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kluszcztroniny@gmail.com

4 PhD School, Silesian University of Technology, 2A Akademicka, 44-100 Gliwice, Poland
* Correspondence: ilona.karpiel@itam.lukasiewicz.gov.pl

Abstract: The purpose of this article is to present diagnostic methods used in the diagnosis of scoliosis
in the form of a brief review. This article aims to point out the advantages of select methods. This
article focuses on general issues without elaborating on problems strictly related to physiotherapy and
treatment methods, which may be the subject of further discussions. By outlining and categorizing
each method, we summarize relevant publications that may not only help introduce other researchers
to the field but also be a valuable source for studying existing methods, developing new ones or
choosing evaluation strategies.

Keywords: spine; diagnostic imaging; computer analysis; artificial intelligence diagnosis; scoliosis;
spinal curvatures

1. Introduction

Scoliosis is defined as a three-dimensional spinal deformity consisting of a lateral
curvature greater than 10 degrees with rotation of the vertebrae within the curve. It can
be identified as congenital, neuromuscular or idiopathic. Idiopathic scoliosis (IS) can be
further classified by age of onset: infantile (birth to two years), juvenile (three to nine
years), and adolescent (10 years and older) (Figure 1). It is the most common pediatric
musculoskeletal disorder that causes a three-dimensional (3D) spinal deformity [1]. The
deformity is always 3D because it also involves an axial rotation of the vertebrae, not just
displacement and rotation in the frontal plane. Adolescent IS is the most common form
because the spinal deformity evolves during periods of significant physical growth [2].
IS is diagnosed when other etiological factors cannot be identified, such as congenital
neurological or musculoskeletal anomalies, or inflammatory or demyelinating processes
leading to primary or secondary motor neuron damage (myotonia, myopathy, etc.) [3,4].

The purpose of this research is to provide a brief review of diagnostic methods
currently used in the diagnosis of scoliosis. This article aims to point out the advantages
of select methods, which may be a valuable source of knowledge for future researchers.
This article focuses on general issues without elaborating on problems strictly related to
physiotherapy and treatment methods, which may be the subject of further discussions.

This paper is organized as follows: The first section (the Introduction section) provides
a brief definition of scoliosis. The second section presents a brief historical background and
traditional diagnostic methods. The third to sixth sections present methods of imaging and
evaluation of scoliosis, including surface topography, raster topography, X-ray, magnetic
resonance and computed tomography. The seventh section presents artificial intelligence
methods for the detection of scoliosis. Section 8 describes open databases available for
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scoliosis detection. A short discussion of the methods presented is included in Section 9,
and the conclusions are presented in Section 10.
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Figure 1. (a) A 4-month-old boy born small for gestational age, at 37 weeks, who presented initially 
with asymmetry of both the left and right aspects of the anterior and posterior chest and confirmed 
thoracolumbar scoliosis and vertebral anomalies based on plain radiography with a Cobb angle 
measurement of 30 degrees, (Case courtesy of Sonal Desai, Radiopedia.org, rID: 63310 under Crea-
tive Commons License (CC BY 3.0).) [5]; (b) X-rays of a girl with juvenile idiopathic scoliosis, (Case cour-
tesy of Dr Jeremy Jones, Radiopaedia.org, rID: 89566 (CC BY 3.0).) [6]; and (c) severe left thoracic adoles-
cent scoliosis, (Case courtesy of Dr Jeremy Jones, Radiopaedia.org, rID: 89456 (CC BY 3.0).) [7]. 

2. Historical Background—Traditional Methods of Measuring the Degree of Spinal 
Curvature 

Historically, scoliosis was analyzed using inclinometers, pantographs, and even plas-
ter casts of the back [8]. Torsion-like growth changes occur both in the spine and through-
out the trunk under the influence of modeling the loading and pulling forces by muscles 
and ligaments [9,10]. 

The primary diagnostic procedure used to monitor and assess the severity of scoliosis 
is spinal radiography. It is the gold standard for assessing spinal deformity but has nega-
tive long-term effects. One of the earliest methods was proposed in 1930 by Ferguson [11], 
who evaluated the deformity by determining the angle between the two straight lines that 
connect the centers of the end vertebrae with the center of the apical vertebra. Another 
similar method used to estimate the degree of scoliosis on a radiograph was proposed in 
1948 by Cobb [12]. It consists of locating the most tilted vertebrae above and below the 
apex of the curve and measuring the angle between intersecting lines drawn perpendicu-
lar to the top edge of the top vertebrae and the bottom edge of the bottom vertebrae. The 
Cobb angle measurement has become the quantitative standard for recognizing and ob-
serving symptoms in scoliosis patients [13] (Figure 2). 

Figure 1. (a) A 4-month-old boy born small for gestational age, at 37 weeks, who presented initially with asymmetry of both
the left and right aspects of the anterior and posterior chest and confirmed thoracolumbar scoliosis and vertebral anomalies
based on plain radiography with a Cobb angle measurement of 30 degrees, (Case courtesy of Sonal Desai, Radiopedia.org,
rID: 63310 under Creative Commons License (CC BY 3.0).) [5]; (b) X-rays of a girl with juvenile idiopathic scoliosis, (Case
courtesy of Dr Jeremy Jones, Radiopaedia.org, rID: 89566 (CC BY 3.0).) [6]; and (c) severe left thoracic adolescent scoliosis,
(Case courtesy of Dr Jeremy Jones, Radiopaedia.org, rID: 89456 (CC BY 3.0).) [7].

