretic signature schemes,
they are very efficient, and their security is well understood. The generic attacks on hash
function and pseudorandom generator determine the security parameter. The minimum
security parameter recommended is determined by the security level of preimage and
collision resistance of the hash function. When classical computers are used, then finding a
preimage of the hash function H : {0, 1}2k → {0, 1}k by exhaustive search costs 2k/2 and
finding a collision by birthday attack costs 2k/2. However, when quantum computers are
used, the Grover algorithm [14] requires 2k/3 evaluations of the hash function to find a
collision and requires 2k/3 searches to find a preimage of H. For a pseudorandom generator
PG : {0, 1}k → {0, 1}2k, the attacker tries to find the patterns in the inputs example by
guessing the PG seed that ends up at a target value after a number of rounds of the chaining
function. All generic attacks again cost 2k in pre-quantum and 2k/2 in post-quantum.

Chen [15] proposed a PDP protocol which consists of an algebraic signature that uses
a hash function with homomorphic property. It is shown that the homomorphic hash
function enables fast and efficient retrieval of content and provides provable data posses-
sion and data integrity protection in cloud storage. Hence, this paper proposes a simple
construction of a chameleon hash scheme under graph setting with minimal requirements
such as homomorphic hash function and homomorphic pseudorandom generator and
without complex algebraic computation. The security of the chameleon hash scheme relies
on the Preimage Resistance (PR) of the hash function. The chameleon signature scheme con-
structed with the proposed chameleon hash scheme easily achieves the non-transferability
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property. In addition, the method obtains the unforgeability property directly from the
unforgeability of the underlying signature scheme used.

The paper is organized as below: Section 3 contains a brief description of basic
concepts of graph theory, the outline of a chameleon hash and signature scheme, and its
security model. Section 4 proposes an efficient hash-based chameleon hash and signature
scheme with DAG, and Section 5 presents an algorithm for the construction of a DAG.
Section 6 presents the security analysis of the proposed method, and Section 7 discusses
the performance analysis and comparison. Finally, Section 8 concludes the paper.

3. Preliminaries

In this section, few graph preliminaries [16] that are required for the proposed scheme
and definitions and properties of chameleon hashing and signatures are briefed.

Definition 1. Directed graph: It is an ordered pair G = (V, E) where V is a finite set of elements
called vertices and E is a set of ordered pairs of vertices called directed edges.

Definition 2. Degree: In a directed graph, indegree of a vertex v is the number of edges (u, v) ∈ E
which are pointing to the vertex v. Outdegree of a vertex v is the number of edges (v, u) ∈ E which
are coming from the vertex v. The sum of indegree and outdegree is the total degree of v.

In a directed graph, the vertices with indegree zero are called source vertices and the
vertices with outdegree zero are called sink vertices. The vertices which are neither sources
nor sinks are called internal vertices.

Definition 3. Path: In a directed graph, a path (v0, vl) is a sequence of vertices (v0, . . . , vl) such
that (vi−1, vi) ∈ E, ∀i = 1, . . . , l. Its length is the number of occurrences of edges in it.

Definition 4. Cycle: In a directed graph, a cycle is a closed path in which all the vertices are
distinct except that v0 = vl .

Definition 5. DAG: A directed acyclic graph is a directed graph with no cycles.

For simplicity, only DAGs which have a single source s with outdegree 1, a single
sink t with indegree 1, and n > 0 internal vertices where each vertex that has a total
degree of 3 is considered. Such graphs have only two types of internal vertices, namely
expansion vertices and compression vertices. Expansion vertices are vertices with indegree
1 and outdegree 2, and compression vertices are those with indegree 2 and outdegree 1.
A DAG G with n internal vertices where n is even will have n/2 expansion vertices and
n/2 compression vertices. This particular type of DAG is considered throughout the paper.

Definition 6. Cut; In a DAG G = (V, E) with a source edge es and a sink edge et, a cut is
defined as a nontrivial partition W = (U, V \U) of the vertices such that es is in the edge set of
U and et is in the edge set of V \U. A cut is represented by a single set of vertices U with the
convention that es ∈ U.

