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Abstract: We introduce a set of input models for fusing information from ensembles of wearable
sensors supporting human performance and telemedicine. Veracity is demonstrated in action classifi-
cation related to sport, specifically strikes in boxing and taekwondo. Four input models, formulated
to be compatible with a broad range of classifiers, are introduced and two diverse classifiers, dynamic
time warping (DTW) and convolutional neural networks (CNNs) are implemented in conjunction
with the input models. Seven classification models fusing information at the input-level, output-
level, and a combination of both are formulated. Action classification for 18 boxing punches and
24 taekwondo kicks demonstrate our fusion classifiers outperform the best DTW and CNN uni-axial
classifiers. Furthermore, although DTW is ostensibly an ideal choice for human movements experi-
encing non-linear variations, our results demonstrate deep learning fusion classifiers outperform
DTW. This is a novel finding given that CNNs are normally designed for multi-dimensional data
and do not specifically compensate for non-linear variations within signal classes. The generalized
formulation enables subject-specific movement classification in a feature-blind fashion with trivial
computational expense for trained CNNs. A commercial boxing system, ‘Corner’, has been produced
for real-world mass-market use based on this investigation providing a basis for future telemedicine
translation.

Keywords: sports biomechanics; human performance; motion tracking; wearable sensors; IMUs;
sensor fusion; DTW; CNNs; deep learning

1. Introduction

Mechatronic systems recognizing human activity are now fundamental components
in biophysical analysis, with strong impact in fields such as physiotherapy, telemedicine,
smart homes, rehabilitation, human-robot interface, and athletics (e.g., [1–8]). A wide
range of activity-aware systems including smart phone apps (e.g., Galaxy Moves App,
iPhone Moves App, iPhone Health Mate App, iPhone Fitbit App), athletic wearables (e.g.,
Nike Fuelband, Jawbone UP24, Fitbit Flex, Fitbit One, Fitbit Zip, Digi-Walker SW-200)
and fall detection devices (e.g., Philips Lifeline, Lively Mobile, Sense4Care, Angel4) are
commercially available today. Despite this range, most wearables remain limited to simple
metrics such as step count, heart rate, and calories expended [9]. Though initial sales are
promising, a staggering 1/3 of users abandon wearable devices [10], speaking to obvious
challenges in transience and sustainability.

Sensors 2021, 21, 8409. https://doi.org/10.3390/s21248409 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1013-3221
https://orcid.org/0000-0002-9625-4544
https://doi.org/10.3390/s21248409
https://doi.org/10.3390/s21248409
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21248409
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21248409?type=check_update&version=2


Sensors 2021, 21, 8409 2 of 26

There is a significant need for systems that go beyond base movement metrics. Specific
action classification and performance feedback on extremity movement in real-time [4,6,9,10]
is in very high demand. In controlled or prepared environments, such information can be
obtained with optical/camera systems, (e.g., ViconTM-Vicon, Denver, CO, USA) which
have the benefit of high accuracy, but are also costly, non-portable, vulnerable to camera
occlusion, and are challenging in the field. A smaller body of work has addressed these
limitations with wearable vision systems (surveyed in [8]), however a robust compact
system capable of tracking limb movements in the field has not been realized for large
sets of classification problems. Generalizability to new or individual classes of movements
without manual or bespoke feature extraction is critical for transition between types of
action classification and personalized performance assessment.

Smaller systems such as inertial measurement units (IMUs) surmount issues of porta-
bility, occlusion, and price, yet demand signal fusion to provide information on movement
beyond simple metrics such as step count. Recent innovation has surmounted this gap
with learning algorithms fusing inertial data in specific applications. Examples include:
treatment of neural dysfunction such as stroke [1] or Parkinson’s Disease [11], motion
recognition in smart homes [5], athletic training parameterized for specific sports [3], and
artificial limb/robotic control [7]. Despite these advances, translation for widespread use
demands less reliance on specific features of movement in one arena. Complex recognition
problems and individual variance in movement classes must be addressed [5]. Activity
recognition with no reliance on ‘hand engineered’ feature identification is challenging
due large variability in motor movements for a given action. This necessitates broader
classes of learning [12] and the capacity to fuse ensembles of individualized heterogeneous
data [3,5,6,9,13]. Sensors, embedded systems, and cloud connectivity have evolved the
field from a ‘device’ to a ‘systems’ perspective [9]; algorithms, hardware and IoT are
fundamentally coupled, and must be treated as an integrated whole. Finally, real-world
use demands algorithms be computationally efficient enough for real-time use, ideally as
embedded systems on low-power edge devices (e.g., wearables) that may function through
communication gaps in the field [14].

2. Materials and Methods
2.1. Scope of Work

In this investigation, we introduce a set of models to fuse information from wearable
sensors to learn broad classes of human movement without dependency of any assessed
features of that movement. The models are formulated generically, then validated in two
sport applications. We have selected dynamic time warping (DTW) and convolution neural
network (CNN) classifiers for the development of movement classification systems. The
primary reason for selecting these two methods is that the multi-axial signals can be fed
directly into our fusion classifiers without having to extract “hand-engineered” features.
Consequently, DTW and CNN classifiers do not suffer the main drawback of classifiers
that use hand-engineered features whose performance is highly dependent on the choice
of the extracted features. Moreover, the selection of a set of features for a given problem is
more of an art than science.

It is well known that human movements experience non-linear trial-to-trial variations
which typically include expansions and/or compressions in signal segments and latency
shifts in the peaks. DTW classifiers are a clear choice because they are specifically de-
signed to handle such non-linear variations in one-dimensional signals through non-linear
alignment [15–29]. Furthermore, the DTW classifiers can also serve as benchmark for
comparing performance between classifiers. CNNs are not an obvious choice because they
are primarily designed to classify two-dimensional and multidimensional data such as
images in computer vision. Recent studies, however, have shown that CNNs can also be
used to classify multivariate time series [30–33] and human-activity activity recognition
problems using multi-modal sensors [34–39] through the generation of images [33,38] or
by combining uni-axial signals into matrices [36,37,39]. However, the tolerance of CNNs
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to non-linear signal variations and the exploitation of coupling between uni-axial signals
have not been specifically addressed in the detailed manner as described in this study.

2.2. Multisensor Fusion Validation Application: Combat Sport

We have chosen to test and validate our fusion classifier models in combat sport
given the diversity of arm and leg movements, the fact that movements are representative
of those necessitating multi-axial recognition, and the capacity to collect and test large
sets of meaningful data. The use of IMUs in combat sports has grown in recent years
(reviewed in [6]), though existing approaches tend to be focused on metrics or specific
signal features. In general, classification systems that exploit information from ensembles
of multi-axial sensors are capable of improving, quite significantly, the performance over
uni-axial classifiers [40–45]. However, multi-sensor classifiers tend to be more complex
because of the need to incorporate fusion methods to combine “information” from the
multiple sensors. The fusion methods can be divided into “input-level fusion” and “output-
level” fusion. For input-level fusion, also called early fusion, the information can be input
data or features extracted from the data. The information in output-level fusion, also called
late fusion, is typically the decisions of the uni-axial classifiers or some measure at the
outputs of the uni-axial classifiers.