2. Historical Background—Traditional Methods of Measuring the Degree of
Spinal Curvature

Historically, scoliosis was analyzed using inclinometers, pantographs, and even plaster
casts of the back [8]. Torsion-like growth changes occur both in the spine and throughout
the trunk under the influence of modeling the loading and pulling forces by muscles and
ligaments [9,10].

The primary diagnostic procedure used to monitor and assess the severity of scoliosis
is spinal radiography. It is the gold standard for assessing spinal deformity but has negative
long-term effects. One of the earliest methods was proposed in 1930 by Ferguson [11],
who evaluated the deformity by determining the angle between the two straight lines that
connect the centers of the end vertebrae with the center of the apical vertebra. Another
similar method used to estimate the degree of scoliosis on a radiograph was proposed in
1948 by Cobb [12]. It consists of locating the most tilted vertebrae above and below the
apex of the curve and measuring the angle between intersecting lines drawn perpendicular
to the top edge of the top vertebrae and the bottom edge of the bottom vertebrae. The Cobb
angle measurement has become the quantitative standard for recognizing and observing
symptoms in scoliosis patients [13] (Figure 2).

Radiologists always measure the Cobb angle using a protractor after manually se-
lecting the marginal vertebrae, which is presented in Figure 2. This angle is determined
by drawing a line tangential at the superior endplate of the upper extremity curvature
vertebra and at the inferior endplate of the lower extremity vertebra and then, lines per-
pendicular to each of the two lines at the most titled vertebrae [12,15]. The Cobb angle is
useful in evaluating the initial curve, in determining the increasing magnitude of curves,
and in deciding when surgical intervention may be most beneficial to the patient. The
accuracy of the Cobb angle measurement mainly depends on the subjective experience
of radiologists [13]. This method was used by many clinicians, and they presented the
results based on the measurement error. According to some researchers, this error can be
up to 11.8◦ [16]. Previously, measurements were made using a device called a Cobbometer,
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but the error was so large that it affected the diagnosis and treatment of patients with
scoliosis. Thus, other methods of measuring the Cobb angle are developed to better assess
the full three-dimensional spinal deformity with the modern imaging diagnostic techniques
that allow 3D reconstructions [17]. Both the Cobb and Ferguson methods are based on
manual identification of the end vertebrae. However, due to better reproducibility, easier
application, and the ability to measure larger angles for more severe spinal curvatures, the
Cobb method was preferred. The Cobb method has been standardized, and the key aspect
of “reproducibility” has been tested and confirmed in numerous studies [18–26].
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diagnosing scoliosis. (Case courtesy of Assoc Prof Frank Gaillard, Radiopaedia.org, rID: 49374, (CC 
BY 3.0).) [14] The Cobb angle is defined either as the angle between the tangential lines (angle a) or 
the angle between two lines drawn perpendicular (solid lines) to the tangents (angle b). 
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tests. It is a short, non-invasive, painless test that does not require the use of any instru-
ments and is often used by physiotherapists and orthopedists. During the test, the patient 
bends forward, and the physician stands behind their back and looks along the horizontal 
plane of the spine, seeking abnormalities of the spinal curve and estimating the angle of 
trunk rotation. Bunnel [27] proposed a simple handheld device called a scoliometer, which 
is often used to measure and evaluate the angle of trunk rotation during the Adams test 
and for screening purposes. In recent years, physicians have begun to notice that the de-
tection of scoliosis based on in-office Adams tests may be insufficient. A negative result 

Figure 2. Cobb angle measurement. Tangential lines are drawn from the superior endplate of
the superior vertebra and the inferior endplate of the inferior vertebra. The angle formed at the
intersection of these two lines is the Cobb angle. A Cobb angle of at least 10 degrees is necessary for
diagnosing scoliosis. (Case courtesy of Assoc Prof Frank Gaillard, Radiopaedia.org, rID: 49374, (CC
BY 3.0).) [14] The Cobb angle is defined either as the angle between the tangential lines (angle a) or
the angle between two lines drawn perpendicular (solid lines) to the tangents (angle b).

One of the simpler diagnostic procedures is the Adams Forward Bend test, which
was described by William Adams in 1865 and allows for an assessment of posture and the
possible determination of scoliosis. The Adams test belongs to the so-called functional tests.
It is a short, non-invasive, painless test that does not require the use of any instruments
and is often used by physiotherapists and orthopedists. During the test, the patient bends
forward, and the physician stands behind their back and looks along the horizontal plane
of the spine, seeking abnormalities of the spinal curve and estimating the angle of trunk
rotation. Bunnel [27] proposed a simple handheld device called a scoliometer, which is
often used to measure and evaluate the angle of trunk rotation during the Adams test and
for screening purposes. In recent years, physicians have begun to notice that the detection
of scoliosis based on in-office Adams tests may be insufficient. A negative result of this test
usually causes the doctor to disregard a diagnosis of scoliosis because this test can only
detect the disease when scoliosis is already quite advanced [28].

Surface deformation is recognized as not being able to accurately predict the severity of
scoliosis, especially in younger children. Bunnell [29] stated that, although the correlation
between clinical deformity and radiographic measurement is significant, the standard
deviation is so large that reliably predicting the degree of curvature based on surface
topography in a given patient is not possible using any technique. Still, in 2021, traditional
screening for scoliosis is performed using the Adams test, and the Cobb angle measurement
is considered the gold standard. Manual selection of vertebrae by clinicians consequently
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leads to inaccurate measurement accuracy. The result is affected by the choice of vertebrae
and the bias of different observers. Nonetheless, these methods, in combination with
modern imaging diagnostic techniques, can avoid or minimize the failures observed in
the past.