Definition 7. Cross edge: A cross edge e = (u, v) of a cut W = (U, V \U) is defined as an edge
in which u ∈ U and v ∈ V \U. The set of edges crossing W is denoted as (W).

Definition 8. Poset; A set P with a reflexive, antisymmetric and transitive relation � defined on
it is a partially ordered set or poset denoted by (P,�).

Definition 9. Comparable: Two elements a and b of a poset (P,�) are called comparable if either
a � b or b � a. When neither a � b nor b � a, then the elements a and b are called incomparable.
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Definition 10. Antichain: A subset U ⊆ P is called an antichain if every pair of elements of U is
incomparable. The maximal cardinality of antichains in P is called the width of a poset (P,�), and
it is denoted by w(P).

Definition 11. Allowable set: Let T be a set of edges in G. The set of directly computable nodes
is defined as the set of nodes all of whose incoming arcs are in T. The set of computable nodes is
defined recursively as the set of nodes computable from the union of T with the outgoing edges of
the directly computable nodes. The set T is called an allowable set if it is verifiable and consistent.
When T is allowable, the public key is obtained from the set of its computable nodes and the set
either contains all the outgoing edges from a node or none from it.

Definition 12. Minimal allowable set: An allowable set is called a minimal allowable set if it is
not verifiable when any edge is omitted from the set.

Definition 13. Poset: It is a set (G∗,�) that consists of minimal allowable sets of G with a
partially ordered relation � defined on it. Two minimal allowable edge sets U and V of a poset are
related as U � V if and only if the set of computable nodes of V is a subset of the set of computable
nodes of U.

Definition 14. Comparable: Two minimal allowable sets in G are said to be compatible if neither
of the sets of computable nodes is a subset of the other. Then, the corresponding sets of computable
nodes are incomparable elements in the associated poset.

3.1. Chameleon Hash Scheme

A chameleon hash function is a collision-resistant trapdoor hash function linked to a
public/secret key combination (pk, sk). Anyone with access to the public key pk can easily
compute the hash value for each input. Except for the trapdoor key sk holder, no one can
efficiently compute a collision on any given input.
The following three polynomial-time algorithms define the formal definition of a chameleon
hash scheme [7]:

Key Generation (1k): A probabilistic polynomial-time algorithm that generates a pub-
lic/secret key pair (pk, sk) based on the security parameter k.
Hashing Computation: A probabilistic polynomial-time algorithm that computes and
outputs the chameleon hash value Gpk(M, r) given a public key pk, a message M, and a
random parameter r.
Collision Computation: A deterministic polynomial-time method that outputs r′ such
that Gpk(M, r) = z

′
= Gpk(M′, r′) when given the secret key sk, a message M, a random

parameter r, and another message M′ as inputs.

Furthermore, if r is taken from a uniform probability distribution, the distribution of
r′ is computationally indistinguishable from the uniform.

The following properties should be met by a secure chameleon hash technique [7]:

Collision resistance: Without knowing the trapdoor key sk, there is no efficient algorithm
that, given a message M, an auxiliary random parameter r and another message M′,
outputs r′ with a non-zero probability that Gpk(M, r) = z

′
= Gpk(M′, r′).

Semantic security: Let E[X] denote the entropy of a random variable X, and E[X|Y]
denote the entropy of a random function Y of X given the value of the variable X. If the
conditional entropy E[M|z′] of a message given its chameleon hash value z′ equals the total
entropy E[M] of the message space, the system is semantically secure.
key-exposure freeness: If a recipient has never computed a collision on a chameleon hash
Gpk(M, r), no adversary will be able to identify an efficient algorithm to compute a collision
on that Gpk(M, r). This is true even if the adversary has access to the collision computation
oracle for polynomially many queries on tuples (Mi, ri) of his choosing, except for the
challenge query.
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3.2. Chameleon Signature Schemes

A message’s chameleon signature is created by digitally signing the message’s
chameleon hash value. A chameleon signature scheme, as defined by Chen et al., consists
of the techniques described in [7]:

Key Generation (1k): A probabilistic polynomial-time algorithm that outputs a pub-
lic/secret key pair (pkS, skS) for the signer and (pkV , skV) for the verifier based on the
security parameter k.
Sign: A probabilistic polynomial-time algorithm that outputs a signature σ on the
chameleon hash value z

′
using the recipient’s public key pkV , the signer’s secret key

skS, a random string r, and a message M as inputs.
Verify: A deterministic polynomial-time procedure that outputs Accept if σ is valid else out-
puts Reject given the the recipient’s public key pkV , the signer’s public key pkS, the random
string r, the message M, and the signature σ.
Denial protocol: A protocol between the signer and the judge that is not interactive.
The signer submits a valid collision (M′, r′) to the judge when given a chameleon signature
σ on a message M. If M 6= M′ and σ are both legitimate, the judge concludes that the
signature σ on the message M is forged.

3.3. Security Requirements of Chameleon Signature Schemes

The following are the properties of a chameleon signature scheme: unforgeability,
non-transferability, non-repudiation, and deniability:

Unforgeability: A valid chameleon signature cannot be generated by a third party. Further-
more, a recipient can only produce a forgery for a chameleon signature that was previously
generated by the signer.
Non-transferability: Because the recipient can forge a signature, the recipient cannot per-
suade a third party that the signer generated a signature on a specific message.
Non-repudiation: The signer is not allowed to deny legitimate signature claims.
Deniability: By providing a collision to the chameleon hash value, the signer can deny a
forgery of the signature.

4. Proposed Hash-Based Chameleon Hashing and Signature Scheme

In this section, first, a chameleon hash function is constructed, and then a signature
scheme is designed using the proposed hash function.

4.1. Construction of a Chameleon Hash Scheme

The proposed chameleon hash scheme consists of the following polynomial-time
algorithms:

Key Generation (1k): Let G be a publicly known DAG. Associate a homomorphic hash
function H : Fk

2 × Fk
2 → Fk

2 in the compression vertices and a homomorphic pseu-
dorandom generator PG : Fk

2 → Fk
2 × Fk

2 in the expansion vertices of G. The public
parameters are G, H and PG with respect to the security parameter κ. The algorithm
randomly chooses sk ∈ Fk

2 and computes pk = Ext{et}[sk : G(es)]. It chooses a cut W
in G. Let (W) be the cross edges of the cut W with |W| = l. It chooses a labeling
r = (r1, r2, . . . , rl) for (W) where ri ∈ Fk

2 is the labeling of the i’th edge in (W) and
computes r

′
= Ext{et}[r : G(W)]. It outputs (pk, ((W), r

′
) as a public key, where pk is

the permanent public key and ((W), r
′
) is the ephemeral public key which is changed

periodically. The corresponding private key is (sk, r).
Hashing Computation: On input (M, pk, (W), r

′
), the algorithm computes

h
′
= Ext{et}[h(M) : G(W)]

Gpk(M, r
′
) = h

′ ⊕ r
′ ⊕ pk = z

′

Outputs chameleon hash z′, for the tuple (M, r′).
Collision Computation For any valid hash value z′, the collision computation algorithm
computes a hash collision with the trapdoor key (sk, r) as follows: z = h(M) ⊕ r ⊕
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Ext{(W)}[sk : G(es)]
r∗ = z⊕ h(M∗)⊕ Ext{(W)}[sk : G(es)].

r∗
′
= Ext{et}[r

∗ : G(W)]

The algorithm outputs a collision tuple (M∗, r∗
′
) for the chameleon hash value z

′
.

4.2. Construction of the Chameleon Signature Scheme

A chameleon signature scheme is constructed by having the proposed chameleon
hash function in a standard signature scheme of the same public key setting. The public
key and the secret key of the proposed chameleon hash scheme are related in terms of a
DAG. Hence, it is convenient to design a chameleon signature scheme by combining the
proposed chameleon hash scheme and a graph-based signature scheme.