The fusion models developed in this study for classifying combat sport movement are
formulated generically and then validated by classifying 24 classes of kicking movements
in taekwondo and 18 classes of punching movements in boxing. To our knowledge this
is the first set of generalized non-feature specific models demonstrated on such a large
number of classes in either activity [6].

2.3. Investigation Goals

Our first goal is to introduce data input models which: (a) facilitate fusion of informa-
tion at the input and output levels and (b) are generalizable for use in conjunction with a
broad range of diverse classifiers. The second goal is to design DTW and CNN classifiers
for human movement identification using these input models. The third goal is to design
experiments to classify boxing and taekwondo strikes. The final goal is to compare the
DTW and CNN-based classification systems with respect to accuracy, complexity, flexibility,
and the potential to obtain further improvements in performance. We offer these findings
as a basis for translation of wearables for a range of human performance and healthcare
applications.

2.4. Orginisation of Paper

Section 3 describes the four movement classifier input models. Sections 4 and 5
describe the DTW and CNN models that are used in conjunction with the input models.
Section 6 describes data collection and the strike movements for the validation studies
in combat sports. Section 7 outlines classification results for 24-class kicking and 18-class
punching movements. Section 8 briefly describes translation to a commercial product
as evidence of novelty and impact while Section 9 summarizes conclusions from the
investigation.

3. Classifier Input Models

We propose four input models, which differ in the way the multi-axial sensor signals
are presented as inputs into the subsequent classification stages. The four classifier input
arrangements are summarized in Figures 1–4. The models can be contrasted by noting
the level of fusion incorporated in the models. In the formulations of the classification
models, a movement is represented by I and it is assumed that the movement belongs
to one of H movement classes, ωh, h = 1, 2, . . . , H. The models are assumed to have
G multi-axial sensors represented by Sg, g = 1, 2, . . . , G, and an output of sensor Sg is
represented by Sgm, m = 1, 2, . . . , mg, where, mg is the number of multi-axial outputs.
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The term “non-linear variations” will be used to encompass latency shifts (shifts in peak
positions) and expansions/compressions in signal segments.
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3.1. Vector Input (VI) Model

The VI model, shown in Figure 1, is straightforward because it does not involve
any form of input-level fusion. The figure simply shows the labeling of the sensors and
the sensor outputs. This model is suitable for systems that classify each uniaxial signal
sgm independently. The number of independent classifiers in such a system, therefore,
is MG = ∑G

g=1 mg. Systems using this input model need fusion at the output level to
determine the class of the movement signal. Of the four input models, the VI model is
the most versatile because the sensors can be heterogeneous and can have a different
number of axes. Furthermore, the sensor outputs can have different durations and do
not have be synchronized with respect to non-linear variations. However, the resulting
classifiers are the most complex because they require a classifier for each multi-axial signal
and output-level fusion to combine the information from the MG classifier outputs in order
to determine the input class.

3.2. Local Matrix Input (LMI) Model

The LMI model is designed for systems that classify the uniaxial outputs of each
sensor separately by fusing the signals of each sensor into a matrix as shown in Figure 2.
That is, the outputs of each multi-axial sensor Sg are fused into a local intra-sensor matrix

Zg(m, n), m = 1, 2, . . . , mg; n = 1, 2, . . . , ng (1)

where, ng is the duration of the outputs of sensor Sg (assumed equal in each sensor). The
number of matrices is equal to the number of sensors G. The intra-sensor matrix to classify
the signals of sensor Sg can be written as

Zg(m, n) = ∇mg
m=1sgm, g = 1, 2, . . . , G (2)

where, the fusion operation is represented by ∇. Each matrix can be classified indepen-
dently, and some form of output-level fusion can be applied to determine the class of the
movement signal. The resulting classification system, therefore, is a hybrid system which
includes both input and output-level fusion. This LMI input model is more restrictive than
the previous model because the multi-axial sensor outputs must the same durations within
each sensor (not across all sensors) in order to fuse them into a matrix. Moreover, the multi-
axial sensor outputs are assumed to experience synchronized non-linear variations within
each sensor. The advantage of the LMI model is that the number of classifiers is reduced to
G when compared with the MG classifiers needed in the previous VI model.
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3.3. Global Matrix Input (GMI) Input Model

The third model, involving only input-level fusion in the classifiers, is designed to
classify the uniaxial sensor signals of all sensors by fusing the signals into a global inter-
sensor matrix shown in Figure 3. The inter-sensor matrix is formed by fusing all multi-axial
outputs into a matrix Z(m, n), m = 1, 2, . . . , MG; n = 1, 2, . . . , N, where, N is the duration
of each sensor output (assumed equal). That is, each row of Z(m, n) is an output of a
multi-axial sensor. The global input matrix is, therefore, given by

Z(m, n) = ∇G
g=1∇

mg
m=1sgm (3)

This fusion operation is equivalent to fusing the LMI matrices into a matrix, therefore,
the global matrix can also be written as

Z(m, n) = ∇G
g=1Zg(m, n) (4)

Unlike the two previous models, classifiers using this input model do not require
output-level fusion because only a single classifier is needed to classify the global matrix.
However, it is important to note that the resulting classifier is more restrictive than the two
previous models because the following assumptions are made:

1. The multi-axial outputs have the same durations within and across all sensors in
order to fuse them into a global matrix.

2. The multi-axial sensor outputs experience synchronized non-linear variations within
and across all sensors.

3.4. Global Cuboid Input (GMI) Input Model

If the number of uniaxial outputs and the output durations of all G sensors are
assumed equal, the LMI matrices can also be fused in a cuboid which can be represented by

Z(m, n, g) = ∆G
g=1Zg(m, n), m = 1, 2, . . . , M; n = 1, 2, . . . , N; g = 1, 2, . . . , G

where ∆ is the cuboid fusion operation, M is the number of uniaxial outputs of each sensor
and N is the duration of each uniaxial signal. This input model, shown in Figure 4, is the
most restrictive because it requires an additional condition to be met, viz., the sensors must
have an equal number of uniaxial outputs.

In summary, there is a trade-off between classifier complexity and flexibility using
the four input models. A suitable way to overcome the equal duration restriction is to
duration normalize the signals to have a common length through linear expansion or
compression. For example, the common length can be chosen to be the average duration
of all sensor outputs for the GMI model and the average of outputs of each sensor for the
LMI model. However, there is no simple way to overcome the non-linearity restriction and
the performance of the GMI and LMI models can be expected to drop if this assumption
is violated. The GCI model cannot be implemented if the number of outputs across all
sensors is not equal. Another issue to take into account is the similarity of the sensors. If
the sensors are heterogeneous, the heterogeneous signal amplitudes have to be normal-
ized, for example, using min-max normalization. Even if the sensors are homogeneous,
normalization within each sensor is also required to account for the varying ranges of the
uni-axial signal amplitudes.