Nowadays, the field of medicine is strongly associated with medical informatics.
Almost every field of healthcare has been combined with different computer science
techniques, giving great results, helpful in the evaluation of many conditions. Computer
and software applications are great tools in the hands of physicians who know how to
use them properly. As a result, medicine is becoming an interdisciplinary science. Many
software applications are emerging to meet the needs of the medical community and
many professionals.

3. Surface Topography Imaging and Spinal Deformity Assessment

Body surface topography (ST) is a photogrammetric technique; it deals with the
reconstruction of shapes, sizes, and mutual positions of objects based on photogrammetric
images (photograms). ST involves imaging and analyzing the external contours of the
torso, usually from the backside of the subject. It has been successfully used to assess
trunk deformities in children with scoliosis, where the relationship between the angle of
spinal curvature and surface deformity is exploited. The undoubted advantages of ST
include the non-invasiveness and safety of the examination, fast and accurate assessments
of body posture in three planes of space, computer data storage and the acceptance of the
examination by school-age children and adolescents.

3.1. Moiré Method

The Moiré pattern technique, sometimes called the projection Moiré technique, is a
method of spatial photogrammetry (phototopography) that deals with the reconstruction
of shapes and positions as well as the measurement of spatial objects based on so-called
photograms, i.e., special photographic images. Moiré bars are a kind of arrangement of bars
created as a result of interference (overlapping) of two grids of lines rotated by a certain
angle or deformation (distorted with respect to each other). The development of the Moiré
method occurred in two directions: The traditional raster was replaced by an optical one,
which is a diapositive of stripes projected on the surface examined from a slide projector.
The second direction is associated with the development of modern computer techniques.

The general principle of obtaining information concerning the shape of the surface
with the use of the Moiré technique is based on an analysis of the image of a linear grid
(raster) displaced by optical means onto the examined surface [30]. A patient with scoliosis
has a characteristic difference between the contour lines of the two halves of the body.
Currently, the aim is to simplify and automate measurement methods; hence, an optical
raster (diapositive of stripes projected onto the body of the examined person) is used, and
a computer analysis of the image is obtained [31].

3.2. Raster Topography with Automatic Image Analysis

The development of computer techniques contributed to the method of raster topog-
raphy with automatic image analysis (also called raster stereography) [32]. The traditional
raster was replaced by an optical one, which is a diapositive of stripes projected onto the
examined surface from a slide projector. A special optical system with a camera captures
the image and transmits it to a computer.

3.3. Diers Formetic II 4D Optoelectronic Method

The Diers formetic II 4D optoelectronic method is harmless to the patient because
it does not use ionizing radiation. It provides rapid, non-contact and automatic (the
instrument detects specific anatomical landmarks without the use of markers) measurement
and analysis of the spine using a light-optical method. The instrument provides the
possibility to accurately calculate the midline of the spine as well as the rotation curve
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and excludes the most common measurement error, the so-called human factor. It is an
ideal alternative to invasive examinations also due to its availability, where it is perfectly
applicable before and immediately after therapy to evaluate the effects [33–35]. The
examination is characterized by high accuracy, and thanks to a direct view of the examined
area, the doctor can analyze it in real time.

The device for three-dimensional examination consists of two main parts. The first is
a digital video camera, and the second is a projector. The equipment emits measurement
beams and directs them to the patient’s spine. The data collected in this way are immedi-
ately transferred to a computer, and a special program creates a digital map of the indicated
body part. The obtained measurements can be used at a later stage to diagnose the problem
and to indicate the appropriate course of action in case of ailments. The three-dimensional
analysis of the spine can also be used for pregnant women.

4. Methods for Imaging and Evaluation of Scoliosis Using Radiography

Radiography, commonly called X-ray [36], is very important in imaging the spine. It
provides a basic image, giving a general picture of the possible two projections (anterior-
posterior (AP)/posterior-anterior (PA) and lateral (LAT)). At one time, X-rays of the spine
were very commonly performed, but over time, efforts have been made to limit patient
exposure to X-rays. Between 1935 and 1965, the incidence of breast cancer was almost
doubled [37]. Today, radiation doses are lower, but the number of x-rays that must be taken
of children during adolescence after/or during diagnosis is at least 12. Unfortunately, the
risk of cancer due to cumulative X-ray dose is several times higher in children than in
adults [38–40].

The development of technology and computerization allowed for the use of opto-
electronic methods to localize the problem of posture and body statics. Unfortunately,
the irreplaceable advantage of X-rays so far is the possibility of calculating the angle of
torsion using the Cobb method and observing morphological changes in the vertebrae. As
previously mentioned, an X-ray is an examination that carries harmful radiation, which
means that the diagnosis is usually stretched over time. Medical personnel are not able to
precisely determine whether the applied treatment process proceeds properly or whether
it brings the desired results. Therefore, the ideal diagnostic tool is computer diagnostic
methods; they are precise and non-invasive without the harmful effects of X-rays. Com-
puter methods testing the posture are of practical importance because they allow us to
catch the first signs of curvature. Additionally, they allow us to observe the patient’s
body in all planes and to localize the problem, which may not yet be visible to the naked
eye. Computerized methods of posture examination include the Moiré bar method, ISIS
method, Posturomet-S, Metrecom System method and Diers formetric III 4D optoelectronic
method [33,34,41–46].