In the proposed signature scheme, each of the signer S and verifier V chooses a DAG
and a secret value and labels the source edge of their DAG with the secret value and
labels all the other edges by means of extension labeling from the source edge. The label
obtained at the sink edge is their public key. The signer first computes the chameleon hash
value for a message using the verifier’s DAG GV and his public key. Then, he computes
all minimal allowable sets for the graph GS and defines a partially ordered relation �
on it. The associated poset of GS is (G∗S,�) with width w(G∗S). Then, with an efficient
mapping function, the signer maps the chameleon hash value to a minimum allowable set
in the antichain of width w(G∗S). Then, he outputs the values associated with the minimal
allowable set with respect to his secret key as the signature for the chameleon hash value.

Signatures thus obtained are verifiable with respect to the signer’s public key and are
compatible which means that without inverting hash functions or pseudorandom functions,
no signature can be computable from the signatures of different messages. Consequently,
the essential requirements for the proposed signature scheme are maximal antichain of
minimal allowable sets and an efficiently computable collision-resistant mapping from
the hash space to the maximal antichain. In addition, for the chameleon signature scheme
to be recipient-specific, the hash computation has to be done on the verifier’s graph,
and signature computation has to be done on the signer’s graph.

The following algorithms describe the proposed Hash-Based Chameleon Signature
(HBCS) scheme:

Key Generation (1k): The signer S and the verifier V selects DAG’s Gi (i = S, V). Let H
be a homomorphic hash function and PG be a homomorphic pseudorandom generator
associated with the compression vertices and expansion vertices of Gi (i = S, V). The signer
randomly chooses skS ∈ Fk

2, computes pkS = Ext{et}[skS : GS(es)] and outputs the public
key as (pkS, ((U), t

′
)) where pkS is the permanent public key and ((U), t

′
) is the ephemeral

public key. The corresponding private key is (skS, t). Similarly, the verifier on his graph GV ,
computes and outputs the public key (pkV , ((W), r

′
)) where pkV is the permanent public

key and ((W), r
′
) is the ephemeral public key. The corresponding private key is (skV , r).

Let µ : {0, 1}k → G∗S define a mapping from the chameleon hash space {0, 1}k to the
maximal antichain of G∗S.
Sign (skS, M): Let M ∈ {0, 1}∗ be the message to be signed. With the verifier’s secondary
key ((W), r

′
), the signer computes the chameleon hash value GpkV (M, r

′
) = z

′
and maps z

′

to µ(z
′
) in the maximal antichain of G∗S. Then, computes

λ = Ext{µ(z′ )}[skS : GS(es)]

The signature on M is σ = (r
′
, λ).

Verify (pkS, M, λ): The verifier computes
GpkV (M, r

′
) = z

′

Verifies pkS = Ext{et}
[
λ : GS(µ(z

′
))
]
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Correctness

pkS = Ext{et}[skS : GS(es))]

= Ext{et}
[

Ext{µ(z′ )}[skS : GS(es)] : GS(µ(z
′
))
]

= Ext{et}
[
λ : GS(µ(z

′
))
]

Denial Protocol: In the event of a legal dispute between the recipient and the signer,
i.e., when the recipient submits a message–signature tuple (M∗, (r∗

′
, λ)) to the judge J

and claims that it was generated by the signer, the judge first applies the above signature
verification process and determines whether (r∗

′
, λ) is a proper signature on M∗. If the

verification fails, the judge rejects the alleged signature. Otherwise, he requests that
the signer denies or accepts the claim. If the signer wishes to accept the signature, he
simply informs the judge. If the signer wishes to declare the signature to be a forgery,
he must provide a collision tuple (M, (r

′
, λ)) i.e., GpkV (M, r

′
, λ) = GpkV (M∗, r∗

′
, λ). It is

worth noting that, if (M∗, (r∗
′
, λ)) is a forgery, the signer can always supply the original

message–signature tuple (M, (r
′
, λ)) that differs from (M∗, (r∗

′
, λ)). If (M∗, (r∗

′
, λ)) is

valid, the signer cannot provide a collision on the hash value without knowing the secret
key of the recipient. As providing collision is equivalent to finding the preimage of the hash
function, which is shown in Theorem 1, the signer cannot provide collision and repudiate a
valid signature. The inability of the signer in providing a collision on the chameleon hash
value enables the judge to determine the signature is valid or forged.