The sections that follow present the formulations of three DTW based models and the
four CNN based models to classify multi-axial multiple-sensor movement signals using the
four input models. It can be shown that for the DTW implementations, the GCI model is
equivalent to GMI model, therefore, the GCI model is not implemented. A DTW classifier
is explicitly split into two operations: discrepancy computation and a decision rule. The
discrepancy computation operation determines the dissimilarity score between the aligned
test and reference signals of movements and the decision rule uses these discrepancy scores
to assign the test movement into one of the movement classes.
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4. Dynamic Time Warping (DTW) Classifier

DTW has been applied in numerous applications to measure the dissimilarity between
pairs of sequences that experience non-linear variations in the segments of the sequences.
A sample of applications employing DTW include speech recognition [19,23], shape recog-
nition [15,16,25], clustering [17,24], gene expression [26], financial time series matching [29],
and classifying human actions in sports [27]. In order to facilitate the understanding of the
formulations of the three DTW-based fusion models, a brief description of one, two, and
three-dimensional DTW algorithms follows next.

4.1. Dynamic Time Warping (DTW) Algorithms

Given a pair of signals X and Y and a local cost function w(k) to reflect the discrepancy
between the elements of X and Y, the goal of DTW is to determine an alignment function
W = {w(1), w(2), . . . , w(K)}, such that the overall normalized cost

AXY = (1/K)
K−1

∑
k=0

d[w(k)] (5)

is minimized subject to a set of end-point, monotonicity, and continuity constraints. AXY
is a measure of the discrepancy between signals X and Y after optimal alignment. The
most often used cost functions include the Euclidean, Manhattan, and Euclidean-squared
distance metrics. Dynamic programming is used to solve the optimization problem.

The steps to align one, two, and three-dimensional signals are quite similar except for
the computation of the local cost function. For example, if the Euclidean distance is used,
the cost function for the one-dimensional (vector) DTW algorithm is

d[w(k)] =||X(i(k))− Y(j(k)||. (6)

For the two-dimensional (matrix) case, the cost function is given by

d[w(k)] = ||X(:, i(k))− Y(:, j(k))|| (7)

where, the notation Z(:, t) is used to denote column t of a matrix Z. Note that the number
of rows in the two matrices must be equal but the number of columns can be different.
Similarly, the cost function for the three-dimensional (cuboid) extension is given by

d[w(k)] = ||X(:, i(k), :)− Y(:, j(k), :)|| (8)

where, the notation Z(:, t, :) is used to denote a depth-frame t of a cuboid Z. For this
case, the number of rows and depth of the two cuboids must be equal but the number of
columns can be different. Also note that cuboid alignment can also be implemented as
matrix alignment by fusing the height-width frames into an augmented matrix because
the resulting column-to-column cost function is equal to the frame-to-frame cost function.
However, the matrix alignment cannot be implemented as cubic alignment if the number
of rows in the frames are unequal. In this study which involves the classification of sensor
signals arranged as vectors, matrices, and cuboids, the corresponding DTW classifiers will
be referred to as V-DTW, M-DTW, and C-DTW, respectively.

In order to design a DTW classifier for a given problem, a reference template for each
pattern is typically estimated from the signals in their respective training sets. The sample
mean vector is used often because it best represents the signals in the training set in the
sense of minimizing the sum of squared distances from itself to the signals in the training
set. However, this does not necessarily imply that the sample mean is the best template
choice for a particular problem. Modified averaging procedures which take non-linear
variations into account have been proposed to generate templates that can be used in DTW
algorithms [18]. In fact, other measures of central tendency (C-T) such as the median,
Winsorized mean, trimmed mean, and tri-mean can also be used. What is important to note
is that a better C-T estimate does not necessarily result in a better template for classification
problems. Therefore, attempting to predict which C-T estimate will yield the best template
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for a given problem is not easy and the selection of a template is usually determined
through trial-and-error.

4.2. DTW Implementation of VI Model (DTW-1)

The DTW based classification model which uses the VI model is illustrated in Figure 5.
The model, referred to as DTW-1, consists of one independent V-DTW classifier for each
multi-axial sensor output. Therefore, the number of V-DTW classifiers is MG. The discrep-
ancy scores of the MG classifiers are fused through averaging in order to determine the
class of the impact signal.
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Discrepancy computation: The output of the V-DTW operator for the uni-axial signal
sgm is the discrepancy score vector Dgm =

(
dω1

gm, dω2
gm, . . . , dωH

gm
)
, where, dωh

gm is the discrep-
ancy between a test sequence sT

gm and the reference sequence sh
gm.

Output Fusion Rule: The discrepancy scores of the MG V-DTW operators are averaged
and the resulting averaged discrepancy fusion vector is given by

D = (Dω1 , Dω2 , . . . , DωH )

where:

Dωh =

(
1

MG

)[ m1

∑
m=1

dωh
1m +

m2

∑
m=1

dωh
2m + · · ·+

mG

∑
m=1

dωh
Gm

]
. (9)

Decision Rule: The test movement IT is assigned to the class that yields the least
discrepancy using the following rule:

ω∗ = arg min[ Dωh ], h = 1, 2, . . . , H. (10)

4.3. DTW Implementation of the LMI Model (DTW-2)

The use of M-DWT in conjunction with the LMI model is illustrated in Figure 6. In
this hybrid input and output-level fusion approach, each intra-sensor matrix is classified
independently using M-DWT and the class of the movement is determined by averaging
the discrepancy scores of each classifier.
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Local Discrepancy Computation: The system has one M-DTW classifier for the outputs
of each multi-axial sensor. For the M-DTW classifier for sensor Sg, let Zg,T(m, n) and
Zg,h(m, n) be the local input matrix of a test movement and a reference movement of
class h, respectively, and let the output of the M-DTW operator be the discrepancy vector
Dg =

(
dω1

g , dω2
g , . . . , dωH

g
)
. The element dωh

g is the discrepancy score between Zg,T(m, n)
and Zg,h(m, n).

Output Fusion Rule: For this case, the outputs (discrepancy scores) of the G DTW
operators are fused using an averaging operation. The averaged discrepancy fusion vector
is given by

D = (Dω1 , Dω2 , . . . , DωH ) (11)

where,

Dωh =

(
1
G

) G

∑
g=1

dωh
g (12)

Decision Rule: The test movement IT is assigned to the class ω∗ using the rule in
Equation (10).