5. Method for Imaging and Evaluation of Scoliosis Using Magnetic Resonance
Imaging (MRI)

Magnetic resonance imaging (MRI) is a non-invasive method that is finding more and
more applications, mainly in the development of specialized methods and sequences. The
test uses a hydrogen atom, which makes the magnetic resonance process possible because
it has a spin and a magnetic moment. The individual magnetic moments returned are
disordered, but when a strong external magnetic field (B0) is applied, the magnetic moment
returns are ordered—vectors parallel or anti-parallel to the main magnetic field. Atoms
with an odd number of protons and/or neutrons can be visualized as spinning charged
spheres with a small magnetic moment. An MR scanner has three magnetic fields that
interact with these spinning spheres, commonly called spins, namely, the main magnetic
field (B0), the radio frequency (RF) field (B1) and the gradient field (G). Under the external
influence of a magnetic B0, some of the spins are aligned with it and hence have a net
nonzero magnetic moment.

Following excitation by an RF pulse (B1), the net magnetization vector is tipped into
the transverse plane, where it rotates about the external field at the Larmor frequency,
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giving rise to the MR signal. A second action of the RF pulse causes the spins to become
aligned in orientation or to become phase coherent in the transverse plane. Over time,
it recovers back to equilibrium, with the individual spins returning to their parallel or
anti-parallel orientations and losing their phase coherence. As a result, it reforms along
the z-axis, parallel with the applied main magnetic field, and with a magnitude of M0.
This return to equilibrium is characterized by two orthogonal processes: longitudinal (T1)
and transverse (T2) relaxation, governed by the T1 and T2 relaxation time constants. T1
relaxation describes the recovery along the longitudinal (z) direction (with the T1 being the
time corresponding to the recovery of 63% of the equilibrium value), whilst T2 characterizes
the loss of phase coherence in the transverse plane (with the T2 time corresponding to the
loss of 63% of the initial value).

This signal is detected by specially designed RF coils and sent to a computer for
image reconstruction. The times at which the excited atoms of the tissues under study
return to equilibrium, or relaxation times, are represented by different shades of grey in
the image [47].

This phenomenon is possible because hydrogen is part of the water molecule, which
makes up 60–70% of the human body. Additionally, hydrogen is located in fat. The way
hydrogen is distributed in different parts of the body is a parameter that differentiates
different structures. Both the relaxation times and the density of protons affect the bright-
ness, which is the degree of grey obtained in an image. The examination is associated
with a strong magnetic field; for this reason, it is not recommended for patients with
metal implants. The health risks resulting from the examination are very small, usually
associated with the occurrence of allergic reactions immediately after the administration of
the contrast medium.

The second stage involves detecting the MR signal and reconstructing it to create an
image and is termed ‘acquisition’. Spatial encoding of the MR signal requires localization
in three dimensions. In single-slice Cartesian 2D imaging, one first excites the nuclear
spins in a thin slice, then plays a phase-encoding gradient pulse to impose a definite phase
relationship across an in-slice direction, and finally reads out the signal, while a linear mag-
netic field gradient is played in the perpendicular in-slice direction (frequency encoding).
This sequence of RF and gradient pulses is repeated for each phase encoding gradient, and
finally, a 2D Fourier transform of the acquired signal reconstructs the image [48].

Most of the modern diagnostic methods today are widely used in many specialty
fields. The fields of physics, computer science and medicine can be said to have been
combined. MRI can be performed on virtually any part of the body using an appropriately
selected sequence.

On the one hand, society is demanding greater accessibility for diagnostic support,
particularly related to MRI access and scoliosis assessment. MRI is used in the diagnosis
of patients with scoliosis primarily to evaluate neural structures and the shape of the
spinal canal. Of note, this examination should not be repeated more than once. The routine,
preoperative use of MRI remains controversial and current indications for MRI in idiopathic
scoliosis vary from study to study (e.g., early scoliosis) [49]. The literature suggests and
even excludes the use of MRI in specific cases such as routine preoperative MRI in idiopathic
scoliosis unless the patient has neurological deficits [50,51]. MRI are used in the suspicion
of congenital bone defects of the spine, e.g., Klippel-Feil syndrome, underdevelopment
of the vertebrae, semivertebrae, intermolar adhesions, adhesions of articular processes,
rib adhesions and bone blocks. Nerve bone defects, e.g., meningeal hernia (myelocele,
myelomeningocele), were also observed. In addition, in the diagnosis of the nervous
system, e.g., Recklinghausen’s disease, spinal tumors, syringomyelia, Arnold Charie’s
syndrome. MRI is also indicated for scoliosis with an atypical pattern (for example, left
thoracic scoliosis), in the diagnosis of congenital curvature of the spine and for concomitant
neurologic disorders to detect nervous system defects [52]. Scoliosis also causes a number
of dysfunctions in a person who is sick. In addition, diseases emerge from the formation
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of scoliosis, such as syringomyelia [53], vertebral segmentation anomaly, intramedullary
spinal tumor [54] or Chiari malformation [55].

Magnetic resonance imaging may be beneficial for patients with presumed idiopathic
scoliosis, and its non-invasiveness and precision contribute to improved diagnosis in the
youngest patients without unnecessary exposure to X-rays.

Measurement methods have evolved sequentially since about 2002, where Rogers et al. [56]
presented a method based on measuring intervertebral rotation in the lumbar spine. The
method has found application in both MRI and CT [57].

Unfortunately, because MRI scans are expensive, they have been limited to studies
of patients with congenital and severe curvatures [58]. Medicine of the 21st century is
more and more personalized, where we observe the development of dedicated implants. A
dedicated implant is a solution that is more and more often used in spine surgery when it
is necessary to recreate the correct curvature of the spine, which has been lost as a result of
degenerative disease, or as a result of a congenital defect or a complicated disorder of the
spine axis. Such a spine is unable to maintain a proper line and tilts to the side or rotates or
slides forward.