5. Construction of DAG

Algorithm 1 is proposed to generate a DAG as explained in Section 3.

Algorithm 1 DAG Construction

1: let edge[n][n] be the matrix denoting the edges and initialized to 0.
2: edge[1][2]← 1
3: edge[n− 1][n]← 1
4: for i← 1 to n− 2 do
5: edge[i][i + 2]← 1
6: end for
7: k← n/2 . Setting second edges for expansion vertices
8: if k is even then
9: for i← 2 to k do

10: edge[i][k + i− 1]← 1
11: end for
12: else if k is odd then
13: for i← 2 to k do
14: if i is even then
15: edge[i][k + i]← 1
16: else if i is odd then
17: edge[i][k + i− 2]← 1
18: end if
19: end for
20: end if

DAG’s GV and GS are constructed and shown in Figures 1 and 2, respectively.
In order to demonstrate the idea of the scheme, GV and GS are considered as the

public graphs of verifier and signer, respectively. The hash function and pseudorandom
generator are associated with the compression and expansion vertices of DAG’s respec-
tively. The signer chooses his secret key skS and computes the public key pkS using GS.
Similarly, the verifier chooses skV and computes the public key pkV using GV . In ad-
dition, the verifier chooses a cut W in GV and chooses random value r along the cross



Sensors 2021, 21, 8417 9 of 15

edges {g, h, e, d, f } of the cut and computes r
′
= Ext{et}[r : GV(W)]. The verifier publishes

(pkV , ((W), r
′
)) as public key. The signer computes the chameleon hash for h(M) in GV as

z
′
= (Ext{et}[h(M) : GV(W)]⊕ r

′ ⊕ pkV). He computes the associated poset G∗S for GS as
shown in Figure 2. As the width of G∗S is 5, the hash space consisting of at most 5 hash
values can be mapped to the antichain of width 5. The elements in this antichain {e, a, h},
{b, c, h}, {c, d, e, f }, {g, a, f } and {g, b, d} are signature patterns. Suppose that the hash
value z

′
is mapped to an element {g, a, f }, then the signature is the value of r

′
and the

values of the edges {g, a, f } with respect to the signer’s secret key.
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6. Security Analysis

This section examines the proposed chameleon hash function’s security properties.
It also discusses the proposed chameleon signature scheme’s security against forgery,
transferability, repudiation, and undeniability.

6.1. Security Analysis of the Proposed Hash-Based Chameleon Hash Scheme

In this subsection, the three properties of the chameleon hash scheme—collision
resistance, semantic security, and key-exposure freeness—are proved.

Theorem 1. The proposed chameleon hash scheme is collision resistant provided the hash function
is preimage resistant.

Proof. Let A be an adversary against collision resistance of chameleon hash function.
Assume that A outputs collision tuples (M, r′) and (M∗, r∗

′
).

Therefore,
GpkV (M, r

′
) = GpkV (M∗, r∗

′
) = z

′

⇒ h
′ ⊕ r

′ ⊕ pkV = h∗
′ ⊕ r∗

′ ⊕ pkV = z
′

⇒ h
′ ⊕ r

′
= h∗

′ ⊕ r∗
′

⇒ h
′ ⊕ h∗

′
= r

′ ⊕ r∗
′

⇒ Ext{et}[h(M) : GV(W)]⊕ Ext{et}[h(M∗) : GV(W)] = r
′ ⊕ r∗

′

⇒ Ext{et}[h(M)⊕ h(M∗) : GV(W)] = r
′ ⊕ r∗

′

⇒ (h(M)⊕ h(M∗)) is the trapdoor value of (r
′ ⊕ r∗

′
) along the cross edges of the cut W

in GV . Hence, by means of the consistent extension of (h(M)⊕ h(M∗)), the preimage of
(r
′ ⊕ r∗

′
) under H is obtained. As finding the preimage of hash function is computationally

infeasible, it can be concluded that, without the knowledge of the trapdoor, providing
chameleon hash collision is hard.

