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Abstract: Weakly labeled sound event detection (WSED) is an important task as it can facilitate
the data collection efforts before constructing a strongly labeled sound event dataset. Recent high
performance in deep learning-based WSED’s exploited using a segmentation mask for detecting the
target feature map. However, achieving accurate detection performance was limited in real streaming
audio due to the following reasons. First, the convolutional neural networks (CNN) employed in
the segmentation mask extraction process do not appropriately highlight the importance of feature
as the feature is extracted without pooling operations, and, concurrently, a small size kernel forces
the receptive field small, making it difficult to learn various patterns. Second, as feature maps are
obtained in an end-to-end fashion, the WSED model would be weak to unknown contents in the
wild. These limitations would lead to generating undesired feature maps, such as noise in the unseen
environment. This paper addresses these issues by constructing a more efficient model by employing
a gated linear unit (GLU) and dilated convolution to improve the problems of de-emphasizing
importance and lack of receptive field. In addition, this paper proposes pseudo-label-based learning
for classifying target contents and unknown contents by adding ’noise label’ and ’noise loss’ so that
unknown contents can be separated as much as possible through the noise label. The experiment
is performed by mixing DCASE 2018 task1 acoustic scene data and task2 sound event data. The
experimental results show that the proposed SED model achieves the best F1 performance with 59.7%
at 0 SNR, 64.5% at 10 SNR, and 65.9% at 20 SNR. These results represent an improvement of 17.7%,
16.9%, and 16.5%, respectively, over the baseline.

Keywords: dilated convolution; gated linear unit (GLU); noise label; noise loss; segmentation mask;
weakly labeled sound event detection (WSED)

1. Introduction

The recent development in deep learning field shows advances in the event detection
field, such as earthquake detection [1] and sound event detection [2,3]. The sound event
detection (SED) field has been a research focus due to as it is used in various real-life
applications to recognize a target event and detect the onset and offset times in an audio
clip. We encounter a rich variety of sound events in our daily lives, such as “baby cries”,
“dog barks”, “phone rings”, “sirens”, and “boiling water”. SED can be applied to varied
fields by utilizing such events. For example, SED can not only be used for public security
surveillance [4] and, by monitoring animal sounds, the maintenance and preservation
of ecosystem environments [5,6] but also for equipment failure monitoring, oil and gas
pipeline anomaly detection, and seismic wave acoustic detection [7]. Although video or
image-based event detection systems are also applicable to the above situations, systems
based on audio-only have several advantages. First, they can be used even in dark envi-
ronments because they do not require illumination. Second, while sound can penetrate or
pass around obstacles, photos and videos are directly disturbed. Third, events, such as fire
alarms sounding, are only detectable by sound.
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In the deep learning framework, SED was developed by using frame-level annotated
data (strongly labeled) which contains the starting and ending point of the target event [8,9].
However, since such deep learning models require frame-by-frame event information,
constructing a large amount of data for training proved difficult. To alleviate the above
limitation, weakly supervised learning models using weakly labeled data have recently
been proposed. Weakly labeled data is learned by multi-label classification using multi-
instance learning (MIL) [10] rather than frame-level classification and uses only the presence
or absence of an event in the audio clip. The structure of the Weakly labeled data-based
SED (WSED) models consists of a classifier and detector that detects the on-off sets of an
event in an audio clip. The classifier is a multi-label classifier that has multiple labels for a
single audio clip, not a one-hot label as used in general classifiers. One of the WSED studies
tried to extend a low-dimensional feature map through transpose convolution neural
network to a higher level for frame-by-frame event prediction, such as auto-encoder [11].
However, information and characteristics on the time and frequency axis are lost in the
feature extraction process using a convolutional neural network (CNN), and it is difficult
to extend from low-dimensional features to high-dimensional ones. To avoid this problem,
a method of fitting the frame size to the low-dimensional size without expanding the
features was proposed [12]. In addition, good performance was achieved with a structure
in which a gated linear Unit (GLU) was applied to the CNN feature extraction process as
the learning the activation function [13]. However, the frequency axis dimension reduction
method is sensitive to noise and shows performance degradation in noisy environments.
To solve this problem, a learning method that maintains the time-frequency dimension was
devised [14]. This learning method finds a segmentation mask that separates the target
event from the input audio clip. This model calculates the probability that the target event
will be present in the audio through global pooling on the last layer without reducing the
dimensions of the feature map. However, this model has some limitations.