4.4. DTW Implementation of the GMI Model (DTW-3)

The DTW classifier that uses the GMI model is illustrated in Figure 7. In this input-level
fusion approach, the system has one M-DTW classifier to classify the global inter-sensor
matrix. The discrepancy scores between a test movement and reference movements are
computed and the test movement is assigned to the class which yields the smallest score.
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Discrepancy Computation: If the global input matrices of a test movement IT and
reference template of movement Ih are represented by ZT(m, n) and Zh(m, n), respectively,
the output of the M-DTW operator is the discrepancy vector D = (Dω1 , Dω2 , . . . , DωH ) in
which element Dωh is the discrepancy score between ZT(m, n) and Zh(m, n).

Output Fusion Rule: none required.
Decision Rule: The test movement IT is assigned to the class ω∗ the using the rule in

Equation (10).

5. Convolution Neural Network (CNN) Classifiers

CNNs are a class of deep learning networks that is capable of performing well in
computer vision problems such as large-scale object classification and detection in im-
ages [46–51]. One of the most striking features of CNNs when compared with other
traditional classifiers, including fully connected neural networks (FCNs), is that a minimal
amount of preprocessing is required to generate the input to the network. For example,
an image can be processed directly without having to convert it into a vector. Converting
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images to vectors results in a very long input vector which can lead to the curse of dimen-
sionality in traditional classifiers and a large network for FCNs which in turn results in a
large number of network parameters and overfitting problems. Though seldom discussed,
converting an image into a vector leads to a poor representation of the input image because
it loses the relationship between a pixel and its vertical and diagonal neighbors which
is important for local feature detection. The most often used methods to overcome the
dimensionality-related problems is through feature extraction. However, as noted in the
introduction, selecting a set of features for a given problem is more an art than science and
features are typically selected through trial-and-error. CNNs overcome these problems by
applying feature extracting filters directly to the image and most importantly, learning the
filter weights through training rather than using prior knowledge to hand-engineer the
weights. Moreover, the overfitting problem is reduced through parameter sharing in which
the same filter is used to determine each element in the feature map.

A typical CNN has an input layer, an output layer, and hidden layers consisting of
convolution, pooling, and fully connected layers. The network architecture is defined
by the number and arrangement of the convolution and pooling layers. Figure 8 is an
illustration of a CNN with two convolution layers C{1} and C{2} followed by a pooling
layer P{1} and a FCN with layers F{1}, F{2}, and F{3} (output layer). The input to the first
fully connected layer is the flattened (concatenated) output from the pooling layer. In
general, the dimension of a convolution layer depends on the number of convolution filters,
the filter stride, and the type of convolution (valid or same). A pooling layer dimension
depends on the size and stride of the pooling filters. For classification problems, the output
layer is typically a softmax layer with one output for each pattern class. The network is
trained using the gradient descent backpropagation algorithm.
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The two notable operations performed in CNNs are convolution and pooling. Each
convolution layer contains a set of filters which have spatial dimensions much smaller
than those of the image, however, the depth (number of channels) is usually the same
as the input. A bias is added to the filtered outputs which are then passed through a
non-linear activation such as the ReLu function to yield the feature maps. The feature
maps are stacked into cuboids to form the output of the convolution layer in which the
number of channels is equal to the number of filters. If the convolution layer is followed by
a pooling layer, the spatial dimension is reduced by subsampling blocks in each feature
map in the convolution layer output. Max pooling, which replaces a block with the
maximum value, is the most often used pooling operation. Pooling serves two purposes:
it progressively reduces the spatial dimension thus decreasing the overfitting problem
through the reduction in the number of parameters and selects the most robust features.

The actual operation that is performed in the convolution layer is correlation and
not convolution. The term “convolution”, therefore, is incorrectly used. However, if the
input or the filter is folded (1-d case) or rotated (2-d and 3-d cases), the correlation and
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convolution operations are equivalent. Therefore, it is assumed that one of the inputs has
been pre-folded or pre-rotated prior to the actual correlation operation performed in the
convolution layer.

The following sections describe four implementations of CNNS that use the vector,
matrix, and cuboid input models. The models can be distinguished by the convolution
operations in the first stage and the output-level fusion operation. In order to do so,
the input and output of the first convolution layer are assumed to be generalized cuboids
with dimensions (H[0] ×W [0] × D[0]) and (H[1] ×W [1] × D[1]), respectively. Using this
notation, a d-dimensional vector and (m× n) matrix are represented as (1× d× 1) and a
(m× n× 1) generalized cuboids, respectively. If a pooling layer follows, the output of the
pooling layer is assumed to have dimensions (H[1,p] ×W [1,p] × D[1,p]). The filters in the
first convolution layer have dimensions represented by ( f [1]h × f [1]w × D[0]) and the pooling

filter by ( f [1,p]
h × f [1,p]

w × 1). The dimensions are related as follows:

H[1] = [1 + (H[0] − f [1]h + 2p)/sc] (13)

W [1] = [1 + (W [0] − f [1]w + 2p)/sc] (14)

D[1] = K[1] (15)

H[1,p] = [1 + (H[1] − f [1,p]
h )/sp] (16)

W [1,p] = [1 + (W [1] − f [1,p]
w )/sp] (17)

D[1,p] = D[1] (18)

where, p, sc, sp, and K[1] represent the zero-padding amount, convolution stride, pooling
stride, and the number of filters in the first stage, respectively. Zero-padding is employed
in “same convolution” to keep the input and output dimensions equal. If p = 0, the output
of the “valid convolution” operation has smaller dimensions than those of the input.

Just as in the development of the DTW classifiers in the previous section, the CNN
classifiers are explicitly split into two operations: computation of the posterior class prob-
abilities and a decision rule. The posterior class probabilities are computed by the CNN
and the decision rule uses these probabilities to assign the test movement into one of the
movement classes. Although a pooling layer may or may not follow a convolution layer,
it will be assumed that a convolution layer is followed by a pooling layer for consistency
in the formulations. It will also be assumed that the convolutions are “same.” The output
dimensions can be easily adjusted if the convolutions are “valid.”

5.1. CNN Implementation of the VI Model (CNN-1)

The CNN-1 classification model which uses the VI model is illustrated in Figure 9.
The CNN-1 model is characterized by vector convolutions in the first layer to extract local
intra-axial features and output-level fusion for combining the Mg classifier outputs.
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Figure 9. The CNN-1 classification model.
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Because the uni-axial classifiers are identical, the CNN classifier for one uniaxial signal
sgm is first described and the method for combining the outputs of the Mg classifiers is
described next.