Materials from which the implants are made include polyetheretherketone (PEEK),
titanium [59], cobalt-chromium [60], or other materials, e.g., bio-absorbable materials.
The former is transparent to X-rays; therefore, these implants contain small radiographic
markers. Titanium implants, on the other hand, are visible on radiographs and safe in MR
imaging [61].

6. Computed Tomography (CT)

Although 2D images are still widely used in clinical research, advances in medicine
have led to the development of a new 3D technique, which has become an important
modern tool, obtained using computed tomography (CT) [62,63] and magnetic resonance
imaging (MRI). These methods are certainly being developed at a very fast pace, and
these methods are completely automated or semi-automated (requiring little intervention).
Computed tomography was quickly appreciated because of the difficulty of evaluating
X-ray images, which were usually taken in two projections. However, this did not give a
complete picture of the problem, and curvature assessment was not problematic.

Computed tomography has been successfully used to take cross-sectional images of
the body parts examined since 1973 (introducing tomographs to hospitals).

The 20th and 21st centuries tightened the procedures related to the use of X-rays,
introducing even more restrictions related to the application of radiological protection
to the patient. Due to the desire to limit radiation exposure, cross-sections are usually
made at the level of the border vertebrae, the vertebral column, and the pelvis [64]. With
the ever-increasing number of medical images, more and more methods that are fully
automated or semi-automated, i.e., requiring minimal manual intervention, have appeared;
however, they apply mainly to digital radiography X-rays. In contrast, in CT examinations,
the clinician must set adequate parameters to better check the disease or the degree of
scoliosis. The parameters should be optimized, and they require very good knowledge of
the influence of parameters on the results. Thus, using specially developed methods for
quantitative assessment of spinal curvatures that can improve medical diagnosis, treatment,
and management of spinal disorders is necessary and will support the work of doctors.

Enhancing the CT method with three-dimensional image processing is possible. This
allows for spatial imaging of the spine, the detection of spinal canal deformities, the
detection of congenital malformations of the spine, the visualization of the location of
spinal implants, and the assessment of the quality of spondylodesis. This examination
plays an important role in the choice of surgical technique.
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7. Artificial Intelligence (AI) As a Method for Detection of Scoliosis

Theories of artificial intelligence: neural networks mirror the behavior of the human
brain, enabling computer programs to recognize patterns and to solve common problems
in the fields of artificial intelligence, machine learning and deep learning.

Neural networks, also known as artificial neural networks (ANNs) or simulated neural
networks (SNNs), are part of the machine learning function and form the basis of deep
learning algorithms.

Artificial neural networks (ANNs) are composed of node layers that include an input
layer, one or more hidden layers and an output layer. Each node (artificial neuron) connects
to another and has an associated weight and threshold. If the output of a single node
exceeds a certain threshold, that node is activated when sending data to the next network
layer. Otherwise, no data are passed on to the next layer of the network.

How do neural networks work? Think of each individual node as a linear regression
model composed of inputs, weights, variations (or thresholds) and outputs. The formula is
thus as follows:

m
∑

i=1
wixi + bias = w1x1 + w2x2 + w3x3 + bias

Output = f (x) =
{

1 i f ∑ w1x1 + b ≥ 0
0 i f ∑ w1x1 + b < 0

General formula describing the operation of a neuron:

y = f(s)

where in:

S =
n

∑
i=o

xiwi

The activation function may take various forms depending on the specific model
neuron. After determining the input layer, weights are assigned. Neural networks can
be classified into different types and used for different purposes. The following list is not
exhaustive; however, it is representative and presents the most common types of neural
networks, with the oldest neural network being the perceptron, created by Frank Rosenblatt
in 1958, with one neuron, and is the simplest form of neural network.

• Unidirectional neural networks, i.e., multilayer perceptrons (MLP) (Figure 3), consist
of an input layer, a hidden layer(s) and an output layer. While these neural networks
are also commonly referred to as MLPs, keep in mind that they are actually sigmoidal
neurons, not perceptrons, as most real-world problems are non-linear. Data are used
to train these models. They form the basis of computer vision, natural language
processing and other neural networks.
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• Convolutional neural networks (CNNs) are similar to unidirectional networks but
are typically used for image recognition, pattern recognition and/or computer vision.
These networks use the principles of linear algebra, in particular, matrix multiplication,
to identify patterns in an image.

• Recursive neural networks (RNNs) are distinguished based on feedback loops.

7.1. Neural Networks and Deep Learning

The terms “deep learning” and “neural networks” are often used interchangeably,
which can be confusing. The word “deep” in “deep learning” only refers to layer depth in a
neural network. A neural network that consists of more than three layers-including inputs
and outputs-can be considered a deep learning algorithm. A neural network that has only
two or three layers is just a basic neural network. The structure and use of deep nets has
already been described in detail, which translates into the number of publications in the
PubMed database. One of the newer publications, which is an interesting and modern
comparison in the context of the discussed scoliosis, was presented by Chen et al. [65].

Between 2019 and 2021, the interest in artificial intelligence and methods such as
deep learning and machine learning has seen an unimaginable increase; for example, they
have begun to be used in the fight against COVID-19. The development of deep learning
algorithms and methods also contribute to the development of other imaging methods and,
consequently, diagnostics not directly related to COVID-19.

Traditional scoliosis screening methods are readily available but require referrals and
radiographic exposures due to their low positive predictive value. The use of deep learning
algorithms has the potential to reduce unnecessary referrals and, for example, scoliosis
screening costs.