First, the segmentation mask is extracted through CNN without a pooling operation.
In general, CNN consists of a convolution operation using the kernel and a pooling
operation that can find important features while reducing dimensions. However, since
this model learns while maintaining the dimension of the feature map without a pooling
operation, importance is not incorporated into the extracted features. Second, there is a
limited receptive field due to the fixed kernel size. The receptive field represents the amount
of information the CNN model can contain when training. In general CNN models, the size
of the feature map decreases as it passes through the layers using a pooling operation so
that the features of various patterns can be learned using only a small kernel. In contrast,
this model can only learn a simplified pattern using a 3 × 3 size kernel at all layers without
a pooling operation to maintain the same size as the input. Third, in the segmentation
mask-based method, as the proposed architecture estimates target segmentation masks
from an input feature without any spectral and temporal feature reduction, the noise
contents in an input T-F feature would continuously influence the CNN feature extraction
process, and they degrade the performance of SED system.

This paper improved the model problem by applying GLU [15], dilated convolu-
tion [16], noise label, which is pseudo label, and noise loss. To solve the first problem of
being unable to judge the importance of the extracted features, the proposed model adopts
GLU. The GLU can determine whether or not the extracted feature is valid information
by training the gate through the CNN’s kernel, and is used by replacing the activation
function. The gate has a value between 0 and 1 according to a sigmoid function, and the
flow of information can be controlled by saving important information and discarding
other information through element-wise multiplication with the extracted features. To solve
the second problem of over-simplified pattern learning due to the limited receptive area,
the proposed model uses dilated convolution. Dilated convolution can widen the receptive
field by extending the spacing between weights without increasing the parameters of the
model and still maintaining the size of the feature map. Lastly, to reduce the effect of
noise, noise labels and noise loss are added. This idea was inspired by the blank label
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of Connectionist Temporal Classification (CTC) [17], which is used in speech recognizers
and applied to SED [18,19]. The CTC improved performance by adding a blank label so
that frames corresponding to unnecessary information belong to blank labels to reduce
frames corresponding to silence or blank belonging to other classes in the speech recognizer.
By doing so, this model adds a noise label, which is pseudo label [20], that can play the
same role as the blank label of the CTC, so that background sound and noise do not affect
the mask extraction of the target class when the segmentation mask is output. The noise
information is extracted by additionally outputting the segmentation mask for the noise
label. Furthermore, as the segmentation mask from which the noise component is to be
extracted brings unnecessary information to the target event, noise loss is added so that
each event mask can contain only important information. An overall summary of the main
contribution of this paper is that Constructing a more noise-robust model by adding a
noise label that can extract noise segmentation mask and applying a noise loss that allows
maximum noise contents extraction. Additionally, to supplement the problems of the
previous model, GLU and dilated convolution were applied to improve the performance.

The experiments are performed by using DCASE 2018 dataset [21] task1 and task2 [22].
Task 2 dataset which is for the audio tagging is used for the audio tagging and the frame-
level detecting evaluation. For noise data, Task 1 dataset which is the scene classification
is augmented with three types of SNR levels (0, 10, and 20 dB). The results show that our
proposed pesudo label trick method enhances the robustness of the system in the noisy
audio stream over state-of-the-art methods.

Section 2 covers the task approach to WSED and techniques applied in this paper.
Section 3 introduces the proposed method and model. Section 4 details the changes to the
experimental results resulting from adding the techniques used in this paper one by one.
Finally, Section 5 contains the conclusions based on these experimental results.