Posterior Probability Computation: In the first convolution layer, the input vector sgm

with generalized cuboid dimensions (1× ngm × 1) is convolved with K[1] filters, each with

dimensions (1× f [1]w × 1). Because the convolution is assumed “same”, the output ŝ[1,k]
gm

of the kth filter will have the same dimensions as the input sgm. A bias b[1,k]
gm is added to

the filtered output and passed through the nonlinear ReLu activation function so that the
activation of filter k in the first layer is given by

s̃[1,k]
gm (n) = ReLu

[
ŝ[1,k]

gm (n) + b[1,k]
gm ] (19)

where, ReLu[δ] = Max[0, δ]. The output of the first convolution layer is the K[1] activations
combined into (1× ngm × K[1]) unit height cuboid represented by S[1]

gm. If pooling follows
and the stride and size of the pooling filter are r and (1× γ× 1), respectively, the output
S[1,p]

gm of the pooling layer will have dimension
(
1× [((ngm − γ

)
/r) + 1]× K[1]).

In the second convolution layer, if each filter has dimension (1× f [2]w × K[1]), the output
ŝ[2,k]

gm of the kth filter will have dimension
(
1×

[
((ngm − γ

)
/r
)
+ 1]× 1). Note that although

the two functions convolved are unit height cuboids, the output is a vector. After adding
a bias and passing each filtered output through the ReLu activation function, the K[2]

activations are combined into a unit height cuboid. The width of the unit height cuboid is
adjusted according to the stride if a pooling layer is added. If necessary, the convolution
and pooling operations can be repeated. A flattening operation is employed to combine
the rows of the last cuboid into a vector which forms the input to a fully connected feed
forward neural network with Ngm layers. Typically, the sigmoidal or tanh functions are
used as activations in the intermediate hidden layers and the softmax activation is used in
the output layer of the fully connected network (FCN). Cross-entropy is employed for the
loss-function. Because of the softmax activation function, the outputs can be regarded as
estimates of posterior probabilities given by

pgm(h) =
eqh

∑H
h=1 eqh

, h = 1, 2, . . . , H (20)

where, qh is the weighted sum of the inputs into a neuron h in the output layer.
The output of the CNN classifier for signal sgm is represented by the vector

Pgm =
(

pgm(1), pgm(2), . . . , pgm(H)
)
; g = 1, 2, . . . , G, m = 1, 2, . . . , mg (21)

Decision Rule: The H probabilities of the MG CNN classifiers are averaged into a
probability fusion vector represented by

P = (Pω1 , Pω2 , . . . , PωH ) (22)

where,

Pωh = (1/MG)

[
m1

∑
m=1

p1m(h) +
m2

∑
m=1

p2m(h) + · · ·+
mG

∑
m=1

pGm(h)

]
. (23)

Using the maximum response rule, the CNN assigns the input movement to the class
associated with the output that yields the largest value. That is, a test movement is assigned
to class ωh if

Pωh > Pωj , for all j 6= h (24)

Equivalently, the test movement is assigned to the class given by

ω∗ = arg max[ Pωh ], h = 1, 2, . . . , H. (25)
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The CNN-1 model shares similarities with the Channel-Based Late Fusion models
(CB-LF) described in [35,39] in the sense that there is one CNN per axis. The main difference
is that the CB-LF model has one FCN and the input to the FCN is the concatenation of the
features from the last convolution layer of each axis. The late fusion, therefore, is a form
of inter-channel feature fusion. The CNN-1 model has one FCN for each axis and the late
fusion is a form of decision fusion that occurs at the outputs of the CNNs.

5.2. CNN Implementation of the LAI Model (CNN-2)

The CNN-2 classification model which uses the LMI model is illustrated in Figure 10.
It is characterized by one CNN classifier for each sensor, matrix convolutions in the input
layer to extract local intra-sensor features, and output-level fusion for combining the
outputs of the G CNN classifiers.
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Figure 10. The CNN-2 classification model.

Posterior Probability Computation: In the first layer, the sensor matrix Zg(m, n) with
generalized dimensions

(
mg × ng × 1

)
is convolved with with K[1] filters, each with di-

mensions ( f [1]h × f [1]w × 1). The output Ẑ[1,k]
g (m, n) of the kth filter is a matrix with the same

dimensions as the input. A bias b[1,k]
g is added to the filtered output and passed through

the nonlinear ReLu activation function. The activation of the filter, therefore, is given by

Z̃[1,k]
g (m, n) = ReLu[Ẑ[1,k]

g (m, n) + b[1,k]
g ]. (26)

The K[1] filtered outputs are combined into a (mg × ng × K[1]) cuboid Z[1]
g (m, n, k). If

pooling follows and the stride and size of the pooling filter are r and (γ× γ× 1), respec-
tively, the output is the cuboid

Z[1,p]
g (m, n, k), m = 1, 2, . . . , m[1,p]

g , n = 1, 2, . . . , n[1,p]
g , k = 1, 2 . . . , K[1])

where, m[1,p]
g = (((mg − γ)/r) + 1), and n[1,p]

g = (((ng − γ)/r) + 1).
In the next convolution stage, the cuboid is convolved with a cuboid filters with

dimensions ( f [2]h × f [2]w × K[1]). Each filtered output Ẑ[2,k]
g (m, n) resulting from the cuboid

convolution is a matrix. The series of convolutions and pooling operations terminate into
an FCN with a softmax output layer.

If pg(h) is the output of neuron h in the output layer, then, the output of classifier for
matrix Zg(m, n) can be represented by the vector

Pg =
(

pg(1), pg(2), . . . , pg(H)
)
; g = 1, 2, . . . , G. (27)

Decision Rule: The outputs of the G classifiers can be averaged and represented by the
vector

P = (Pω1 , Pω2 , . . . , PωH ) (28)

where,

Pωh =

(
1
G

) G

∑
g=1

pg(h). (29)

A test movement is then assigned to class ωh using the rule in Equation (25).
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The CNN-2 model is somewhat similar to the Sensor-Based Late Fusion models (SB-LF)
described in [34,39] in the sense that there is one CNN per sensor. The main difference
is that the SB-LF model has one FCN and the input to the FCN is the late fusion of the
features from the last convolution layer of each sensor. The CNN-2 model has one FCN for
each sensor and the late fusion is a form of decision fusion that occurs at the outputs of
the CNNs.

5.3. CNN Implementation of the GAI Model (CNN-3)

The CNN-3 classification model using the GMI model, shown in Figure 11, is charac-
terized by matrix convolutions in the first layer to extract local intra-sensor features and
no output-level fusion. A small number of inter-sensor features are also extracted from
the bordering uni-axial outputs from adjacent sensors in the input matrix. The input is the
global matrix Z(m, n).
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Posterior Probability Computation: In the first layer, the matrix Z(m, n) with dimension(
Mg × N × 1

)
is convolved with with K[1] filters, each with dimensions ( f [1]h × f [1]w × 1).