Publications directly related to the application of AI in scoliosis diagnosis that has
appeared within two years are few thus far. The topic is evolving rapidly; however, the
techniques are not yet used in standard diagnostics.

Yang et al. [66] presented an algorithm to identify cases with a curvature ≥ 20◦ and
performed degree classification using uncovered back images with accuracy, sensitivity,
specificity and positive predictive values (PPV) that are higher or comparable with those
obtained by human experts. The use of algorithms can reduce the number of referrals,
costs and time required for traditional scoliosis screening. Additionally, because deep
learning algorithms (DLA) do not require radiation exposure, the method can be used as a
periodic tool to monitor disease progression, thus avoiding excessive X-ray exposure. To
our knowledge, this is the first large and complete study (including healthy control groups
and different degrees of curvature) on intelligent scoliosis detection. The effectiveness
of computer vision in scoliosis detection and classification has been demonstrated using
uncovered back images.

Machine learning methods have already been used to detect spinal deformities using
the torso surface defined by various techniques, including optical digitizing systems [67,68],
orthogonal maps, surface topography techniques [69], laser scanners [70,71] and the Quan-
tec system [72]. However, these methods still cannot be widely used due to the small
scoliosis datasets, a lack of healthy control groups, the need for specialized equipment
and the time-consuming nature of these methods. According to the authors, the above-
mentioned methods, excluding X-rays, are perfectly sufficient. Limiting X-ray images is
absolutely advisable and justified when specialists have alternative visualization methods.

7.2. Automatic Measurement Algorithm of Scoliosis Cobb Angle Based on Deep Learning

Zhang et al. [73] proposed a computer-aided Cobb angle measurement method based
on Hough transform, which can automatically calculate the Cobb angle after manually
selecting the region of interest (ROI) of the end circles and adjusting the brightness and
contrast of the X-ray images. The Hough transform is based on the detection of regular
shapes in computer vision. It is a special case of Radon transform known since 1917. The
subject has developed relatively rapidly. In the paper by Samuvela et al. [74], an algorithm
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was presented to measure the Cobb angle. The algorithm was based on segmentation by
applying a so-called mask. In another paper, Zhang [75] proposed an algorithm based on a
deep neural network that can automatically estimate the slope of the spine after manually
selecting the block of interest in the upper and lower vertebrae and can automatically
measure the Cobb angle. Moreover, programs were also designed to measure the angle
and improve the efficiency of radiologists [76,77]. As it turned out, the programs improved
the efficiency of angle measurement; however, the upper and lower extremities of the
vertebra had to be selected manually, which was time-consuming and subjective. This
problem caused the development of more precise and stable methods. Image processing
algorithms were improved, e.g., machine learning target detection algorithms [78] and
algorithms for automatic image segmentation [79]. Thus, over several years, the methods
have improved. The methods described above are related to the subjective experience of the
clinician and contributed to the high measurement error of Cobb angles on scoliosis X-rays.
Yongcheng et al. [80] proposed an automatic algorithm based on deep learning [81]. For
spinal contour segmentation, they proposed DU-Net detection and segmentation network
on spinal X-rays. The aggregated channel features in the detection algorithm are fed into
the scoliosis image to detect the spine region. DU-Net is trained to segment the spinal
contours. Therefore, the spine curve can be fitted to the spine contour, and the Cobb angle
can be automatically measured using the tangent line of the spine curve. As a result, the
Cobb angle automatic measurement method yields an average error of 2.9◦ compared with
the orthopedist’s manual measurement.

Earlier methods of scoliosis evaluation based on segmentation consisting of filter-
ing [73,82], active contouring [83] and physical models [84] localize the required vertebrae
and calculate Cobb’s angle. These methods require the user to select circles, which is
a limitation of these methods. As of 2021, no benchmarks, procedures or workflows
have emerged to standardize the analysis performed and the selection of methods and
algorithms.

In recent years, direct estimation methods [85–87], which aim to obtain relationships
between medical images and clinical measurements directly without segmentation-based
results, have achieved great success; they have been applied to measure scoliosis [85–87].
Unfortunately, these methods account for the basic relationship between AP and LAT
X-rays but do not account for the unique features of AP and LAT projection images. Due to
these limitations, Wang et al. [88] proposed an automated Cobb angle estimation method
for scoliosis assessment using MVE-Net. They presented that MVE-Net effectively utilizes
joint features and independent features in X-ray images from multiple perspectives. MVE-
Net achieved high precision in Cobb angle estimation on both AP and LAT images in a
large dataset of 526 X-ray images with different degrees of scoliosis. The computational
method is also extendable to other clinical applications for high precision estimation.

Deep learning algorithms (DLAs) from CNNs, which have been applied to the de-
tection of idiopathic scoliosis, were developed using 2D images [66] or Moiré topogra-
phy [17,89,90]. Kokabu et al. [91] modified their system [92] to predict the Cobb angle even
more accurately, which they successfully presented in their current publication.