2. Related Work
2.1. Multi Instance Learning (MIL)

Weakly supervised learning mainly approaches MIL problems [10,23]. It is usually
used not only in sound research but also with medical images [24,25] and for semantic
segmentation [26,27]. If the concept of MIL is applied to SED, as shown in Figure 1, one
audio clip has as many bags as the number of classes, and each bag contains per frame
information on whether an event occurs. If one or more frames in the bag have a positive
value, then the bag also takes a positive value and is mapped to 1. On the contrary, if there
is no event information in any frame in the bag, the bag has a negative value and is mapped
to 0. If SED is approached in this way, as a MIL problem through weakly supervised
learning rather than through Acoustic Scene Classification (ASC) [28,29] in which audio
clips are mapped to one class, the model can be trained through a multiple-instance binary
classification that can be mapped to multiple event classes.

Figure 1. In order to apply WSE to MIL, it is necessary to map the strong label to the weak label
through the bag concept. As shown in the picture above, if there is more than one positive value in
the strong label, the weak label is mapped to 1; otherwise, it is mapped to 0.
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2.2. Dilated Convolution

Kernels of different sizes are required to learn the features of varied patterns through
CNN. However, when the size of the kernel is increased, the learning speed of the model
slows as the number of parameters increases. This problem can be improved by a pooling
operation between the CNN layers. When the pooling operation is performed, the size
of the feature map is reduced, so the receptive area can be expanded without increasing
the size of the kernel. However, as the size of the feature map decreases after the pooling
operation, the values excluding specific information disappear, resulting in information loss.
This loss of information is fatal for issues, such as image segmentation and image separation,
which require the classification of classes by pixel. In this paper, since we also need to learn
the segmentation mask of each class in pixel units, we applied dilated convolution [15,30],
a method that can learn various patterns while maintaining the information of the feature
map. Dilated convolution is already widely used in fields that require classification by
pixel [31,32]. As shown in Figure 2, dilated convolution maintains the size of the feature
map and expands the distance between the parameters without increasing the number of
parameters, meaning that various patterns can be learned as the receptive fields of different
size are formed. Red dots indicate parameters that can be learned, and the other areas have
a value of 0. The dilation rate refers to the distance between the parameters, and, as is
apparent from the figure, the receptive field increases as the dilation rate increases.

Figure 2. This figure shows how the kernel and receptive field change according to the dilation
rate change in dilated convolution. The green area indicates the size of the kernel, and the red dot
indicates the learnable parameters. Except for the red dot, the kernel has zero values.

2.3. Gated Linear Unit (GLU)

Dilation convolution can be used to learn varied patterns with a small number of
parameters without loss of information. However, meaningless features can be extracted
because they are learned without the benefit of a pooling operation to determine the
importance of pixel information. In this model, information can be controlled according
to importance by using a GLU, a learnable activation function [13,16]. A GLU is used
as an alternative to the activation function, and, as shown in Figure 3, the front half of
each feature extracted through CNN is used as information, and the back half as a gate
to determine the importance of the information in the front half. The difference from
ReLU [33], which is a commonly used activation function, is that the range of output values
is the same, but information flow can be controlled by using a gate. As the gate has a
value between 0 and 1 through the sigmoid function, the gate of a pixel with meaningful
information has a value close to 1, and the gate of a pixel with meaningless information has
a value of 0. The obtained information and the gate control the flow of information through
element-wise multiplication so that features can be extracted according to their importance.
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Figure 3. The GLU controls the flow of information by extracting features through the kernel of the
convolutional neural network and using one half as information, and the other half as a gate through
a sigmoid.

3. Proposed Method
3.1. Extraction Segmentation Mask

To learn the segmentation mask for each event in pixel units from the audio clip,
the dilated convolution and GLU described above are used. As shown in Figure 4, the input
data is a log mel spectrogram, and features for obtaining a segmentation mask are extracted
by repeating a dilated convolution block four times with two dilated convolutions in which
the activation function is replaced by a GLU. The proposed model architecture is shown
in Table 1. When performing the dilated convolution, the dilation rate was set to 1, 2, 4,
and 8, which are the optimal dilation rates obtained by the comparative experiments in
paper [34], so the learning is carried out by gradually increasing the distance between
the weights. The features obtained through the dilated convolution blocks are reduced
dimensions through 1 × 1 convolution using as many kernels as the number of classes, so
that S, the segmentation mask for each class, can be extracted. Finally, the extracted S is
mapped to a value between 0 and 1 for each pixel through the sigmoid function.