The output of the kth filter yields a matrix Ẑ[1,k](m, n). A bias b[1,k] is added to the filtered
output and passed through the nonlinear ReLu activation function. The activation of the
filter, therefore, is given by

Z̃[1,k](m, n) = ReLu [Ẑ[1,k]
g (m, n ) + b[1,k]] (30)

The K[1] filtered outputs are combined into a (Mg × N × K[1]) cuboid Z[1](m, n, k) which
is pooled to give the cuboid Z[1,p](m, n, k). The cuboid pooling operation is not described
because it is similar to the one used in the previous model. The pooled cuboid is filtered by
K[2] cuboid filters and the output of the kth filter is a matrix represented by

Ẑ[2,k](m, n), m = 1, 2, . . . , M[1], n = 1, 2, . . . , N[1] (31)

where, M[1] and N[1] are the height and width of the pooled output Z[1,p](m, n, k). The
series of convolutions and pooling operations terminate into a FCN with a softmax output
layer which gives an estimate of the H movement probabilities. The softmax output is
represented by the vector

P = (Pω1 , Pω2 , . . . , PωH ). (32)

Decision Rule: a test movement is assigned to class ωh using the rule in Equation (25).
The CNN-3 model is similar to the Early Fusion (EF) model described in [37,39]. The

difference is mainly in the selection of the dimensions of the filters in the convolution layers.

5.4. CNN Implementation of the CI Model (CNN-4)

The CNN-4 classification model, shown in Figure 12, is implemented using the cuboid
representation which is obtained by fusing the LMI local matrices into a cuboid. Cuboid con-
volutions in the first layer extract coupled intra-sensor and inter-sensor features throughout
the input.
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Posterior Probability Computation: The cuboid input Z(m, n, g) is convolved with cuboid
filters ( f [1]h × f [1]w × G) and the output of the kth filter, is represented by
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Z[1,k](m, n), m = 1, 2, . . . , M; n = 1, 2 . . . , N. (33)

Note that convolving two cuboids with the same depth results in a matrix. The
K[1] filtered outputs are combined into a (M× N × K1) cuboid after the biases are added
and passed through the ReLu activation function. The height and width of the cuboid is
adjusted if a pooling layer follows the convolution layer. Subsequent convolutions are also
cuboid convolutions which result in matrices which are then combined into cuboids. An
FCN with softmax outputs is implemented after the last pooling layer. The softmax output
is represented by the vector

P = (Pω1 , Pω2 , . . . , PωH ). (34)

Decision Rule: a test movement is assigned to class ωh using the rule in Equation (25).
The CNN-4 model is unique because, to the best of our knowledge, there are no

similar models which combine the uniaxial signals of each sensor into matrices, combine
the matrices into a cuboid, and extract a combination of intra-sensor and inter-sensor
features.

6. Experimental Data Collection

Motion capture for both taekwondo and boxing was conducted using custom Inertial
Measurements Units (IMUs), developed in previous motion tracking research [7] as a basis
for a commercial product. The IMU consists of a 3-axis accelerometer and 3-axis gyroscope;
the ranges of the two sensor modules was set at ±16 g and ±2000 dps respectively to
capture the full range of motion in both sports. Sampling frequency was constant for both
sports, at 100 Hz. Data was streamed in real time from the IMU to the control computer via
Bluetooth 4.0 communication. The IMU module was placed on the striking limb and held
by Velcro straps. A pouch was sewn on the inside of the strap to keep IMU positioning
consistent throughout the data collection process. Positioning and axis orientation of the
IMU for boxing and taekwondo are outlined for sample movements in Figures 13 and 14,
respectively. Note that these axes are relative and rotate along with the limb.
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Table 2. Taekwondo Kicks: 24 classes (12 shadow, 12 bag). 

Kick Type (Shadow) Kick Type (Heavy Bag) 
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Figure 14. Data collection example: front right kick (sensors strapped to each ankle).

Experiments were designed to demonstrate the application and evaluation of the three
DTW and four CNN classification models developed in this study. Motion capture data
was collected from 15 martial artists of varying experience. 18 classes of boxing punches
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and 24 classes taekwondo kicks (6 kicks for each leg for shadow and bag strikes) were
collected as consistent with the entire range of movements for each sport. The classifica-
tion models were given no a priori information on sensor placement or left/right limb
to make the systems robust to using either sensor on either limb without polarization.
Moreover, the models were not presented any a priori movement features. To our knowl-
edge, no previous system has classified this wide range of movement and no existing
classification model has demonstrated generalizability to both sports [6].

Boxing punches were acquired by placing the IMU on the wrists of each martial artist
for 6 different punch classes during shadow boxing, punching a heavy bag, and with
a trainer holing pads (2880 strikes, 18 classes). For taekwondo, an IMU was placed on
the ankle of each martial artist executing kicking motions (2880 strikes, 24 classes). The
signals were segmented using a signal-energy based algorithm [52] to locate the start and
end-points of the strikes. The boxing punch classes, and taekwondo kick classes are listed
in Tables 1 and 2, respectively. Note the right- and left-hand classes will be switched for
left-handed (Southpaw) boxers. Table 3 shows examples of superimposed ensembles of
boxing and taekwondo strikes. For clarity, Figures 15 and 16 show enlarged versions of the
ensembles of one boxing and one taekwondo strike extracted from Table 3, respectively.
From the blur in each figure, it is clear that signal peaks and valleys within each class are
not aligned. Such nonlinear variations are typical in other boxing and taekwondo strike
classes (and other human movements).

Given that the number of sensors G is 2, the number of axes mg in each sensor is 3,
and the total number of axes Mg is 6, the 4 input models are characterized by the following:

• VI: 6 vectors of dimension (3× ngm), where ngm is the dimension of uni-axial signal sgm.
• LMI: 2 matrices of dimension (3× ng) , where ng is the normalized duration of the

uni-axial signals of sensor Sg.
• GMI: A (6× N) matrix, where N is the normalized duration of all Mg = 6 uni-axial

signals.
• GCI: A (3× N × 2)cuboid, where N is the normalized duration of all Mg = 6 uni-axial

signals.

Table 1. Boxing Strikes: 18 classes.

Hand Shadow Boxing Heavy Bag Pads Strike

Right
Cross Cross Cross
Hook Hook Hook

Upper cut Upper cut Upper cut

Left
Jab Jab Jab

Hook Hook Hook
Upper Cut Upper Cut Upper Cut

Table 2. Taekwondo Kicks: 24 classes (12 shadow, 12 bag).

Kick Type (Shadow) Kick Type (Heavy Bag)

Right Leg Left Leg Right Leg Left Leg

Turn Kick Turn Kick Turn Kick Turn Kick
Axe Kick Axe Kick Axe Kick Axe Kick

Front Kick Front Kick Front Kick Front Kick
Back Kick Back Kick Back Kick Back Kick
Side Kick Side Kick Side Kick Side Kick

Reverse Hook Kick Reverse Hook Kick Reverse Hook Kick Reverse Hook Kick
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Table 3. Boxing and taekwondo strikes superimposed.