8. Open Databases—Spine/Scoliosis Images

Despite a fair amount of publications on the topic of scoliosis as well as on the
comparison of different methods, new papers continue to appear that are more and more
accurate, structured and clear. One recent paper that appeared in early 2021 is truly
recommendable and deals with the comparison of two current issues, scoliosis and machine
learning in scoliosis diagnosis [93]. With the explosive growth of learning techniques
and the topic of artificial intelligence in general, we decided to cover the databases that
are essential for research towards artificial intelligence and scoliosis diagnosis. Several
listed databases for medical diagnosis are free and are used by researchers around the
world, including:
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• PhysioNet (accessed on 1 December 2021)
• National Institutes of Health (NIH), e.g., https://clinicaltrials.gov/ct2/home, https://

www.clinicaltrials.gov/ct2/show/NCT00448448?term=NCT00448448&rank=1 and
https://www.niams.nih.gov/health-topics/scoliosis (accessed on 1 December 2021)

• Radiopaedia.org (accessed on 1 December 2021)
• ieee-dataport.org (accessed on 1 December 2021)
• https://stanfordmlgroup.github.io/competitions/mura/
• sethu.ac.in (accessed on 1 December 2021)
• boxdicom.com/samples.html (accessed on 1 December 2021)
• Biomedia (accessed on 1 December 2021)

When conducting this review, we noted the relative difficultly of acquiring data in
the form of DICOM files of the spine in AP or LAT projection, CT and MRI. In the search
process, we found “SpineWEb”, which is a database that contains several collections, and
about 50 publications have already used their data [79,85,87,88,93–125]. A table (Table 1)
focusing on the most important and current titles of publications created based on the
“SpineWEb” database was prepared. It was divided into data quantity, algorithm, goals
and results. Although vertebrae detection has been studied for years, reliably recognizing
vertebrae from arbitrary spine MRI and TK images still remains a challenge.

Table 1. Publications on spine image analysis based on “SpineWeb” (years 2019–2021).

Study/Number of Data Algorithms Applied Objectives Outcome Presentation

Liansheng W. [93]
707 spinal AP
X-ray images

U-net

Top eight methods from twelve teams
(including intuition, workflow, and

implementation). Experimental
results show that, overall, the best
performing method achieved an

asymmetric mean absolute
percentage (SMAPE) of 21.7%.

Quantitative measurement
of the spine.

Liyan L. [116]
895 axial spine MRI

images from
143 patients

OSBP-Net, IPDC,
and IICR

Applied to the output of the SFEs,
taking into account that the activated

regions in the feature maps of two
paths should be

theoretically different.

The prediction results,
comparison with many

other CADq models

Shen Z. [123]
450 MRI scans

Can-See is a two-step detection
framework:

(1) A hierarchical proposal net-
work (HPN) to perceive the
existence of the vertebrae.

(2) A category-consistent
self-calibration recognition
(CSRN) network used to
classify each vertebra and
to refine their bounding
boxes.

Category-consistent self-calibration
recognition system (Can-See) used to

accurately classify the labels and
precisely predict the bounding boxes

of all vertebrae with improved
discriminative capabilities for

vertebrae categories and
self-awareness of

false-positive detections.

Can-See achieves high
performance (testing

accuracy reaches 0.955)
and outperforms other

state-of-the-art methods.

Zhongyi H. [113]
253 clinical patients

Neural-symbolic
learning (NSL)

framework

Compares the semantic segmentation
ability of a neural symbolic learning

framework (NSL) with several
state-of-the-art semantic

segmentation networks (FCN,
SegNet, DeepLabV3+,

U-Net, Spine-GAN, GN-SGR,
AGN-SGR, and AGN-DN).

NSL can directly generate
radiologist-level diagnosis
reports (using two steps)

in spine radiology.

PhysioNet
https://clinicaltrials.gov/ct2/home
www.clinicaltrials.gov/ct2/show/NCT00448448?term=NCT00448448&rank=1
www.clinicaltrials.gov/ct2/show/NCT00448448?term=NCT00448448&rank=1
https://www.niams.nih.gov/health-topics/scoliosis
https://www.niams.nih.gov/health-topics/scoliosis
Radiopaedia.org
ieee-dataport.org
https://stanfordmlgroup.github.io/competitions/mura/
sethu.ac.in
boxdicom.com/samples.html
Biomedia
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Table 1. Cont.

Study/Number of Data Algorithms Applied Objectives Outcome Presentation

Dong Z. [118]
240 subjects

Sequential conditional
reinforcement learning (SCRL).
SCRL coordinates three major

components (AMRL, Y-Net and
FC-ResNet)

Propose a sequential conditional
reinforcement learning network

(SCRL) to tackle the simultaneous
detection and segmentation of VBs

from MR spine images.

SCRL achieves accurate
detection and

segmentation results,
where on average, the
detection IoU is 92.3%,
segmentation dice is

92.6%, and classification
mean accuracy is 96.4%.

Yanfei H. [117]
200 subjects

MMCL-Net:

(1) The densely dilated ResNet,
(2) The deep convolution level

set module,
(3) The instance feature merge

module combines the global
features extracted by DDRN
and the local features ob-
tained by segmentation

Novel end-to-end multi-task
multi-structure correlation learning

network (MMCL-Net) for the
detection, segmentation and

classification (normal, slight, marked
and severe) of three types of spine
structure: disc, vertebra and neural

foramen simultaneously

MMCL-Net achieves high
performance with a mAP
of 0.9187, a classification

accuracy of 90.67%, and a
dice coefficient of 90.60%.

Liyan L. [116]
895 axial spine MRI

images from
143 subjects

Dense enhancing
network (DE-Net)

Dense enhancing network (DE-Net),
which uses the dense enhancing
blocks (DEBs) as its main body.

All deep learning models
obtain very small

prediction errors, and the
proposed DE-Net with

CSDPR acquires the
smallest error among

all methods.

Ranran Z. [115]
407 subjects

Multi-task relational learning
network (MRLN)

A dilation convolution group is used
to expand the receptive field, and

LSTM (long short-term memory) to
learn the prior knowledge of the
order relationship between the

vertebral bodies.