Theorem 2. The proposed chameleon hash scheme is semantically secure.

Proof. The computation of chameleon hash is z
′
= Ext{et}[z : GV(W)] which equals

Ext{et}
[(

h(M)⊕ r⊕ Ext{(W)}[sk : G(es)]
)

: GV(W)
]
, where the value of r is chosen com-

pletely independent of M. In addition, the equation z = h(M) ⊕ r ⊕ Ext{(W)}[sk : G(es)]
implies that, for each fixed M, there is a one-to-one correspondence between the values of
z and r.

Hence, Pr(M|z′)= Pr(M|z) = Pr(M|r) = Pr(M). To prove the semantic security of the
scheme, it is required to prove the conditional entropy E[M|z′ ] = E[M].

E[M|z′ ] = −∑
M

∑
z′

Pr(M, z
′
)log(Pr(M|z′))

= −∑
M

∑
z′

Pr(M, z
′
)log(Pr(M))

= −∑
M

log(Pr(M))∑
z′

Pr(M, z
′
)

= −∑
M

log(Pr(M))Pr(M) = E[M].

Because the conditional entropy E[(M|z′ ] equals the total entropy E[M], the chameleon
hash value z

′
reveals no information about M. As a result, the chameleon hash technique

suggested is semantically secure.
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Theorem 3. The proposed chameleon hash technique does not require any key disclosure.

Proof. Even if the adversary A has been given oracle access to collision computation
and has been given polynomially many queries with the tuples (Mi, r

′
i), i ≥ 1, of his

choice, except for the challenge question, we assert that he cannot detect a collision on
the hash value z

′
= Gpk(M, r

′
) using an efficient technique. The adversary can use two

sorts of attacks to find collision on z
′
. He might try to recover the secret values of r

′
and

pk along the cut’s cross edges in the first attack, and he might try to discover collision on
z
′

without recovering the secret keys in the second attack. The hash function’s Preimage
Resistance (PR) is the target of the first attack. The second approach is to identify a collision
on the given challenge z

′
without knowing the private key, which is similar to cracking

the graph-based one-time signature technique [16]. Because the graph-based one-time
signature technique is safe against existential forgery in the standard model under a chosen
message attack, it can be deduced that, even if the adversary has a polynomial number of
signatures on messages, finding a collision on the hash Gpk(M, r

′
) is difficult. As a result,

the suggested chameleon hash has no key exposure.

6.2. Security Analysis of the Proposed Hash-Based Chameleon Signature Scheme

In this subsection, the properties of the chameleon signature scheme: unforgeability,
non-transferability, non-repudiation, and deniability are proved.

Theorem 4. Let G(V, E) be a directed acyclic graph with |V| = n, PG be a homomorphic
pseudorandom generator and H be a homomorphic hash function. Let A be an adversary who
performs an existential forgery under a chosen message attack against the proposed HBCS scheme
with success probability ε. Then, ε ≤ (αεD + εC + εPG + εH)n + εG where α ≤ n is the
average number of predecessors of a random vertex in the graph and εPG, εH ,εC, εD, and εG are,
respectively, the success probabilities on inverting PG, inverting function H, finding collision on
H, distinguishing random strings and pseudorandom strings apart, and finding collision on a
chameleon hash function.

Proof. As HBCS is based on the hash-and-sign approach, the adversary can produce
forgery either by finding a valid collision on the chameleon hash or breaking the underlying
signature. By Theorem 1, the signer cannot produce a valid collision on a chameleon hash
value. The construction of the proposed underlying signature is based on the signature
schemes proposed by Hevia et al. in [16] and Dod et al. in [17]. Hence, the security
proof of the underlying signature scheme follows their proof. The proof is given by the
following games between the adversary A against the signature and Challenger C. Each
game is a slight modification of the preceding game in a way that the difference between
the two games can be evaluated. Thus, the quality of the reduction can be easily quantified.
The probability that A wins the Gamei is denoted by Pr[Successi].