Figure 4. The figure above represents the architecture of the model proposed in this paper. The model
receives a log mel spectrogram as input and outputs a segmentation mask through 4 dilated conv
blocks and 1 × 1 convolution. The output segmentation mask calculates the probability that an event
is included in the audio clip through global pooling. The model is trained using two losses, one of
which is binary cross-entropy between predicted probability and weak label, and the other is KL
divergence between noise segmentation mask and user hyper-parameter.
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Table 1. Comparison of proposed model and baseline model.

Proposed Model Baseline Model

Layers, Activation Function
{Kernel Size, Dilation Rate, Repeat}

Number
of Kernel

Output Size
{Channel × Time × Frequency}

Layers, Activation Function
{Kernel Size, Repeat}

Number
of Kernel

Output Size
{Channel × Time × Frequency}

Input log mel spectrogram - 1 × 431 × 64 Input log mel spectrogram - 1 × 431 × 64

Dilated CNN, GLU {3 × 3, 1, 2} 64 32 × 431 × 64 CNN, ReLU {3 × 3, 2} 64 64 × 431 × 64

Dilated CNN, GLU {3 × 3, 2, 2} 128 64 × 431 × 64 CNN, ReLU {3 × 3, 2} 128 128 × 431 × 64

Dilated CNN, GLU {3 × 3, 4, 2} 256 128 × 431 × 64 CNN, ReLU {3 × 3, 2} 256 256 × 431 × 64

Dilated CNN, GLU {3 × 3, 8, 2} 256 128 × 431 × 64 CNN, ReLU {3 × 3, 2} 256 256 × 431 × 64

CNN, Sigmoid {1 × 1, -, -} 42 42 × 431 × 64 CNN, Sigmoid {1 × 1, -} 41 41 × 431 × 64

Global Weighted Rank Pooling - 42 Global Weighted Rank Pooling - 41

3.2. Global Pooling to Predict the Presence or Absence of Target Events

The segmentation mask (S) corresponding to each extracted class predicts whether an
event occurs in the audio clip through a global pooling operation. The global pooling used
global weighted rank pooling (GWRP) [35], which showed the best performance in the
baseline model [14]. GWRP can alleviate the problem of underestimating and overestimat-
ing through global max pooling, which transfers only the largest value, and global average
pooling, which calculates and transfers the average value [35]. This method assigns differ-
ent weights according to the values of each pixel of S. By increasing the weight of a pixel
with a large value and decreasing the weight of a pixel with a small value, the information
on all pixels is optimally reflected in the prediction value that tries to determine whether
an event occurrence is an output. It is as shown in Equation (1) below.

pk = GWRP(Sk) =
1

N(r)

M

∑
i=1

ri−1(Sk)i. (1)

S is the segmentation mask, and k is the index of each class. i is an index in which each
pixel value of S is sorted in descending order, and M is the number of pixels in time ×
frequency. r is a hyper parameter, set to the value of 0 ≤ r ≤ 1, and N(r) = ∑M

i=1 ri−1 is
a normalization term. In this way, when training the entire model, the value predicted
through GWRP calculates the binary cross entropy loss with the weak label. The binary
cross-entropy loss is calculated as shown in Equation (3) below.

BCEloss(pk, tk) = −
K

∑
k=1

tk log GWRP(Sk), (2)

= −
K

∑
k=1

tk log pk. (3)

In Equation (2), p denotes the target event probability extracted through GWRP, and t
denotes the weak label of the input data. k is the index of the class.