Boxing Strikes
Accelerometer x-axis y-axis z-axis

Right Hand
Shadow Hook

Right Hand
Bag Hook

Gyroscope x-axis y-axis z-axis

Right Hand
Shadow Hook

Right Hand
Bag Hook

Taekwondo Strikes
Accelerometer x-axis y-axis z-axis

Right Axe
Contact Kick

Right Back
Contact Kick

Gyroscope x-axis y-axis z-axis

Right Axe
Contact Kick

Right Back
Contact Kick
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Figure 15. Superimposed strikes of the boxing Right Hand Shadow Hook ensemble acquired from
the x-axis of the accelerometer.

Figure 16. Superimposed strikes of the taekwondo Right Axe Contact Kick ensemble acquired from
the x-axis of the accelerometer.

7. System Training and Convergence

Each data set was divided randomly into a training set and a test set containing
approximately 80% and 20% of the strikes, respectively. The average classification accuracy
for the test set was determined. The random partitioning into training and test sets was
repeated 100 times, with classification accuracies across repetitions averaged to obtain a
final estimate of the classification accuracy.

For the DTW classifiers, the reference templates for the strike classes were determined
by averaging the signals in their respective training sets. The CNN classifiers were initial-
ized with a different set of random weights for each random partitioning of the data sets.
Consequently, the final classification accuracy was obtained by averaging the results of
100 different CNNs. In order to keep the comparisons fair, the number of convolutions,
pooling, and FC layers were fixed for all experiments. Moreover, the ordering of the
layers was fixed. Given that the dimensions of the data were relatively small (2 sensors,
3 axes/sensor), a deep network with a large number of convolution and pooling layers was
not needed. The CNN, therefore, consisted of a convolution layer, convolution layer, pool-
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ing layer, and 2 FC layers in which the first FC layer used sigmoidal activation functions
and the last FC layer used softmax activation functions. The “same” operation was used in
the convolution layer and max pooling was used in the pooling layer. The number of filters
were 32 and 32 in the first and second convolution layers, respectively. The filter dimensions
in the first and second convolution layers were as follows: (1 × 3 × 1) and (1 × 3 × 32) for
CNN-1, (3 × 3 × 1) and (3 × 3 × 32) for CNN-2, (3 × 3 × 1) and (3 × 3 × 32) for CNN-3,
and (3 × 3 × 2) and (3 × 3 × 32) for CNN-4, respectively. The networks were implemented
using the Keras library [53–55].

Training times were benchmarked for each input model and classifier. Time efficiency
profiling was conducted by using the MATLAB 2021a internal profiler for DTW models
and the Python 3.8.12 c Profile function for CNN models. All evaluations were conducted
on a system using Windows 10 Home Edition with an Intel Core i7-6700 k 4GHz Quad
Core CPU, GeForce GTX 980 Ti GPU and 32GB RAM.

8. Results and Analysis

Figure 17 shows the total time in seconds for model parameterization. The CNN
training time increase is expected given the repeated layering design as opposed to the
single pass in the DTW. CNN1 and CNN2 are also setup for multiple neural networks
in training, hence their increase in training times. CNN3 and CNN4, however, show
parameter convergence in comparable time to DTW in the single network training. It is also
interesting to note that boxing data actually took longer to train or had negligible differences
to taekwondo in CNN implementations, despite being an 18-class problem versus 24-class.
Boxing punches very more between the dominant and non-dominant side, but boxing
must also distinguish between pad (human held and bag strike classification which could
account for comparable or longer time to converge. We also note that differences between an
uppercut and hook punch can include highly nonlinear variations in movement waveform.
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While the training times for CNN1 and CNN2 were significant, it is also important to
note that this has no impact on online use for real-time classification. Training, in particular
for such large data sets will be done offline with identification in real-time occurring with
trained models. Deep neural networks have well-established properties for computation-
ally compact representations of nonlinear models enabling use online, even in time critical
applications with limited computational resources (e.g., [56]). Complete identification of
strikes occurs in negligible (msc) timeframes for all CNN models. DTW models are not as
computationally lean for online use as they require a comparison of each data point of an
incoming motion to each data point in the movement class. However, the time to execute
this in real-time is still suitable for most online human-motion tracking applications. We
envision training for individualized movements to be completed on cloud servers with
online use parameters updated to edge devices to execute in firmware, as implemented in
our commercial systems.
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Outputs of the classification experiments after training are summarized in Tables 4 and 5.
Table 4 shows the results of classifying each uniaxial signal independently for both data
sets. For each classifier (table row), the result of the best axis channel is shown in boldface.
For example, for the uni-axial boxing DTW classifiers, the best result of 65.1% was obtained
from the x-axis channel of the accelerometer. An accuracy of 65.1% may not be strong,
however, in comparison, an accuracy of only 5.6% can be expected through the random
classification for an 18-class problem. The classification accuracies of the seven fusion
classifiers are shown in Table 5 for both data sets. The best result for each data set is shown
in boldface. Note that for each classifier type and data set, the worst fusion result in Table 5
is much better than the best uni-axial result in Table 4. This clearly demonstrates the merits
in fusing information from multiple sensors and axes. Also note that in Tables 4 and 5,
the accuracies of the CNN classifiers are much higher than those of the DTW classifiers.

Table 4. Uniaxial classification accuracies (%).

Accelerometer Axes Gyroscope Axes

Sport Classifier X Y Z X Y Z

Boxing DTW 65.1 53.1 59.4 58.1 57.9 59.4
CNN 75.8 71.2 70.8 70.4 67.6 77.1

Taekwondo
DTW 52.3 46 36.4 41.2 49.7 36.4
CNN 81.7 75.1 70.3 75.8 81.1 77.1

Table 5. Fusion classification accuracies (%).

Classifier Boxing (18 Class) Taekwondo (24 Class)

DTW-1 77.42 64.00
DTW-2 80.43 69.32
DTW-3 79.59 68.69
CNN-1 87.21 86.89
CNN-2 89.70 88.02
CNN-3 92.08 88.14
CNN-4 91.26 88.70

The fact that the CNN classifiers performed better than the DTW classifiers is quite
unexpected for the following reasons: (a) unlike DTW classifiers, CNNs do not readily
appear to be a good choice for classifying signals that are not naturally in an 2-d or
multidimensional array formats, and (b) unlike the design of DTW classifiers, the design
of CNN classifier do not typically focus on addressing the non-linear variations problem.
From the results, it is interesting to note the following:

(a) The CNN classifiers performed well in spite of the fact that the uni-axial strike signals
typically experience non-linear variations as seen in Table 3 and in Figures 15 and 16.
The reason for this performance can be explained by noting that features are detected
locally and not globally. Consequently, the local features tend to be invariant to
latency shifts. Moreover, the local features are unaffected in the segments that do
not experience non-linear variations. The trial-to-trial variations of the signals within
each training set can be regarded as a natural form of “data augmentation” which
is a technique commonly used to artificially increase the diversity in the training set
without having to collect additional data. The CNN classifiers are capable of learning
the typical variations in the signals by presenting the network with representative
signals during training.