#Game1 : C chooses a DAG G and picks a random homomorphic hash function H and
a homomorphic pseudorandom generator PG and associates them with the compression
vertices and expansion vertices of G, respectively. C then runs the key generation algorithm
and provides the public key to A . Because C knows the entire secret key, it can easily
provide any one-time signature on A’s requests. The success probability of this game
is ε, so

Pr[Success1] = ε (1)

Game2 : As Game1, but with the modification that C picks an internal node at random and
keeps it as the target node. C aborts if the adversary’s signature query includes an arc
predeceasing the target node or if the adversary’s forgery does not invert the function on
this node. Since the actions of C are independent of the chosen target, the forger behaves
as in Game1. The success probability is at least Pr[Success1]

|v| . Hence, the success probability
in Game2 is
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Pr[Success2] ≤
ε

n
(2)

Game3 : As in Game2, but with the following key generation change. C selects a target node
on which to invert the function and replaces the selected node’s output value with y. C
additionally assigns random values to all arcs leading out of the previous graph of the
target node. C recalculates the public key and hands it on to A. Except for those within
the predecessor graph of the target, C can generate a value for all arcs. The arcs directly
going out of the predecessor nodes in a direct line of the target node are the only arcs for
which C has no value. C responds to the signature question if the adversary’s inquiry does
not contain any arcs within the preceding graph. C aborts the signature query if this is the
case. When A wins Game3, the adversary has assigned a value y′ and its preimage to the
targeted node. C discovered a preimage to the target if y′ = y. If y′ 6= y, on the other hand,
a collision could occur somewhere along the way to the root. As a result, when A forges,
Game3 success results in either a collision on H or a preimage (for some yH or yPG)

Pr[Success3] ≤ Pr[Invert or Collision] ≤ εPG + εH + εC (3)

It is also evident that, when A distinguishes between Game2 and Game3, it is distin-
guishing between a right evaluation of the graph consisting of the predecessors in a direct
line of the goal, along with their offspring, and an equal number of uniformly chosen
uniform random values. As a result, this chance is negligible if all of the predecessors are
undetectable. When an efficient signature forger exists, then

|Pr[Success3]− Pr[Success2]| ≤ αPr[Detect] ≤ αεD (4)

From the sequence of the games and by considering the probability of finding collision
on chameleon hash εG , we have

ε ≤ (αεD + εC + εPG + εH)n + εG (5)

From Equation (5), if PG and H are cryptographically secure, then the HBCS scheme
is unforgeable under a chosen message attack.

Theorem 5. The proposed chameleon signature scheme satisfies the property of non-transferability.

Proof. The semantic security of the proposed hash scheme in Theorem 2 implies the
non-transferability of the resulting chameleon signature scheme.

Theorem 6. The proposed chameleon signature scheme satisfies the property of non-repudiation.

Proof. In the case of disputes, if a verifier provides a chameleon signature forgery, then
the signer can repudiate it by producing collision pairs for the judge. By Theorem 1,
the chameleon hash function is collision-resistant. Hence, in case of disputes, when the
signer is not able to produce valid collision pairs on the chameleon hash to the judge, he is
indeed the generator of the signature.

Theorem 7. The proposed chameleon signature scheme satisfies the property of deniability.

Proof. It is ensured by the Denial protocol.

7. Discussion

Performance Analysis and Comparison: The significant parameters for a graph-
based signature scheme on a DAG G are the number of internal vertices, which reveals the
number of function evaluations required to compute the public key from the secret key,
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the maximum number of incompatible signatures, which gives the upper bound on the
size of the message space, and the maximal size of the signature.

The proposed scheme requires hash evaluations and pseudorandom evaluations for
the computation of public key, signature generation, and the verification process. For a
DAG with n internal vertices, the worst-case time complexity of hash evaluations and
pseudorandom evaluations are O( n

2 ) and O( nk
2 ), respectively. When n1 and n2 are the

number of vertices in GS and GV , respectively, the time complexity of signature generation
is O(n1k) + O(n2k). The verification process also requires the same time.