The accurate
segmentation, localization

and identification of
vertebrae.

Jiawei H. [112]
320 axial lumbar MRIs BS-ESNet

For the first time:

(1) segmentation of the multiple
paraspinal muscles and other
major spinal components on
axial lumbar MRIs simultane-
ously at both upper and lower
spinal levels is achieved.

(2) Boundary sensitive network
provides a novel segment-then-
detect workflow, which is ro-
bust to unclear organ bound-
aries and can further simplify
multi-organ detection as an
end-to-end trainable process;

(3) Explicit saliency-aware net-
work provides an elaborately
designed architecture, which
can utilize detection b-boxes
to automatically correct and
enhance segmentation features
in an explicitly supervised
manner and facilitates the
adaptation of variable precise
anatomical structures.

Proposal an explicit
saliency-aware learning

framework for
segmentation of

paraspinal muscles at
varied spine levels.
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Table 1. Cont.

Study/Number of Data Algorithms Applied Objectives Outcome Presentation

Heyou Ch. [114]
292 MRI scans

A spatial graph convolutional
network (GCN)

The proposed method is trained in
an end-to-end.

Method achieves high
performance (89.28 ± 5.21)
of IDR and (85.37 ± 4.09%)

of mIoU) from arbitrary
input images.

Shen Z. [124]
none

Adversarial recognition (FAR)
network

Network to accurately perform
spondylolisthesis grading by
excellently detecting critical

vertebrae without the need for
locating landmarks.

Training accuracy:
0.9883 ± 0.0094, testing

accuracy: 0.8933 ± 0.0276
for MRI images of different

modalities, which can be
attributed to the excellent
critical vertebrae detection

(detection mAP75 for
training: 1 ± 0, for testing:
0.9636 ± 0.0180, and IoU
(intersection-over-union)

≥ 0.9/0.8 for most
detections with their

corresponding ground
truth in the

training/testing dataset).

Liansheng W. [88]
526 X-rays MVE-Net

Proposed multi-view extrapolation
net (MVE-Net) that provides
accurate automated scoliosis

estimation in multi-view (both AP
and LAT) X-rays.

Experimental results on
526 X-rays show 7.81 and

6.26 circular mean absolute
error in AP and LAT angle
estimation, which shows
the MVE-Net provides an

accurate Cobb angle
estimation in

multi-view X-rays

Shen Z. [123]
none

Faster adversarial
recognition (FAR)

Proposed faster adversarial
recognition (FAR) network to

accurately perform spondylolisthesis
grading by excellently detecting

critical vertebrae without the need
for locating landmarks.

training accuracy:
0.9883 ± 0.0094, testing

accuracy: 0.8933 ± 0.0276
for MRI images of different

modalities, which can be
attributed to the excellent
critical vertebrae detection

(detection mAP75 for
training: 1 ± 0, for testing:
0.9636 ± 0.0180, and IoU
(intersection-over-union)

≥ 0.9/0.8 for most
detections with their

corresponding ground
truth in the

training/testing dataset).

Shumao P. [111]
MR images of
215 subjects

Cascade amplifier regression
network (CARN)

Proposed novel cascade amplifier
regression network (CARN) with
manifold regularization including
local structure-preserved manifold

regularization (LSPMR) and
adaptive local shape-constrained

manifold regularization (ALSCMR)
to achieve accurate direct automated

multiple indices estimation.

Proposed approach
achieves impressive

performance with mean
absolute errors of

1.22±1.04 mm and
1.24 ± 1.07 mm for the
estimation of 30 lumbar

spinal indices of the
T1-weighted and

T2-weighted spinal MR
images, respectively.
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9. Discussion

Forward bending tests, scoliometer measurements and individual Moiré topography
are just some of the possibilities that unfortunately have various disadvantages that may
have a direct impact on the diagnosis of patients. The disadvantages of these methods are
considerable and include susceptibility to the subjectivity of the examiners and high time
consumption, and we point out the need to perform radiography, which can have a direct
negative impact on human health through the action of X-rays.

As presented in the literature [126,127], the possibilities of a quantitative assessment
of spinal curvature have not yet been fully explored, thus leaving room for further improve-
ment. Different papers/studies use different statistical methods and reproducibility of the
chosen method, making it difficult to compare results. The so-called open databases, which
can serve as a reference in some studies, thus become helpful. In this way, researchers have
more methods of comparing the results and of gathering a large database that can be used
in the next stage of research related to the application of artificial intelligence.

Artificial intelligence seems to be solving most problems connected to the repeatability
of measurements or bias of researchers. Additionally, segmentation-based methods suffer
from multiple error transmission because these methods are based on previous segmenta-
tion (manual or automatic) and then measure scoliosis based on this segmentation.

Typing “deep learning scoliosis” into the PubMed database, we found 14 results
within the last 5 years. Although the method itself has been known for several decades, it
has not yet found widespread use in the diagnosis of scoliosis. Soon, the interest in the use
of artificial intelligence will increase.

10. Conclusions

Currently, the development of computational methods and their implementation in
medicine contributes to improvements in health care procedures. The methods discussed
often save time and, importantly, minimize human errors. Still, methods for assessing the
curvature of the spine are developing dynamically, and many scientists are working on
inventing a fully computerized method for quantitative assessment of curvature. At the
moment, despite the advanced tools, we encounter a significant lack of repeatability of the
results and the use of, for example, different statistical methods, which makes it difficult to
compare the results. A good solution seems to be the creation of a database with exemplary
reference values, which is missing at the moment.
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