3.3. Noise Label and Noise Loss to Extract Noise Contents

In this paper, a model that could reduce the effect of noise is constructed by adding
a pseudo label, which is for classifying unknown contests which is naturally faced in the
real stream environment. Furthermore, a loss function is added to extract and separate
unknown contents as much as possible through the added pseudo label to build a noise-
robust model. Here, the pseudo label is represented by the noise label, and the added loss
function is represented by noise loss. Before explaining the noise label and noise loss, let us
first think about unknown contents. When recording audio in the real environment, it is
inevitably mixed with unknown contents, which is noise, according to the environment.
In addition, that noise can be distributed across varied frequency bands depending on the
environment. Moreover, it is not known when and what noise will be present. In other
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words, noise is distributed over the time and frequency axes of the audio clip. Considering
these characteristics of noise, noise label and noise loss are applied to this model. The noise
label was inspired by the blank label of CTC [17]. The blank label of CTC is a label added
to prevent confusion in model training due to the prediction of blank and silent frames
that are not included in any class of the speech recognizer model. Using this approach, our
method predicts and labels noise that is not included in any target events with a noise label.
The noise label maps to 1 according to the characteristics of the noise that can be included
anywhere in the aforementioned audio clip. That is, the model is trained by adding a
noise label mapped to 1 to the weak labels of the event classes constituting the audio clip.
To calculate the noise loss that helps to extract the noise as much as possible, first, a noise
segmentation mask corresponding to the noise label is additionally extracted during the
segmentation mask extraction process. The noise segmentation mask extracted calculates
the KL divergence loss for each pixel so that information about noise can be maximally
contained and reflect the characteristics of noise that may be distributed over all time-
frequency axes. KL divergence is used since it allows a particular probability distribution
to be converged to the desired distribution, and the output value of the noise segmentation
mask to be given a value between 0 and 1 through the sigmoid. If the mean square error
(MSE) function is used, the model does not train well due to the small gradient, so the
learning speed of the model is optimized through KL divergence with a large gradient
value. Then, the noise loss Equation (4) is as follows.

Nloss(ρ̂M, ρ) =
1
M

M

∑
m=1

ρ log
ρ

ρ̂m
+ (1 − ρ) log

1 − ρ

1 − ρ̂m
. (4)

In the formula, M is a time × frame, which means the total number of pixels, ρ, is a
hyperparameter that is designated to converge the probability distribution to the desired
value. In this model, ρ is 0.9999. ρ̂ is the value of each pixel in the output noise segmentation
mask. That is, the noise loss plays the role of converging the output value to close to 1
so that the noise segmentation mask can extract noise information that can be maximally
distributed to all pixels. As a result, during the segmentation mask extraction process,
the event segmentation mask can be obtained with minimal noise influence since noise
is separately extracted. Therefore, the losses used when training the model proposed in
this paper are the BCEloss and the Nloss, also proposed in this paper. To define Loss, it is as
shown in Equation (5) below.

Ltotal = BCEloss + Nloss. (5)

4. Experiment
4.1. Database

The database used in the experiment is the public data used in DCASE 2018 task1 [21]
and task2 [22]. Task 1 is a scene classification that classifies the environment to which the
audio clip corresponds, and 8640 recordings consisting of 10 classes recorded in 10 cities
were used. Task 2 is audio tagging that determines whether there is an event in an audio
clip. The data is composed of 41 event classes, which vary in length from less than 1 s to
longer than 30 s. To proceed with the SED experiment, data was generated using task 1
data as background sounds and task 2 data as event sounds. Before generating the data,
several pre-processing tasks were performed. The task 1 data to be used as the background
sound was divided so that no background sound was included in both the training and test
sets, and task 2 data longer than 4 s to be used as event data was randomly cut to a length
between 2 and 4 s. We use only the manually verified audio clips from Task 2 as sound
events because the remaining audio clips are unverified and may contain noisy labels.
In addition, since the volume of data differs for each event class, the classes comprised
of only a small amount of data were made to have at least 600 data items through time-
shifting, and it was ensured that there was no event overlap between the training and
test sets. The data is generated by randomly selecting the background sound, which is
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noise, and also picking an arbitrary number of events to be mixed with the background
sound and adding to the background sound. For the noise-dependent experiment, data
corresponding to SNRs of 0, 10, and 20 are generated by calculating the SNR between the
average amplitude of the randomly selected events and the amplitude of the background
sound. The generated audio clips contain at least 3 to 8 events, and the training set includes
8000 samples divided into 4 cross-validation folds. Thus, 2000 model evaluation test sets
are made for performance measurement.