For a given graph G with n internal vertices, let ν(n) be the width of the associated
poset. Table 1 shows that, for a given G of n internal vertices, there are ν(n) compatible
minimal allowable sets. By optimizing n and the structure of the graph, ν(n) can be
increased and hence the scheme can achieve the best possible efficiency in terms of signature
size and computational costs.

Table 1. Table of n and ν(n).

n ν(n) n ν(n)

4 2 18 66
6 5 20 86
8 8 22 117
10 14 24 147
12 20 26 190
14 33 28 232
16 45 30 289

The size of the chameleon signature σ depends on the length of r
′

and the length
of λ. The length of λ depends on n1—the number of internal vertices of GS and the
length of r

′
depends on the length of the output of the hash function H which is of k bits.

The minimal allowable sets in the maximal antichain of the proposed graph construction
in Algorithm 1 contain either n1

2 or n1
2 + 1 edges. Hence, λ consists of values of either n1

2
edges or n1

2 + 1 edges, where each value is of k-bits. Therefore, the maximum size of the
signature σ = ( n1

2 + 1)k + k = ( n1
2 )k + 2k.

Few chameleon signature schemes are constructed by combining different chameleon
hash functions proposed in [2,4,18] with the standard signature algorithms (RSA, DSS,
etc.) of the same public key settings, and the comparison of those schemes with the
proposed work for the security level of 80 bits is shown in Table 2—for instance, the hash
function defined in [19] and the pseudorandom generator defined in the [19] proposed
scheme. The hash function H : {0, 1}2k → {0, 1}k is defined by H(x) = Ax mod q,
where A ∈ Zn×2k

q and pseudorandom generator PG : {0, 1}k → {0, 1}2k is defined by
PG(x) = (gB(s, x), gB(s, x)), where gB(s, x) = Bs + x mod q for B ∈ Zn×k

q and a fixed
secret s ∈ Zk

q . In order to get 80-bit security, one needs to set the parameters of the
functions k, n and q as k = n log q and q = n2 as suggested by Micciancio Daniele in [20].
To achieve comparable security, we set the discrete logarithm based schemes p = 1024 and
q = 160 bits, and the RSA scheme’s RSA modulus to 1024 bits. The suggested quantum
resistant system’s signature size is also compared to that of a quantum resistant lattice-
based chameleon signature technique [13]. The parameters q = 100,000,007 and n equals
the security level λ are used to determine the signature size, as indicated in [13]. The
comparison results in Table 2 show that the signature length of the proposed scheme is
larger than that of non-quantum schemes. This cost can be considered as the price for the
proposed scheme to be quantum safe. In addition, the proposed scheme is key-exposure
free and its signature length is smaller when compared to the existing quantum resistant
chameleon signature scheme proposed in [13].
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Table 2. Comparison of the proposed HBCS scheme with existing chameleon signature schemes.

Scheme System Hard
Problem

Signature
Size (Bits) KE QS

Krawczyk et al. [2] Num.-based DLP 480 Yes No

Ateniese & de Medeiros [18]
+ RSA Num.-based IFP 2048 Yes No

Ateniese & de Medeiros [4]
+ DSS Num.-based DLP 640 No No

Xie Dong et al. [13] Lattice-based SIS 5× 109 No Yes

Proposed HBCS Hash-based PR 1× 104 No Yes
Num: Number Theory, KE: Key Exposure, QS: Quantum Safe.

8. Conclusions

First, a new quantum-resistant hash-based chameleon hash technique with graph
configuration is proposed in this study. It meets all of the desired security requirements, in-
cluding collision resistance, semantic security, and key-exposure freeness. Second, utilizing
the suggested chameleon hash and a graph-based one-time signature method, a privacy-
preserving quantum-resistant chameleon signature technique is created. To the best of our
knowledge, it is the first scheme under hash-based cryptography that could satisfy the
quantum world’s requirement of privacy-preserving signatures. Furthermore, the compari-
son of the proposed scheme with the existing chameleon signature schemes shows that it
has a smaller signature length than the existing quantum-safe scheme.
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