(b) Using the same input data, the CNN implementations using the four input models
extracted different types of local features for classification. The CNN classifiers,
therefore, offer many choices of local features which can be selected depending on
the type of coupling assumed or desired between the intra and inter-sensor outputs.
For example, if the uni-axial outputs of all sensors are assumed independent, CNNs
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using the VI model can be selected. CNNs using the LMI model can be selected if the
channels in a sensor carry complementary information for determining the output
class. If complementary information is shared across all sensors, CNNs using the
GCI model will be an effective choice. The manner in which the inputs are fused can
take other factors into account, for example, the geographical locations (co-located or
dispersed) of the sensors. The sensor outputs can also be fused in other ways. For
example, the x-axis channels of all sensor can be combined into an matrix. The y-axis
and z-axis channels can be combined in a similar manner. The intra and inter-sensor
coupling assumptions can, therefore, be used to choose a particular classification
model for a given problem.

(c) It is unlikely that the performance of DTW classifiers can be improved by increasing
the size of the training set because the template, which is the training set average,
will change only marginally after a certain point and this marginal change will have
little effect on the performance. Contrarily, CNN classifiers have the potential to
improve performance by extracting more complex features by increasing the network
depth and training data. Furthermore, by increasing the network depth and training
data, CNNs are capable of accurately classifying a larger number of classes, whereas,
the performance of traditional classifiers such as DTW classifiers will tend to drop as
the number of classes increase.

(d) It is interesting to compare the performances of the one, two, and three-dimensional
classifiers resulting from the VI, LMI & GMI, and GCI input models, respectively.
By comparing the results for the DTW classifiers in Table 5, it is first noted that the
classification accuracies vary marginally for all DTW classifiers across both sets of
data. The best results for the boxing and taekwondo data were obtained by the
2-dimensional DTW-2 classifiers. The classification accuracies also varied marginally
across the CNN classifiers for both data sets. The best results were obtained by the
2-dimensional CNN-3 and CNN-4 classifiers for the boxing and taekwondo data,
respectively.

It is also worth noting that CNNs offer particularly intriguing potential for widespread
use in commercial wearables due to low computational expense of online use. A cloud-
based training system working in conjunction with an embedded wearable would enable
real-time training feedback coupled with updates and adaptation as movements change
with time.

Finally, it should be stressed the results presented here are designed to demonstrate
the capacity of the input modelling and classification approaches in the most challenging
of circumstances. Tables 4 and 5 show output for the maximum number of classes with
zero knowledge of movement and the broadest class of athletes. While the accuracies
by themselves are enough for commercial use, further improvements are easily possible
in practice. The eighteen-class boxing data, for example, yielded fusion classification
accuracies of 95% + for CNN-3 with a subset (1/3) of the boxers who were not beginners.
Furthermore, it is unlikely that boxers or martial artists even with simple training will mix
striking a heavy bag, shadow boxing, or pad striking in the same round. Such measures
will virtually eliminate misclassification such that the only errors are erratic strikes from
the user that do not fit any strike model.

9. Translation for Mass Market Athletic Training

The research executed in this investigation has led to the design, fabrication, and
commercial translation of a complete IoT sensor system for smart boxing. Our design
reflects the evolution of wearables from a ‘device’ to a ‘systems’ perspective [9], and consists
of original sensors, embedded code, apps for use with a smart phone for data collection,
and cloud computing for data storage and visualization. The system, shown in Figure 18,
has been released as a commercial product by Corner Wearables based in Manchester, UK.
It was first trialed with the boxing team at Imperial College London and subsequently
expanded into a full product for sale worldwide. The integrated system consists of a
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small sensor in the boxer’s hand wraps that fits under boxing gloves. All code for punch
identification is embedded onboard with a microcontroller to detect and classify movement
history, which is sent via Bluetooth to a smart device for display and storage through
an app on a smart phone. The embedded code performs all pattern classification hence
transmission is only necessary for statistics saving the need to send raw data over Bluetooth.
The first-generation commercial system tracks 6 classes of punches (dominant hand–cross,
hook, uppercut, non-dominant hand–jab, hook, uppercut). Subsequent releases will classify
the full 18-class problem outlined in Section 6 using the full deep learning architecture
outlined in this investigation. Corner, featured in IEEE Spectrum [57], is the first ever
smart boxing tracker which does not need polarized (left-right specified) sensors. It was
recently assessed in a boxing study as a part of this special issue of Sensors [58] as having
the capacity to track both beginners and experienced boxers, though beginner punches are
less consistent due to immaturity of technique. Thousands of devices are currently in use,
providing an intriguing database for analysis in future work. The commercial system has
also been used in live boxing matches, including the World Series of Boxing, to provide
real-time statistics to spectators, judges, and trainers to evaluate match performance.
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10. Conclusions

The goal of this investigation was to develop models to classify human movement by
fusing information from ensembles of wearable multi-axial inertial sensors. The specific
contributions resulting from the investigation include: (a) the introduction of four multi-
sensor multi-axial input models that can be used in conjunction with diverse classifiers,
(b) demonstrating the use of the input models to develop three DTW and four CNN fusion-
based classifier models that do not require a set of predetermined hand-engineered features,
(c) testing the validity of the classifier on boxing and taekwondo sport data, (d) demon-
strating the merits of multi-axial fusion by showing the that the worst fusion classifiers
outperform the best uniaxial classifiers, (e) demonstrating that high classification accuracies
can be obtained with the CNN fusion classifiers on signals that experience large non-linear
variations and on signals belonging to a large number of classes, (f) demonstrating the
surprising result that the CNN fusion classifiers outperform the DTW classifiers, (g) ex-
plaining the ability of the CNN classifiers to extract local features which depend on the
type of coupling assumed or desired between the intra and inter-sensor outputs, and
(h) noting that CNN classifiers have the potential to improve performance and handle a
larger number of classes through both training and network scaling.

To our knowledge this is the first set of models demonstrated on this large a problem
class in either activity [7] and the first generalized non-feature specific classification over
multiple movement ranges. Also noteworthy is that due to the generalized formulations,
the classifiers can be easily adapted to classify multi-dimensional signals of multiple sensors
in various other applications.

Future work involves refining the system for exact learning of individual users for
performance assessment, analyzing time series data from training of large groups of
athletes, and implementation for live performance streaming in professional fights to
enhance spectator experience support of fight scoring. As a completely feature-blind
generic classification strategy, translation is also underway in other sports (e.g., tennis) as
well as in wearables for telemedicine in neural motor dysfunction conditions such as stroke
and Parkinson’s Disease [59,60]. We believe these results provide a foundation for a new
set of human movement classification paradigms based on fusion and deep learning.
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