4.2. Feature Extraction

The sampling rate of the audio clip was 32 Khz, and the spectrogram was extracted
using short-time Fourier transform(STFT) with a window size of 2048 and a hop size of
1024 since this configuration is known to have a good resolution in the time-frequency
domain [36]. As for the generated spectrogram, the mel spectrogram was extracted using
64 mel filter banks, and the log-mel spectrogram was obtained through log operation and
used as input. Log-mel spectrograms are widely used in acoustic studies [32,37].

4.3. Evaluation and Metric

As evaluation indicators, F1 score [38], Area Under the Curve (AUC) [39], and mean
Average Precision (mAP) [40] were used to verify the performance of Audio Tagging (AT)
and SED. The F1 score is calculated based on the precision representing the accuracy from
the system perspective and the recall representing the accuracy from the data perspective.
The F1 score derives a value close to 0 when either the precision or recall has a low value,
and a value close to 1 when both have high values.

The AUC is the area under the Receiver Operating Characteristic (ROC) curve, which
plots the true positive rate and the false positive rate, and is expressed as a single value. When
using the AUC, there is no need to manually designate a threshold, and, when the system
outputs a random value, such as when the system is not trained, it has a value of 0.5.

As with AUC, AP refers to the area under the graph for precision and recall. As with
the F1 score, the higher the precision and reproducibility, the closer to 1, and, in the case of
multiple event detection instead of single-event detection, the performance is evaluated
according to the AP average (mAP) of each class.

4.4. Post Processing for Performance Evaluation

Post-processing for performance is the same as in the baseline paper extracting the
segmentation mask [14]. The performance for AT is measured by determining that there is
an event if the probability that each event derived through GWRP is in the audio clip is 0.2
or more, and, if it is less than 0.2, there is no event. It is expressed as (7) in the formula.

ek =

{
1 pk > 0.2
0 otherwise

. (6)

pk is the probability for the event class calculated by Equation (1), and k is the index indicat-
ing event class. The SED predicts the onset of an event when the average sum of information
on the frequency axis included in time t is 0.1 or more in the segmentation mask and the
event offset when it falls below. In addition, the SED result was measured by considering
only the case of the class determined to have an event in the AT result. The equations for
determining whether an event occurs for time t are as in (8) and (9), respectively.

qk(t) =
1
N

N

∑
i=1

Sk(t, fi), (7)

dkt =

{
1 qk > 0.1
0 otherwise

. (8)
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N is the size of the frequency axis, t is the time, S is the segmentation mask, and k is the
number of classes. That is, qk(t) is the probability that an event occurs at time t for the kth
class, and dkt indicates whether an event occurs at time t of the kth class.

4.5. Model

This section describes in detail the architecture of the model proposed in this paper
and the baseline model. As shown in Table 1, the input data is log mel spectrogram, and the
proposed model used dilated convolution while the baseline used convolution. The kernel
used is a constant size of 3 × 3 in all layers of both models, and the number of kernels
is 64, 128, 256, and 256. The dilation rates of the proposed model are set to 1, 2, 4, and 8.
The activation function uses ReLU in the baseline and GLU in the proposed model. The con-
volution operation is repeated twice in each kernel, that is, a total of 8 times. The features
extracted through the convolution operation reduce the number of channels by the number
of event classes through 1 × 1 convolution. In the proposed model, the segmentation
mask corresponding to the added noise label is additionally extracted, making one more
output channel than the number of classes. The segmentation mask extracted through 1 × 1
convolution passes through the sigmoid and then calculates the probability of each event
in the audio clip through GWRP. When training the model, the batch size is 8, the learning
rate is 0.001, and the Adam optimizer [41] is used. In addition, batch normalization [42] is
applied to all convolution layers except the 1 × 1 convolution to stabilize the model and
improve learning speed. The GWRP’s hyperparameter r is set to 0.9998.

4.6. Ablation Analysis

In this part, we analyze how the performance changes when dilated convolution, GLU,
noise label, and noise loss, the techniques used in this paper, are added to the baseline
model. The experimental results analyzed are the F1, AUC, and mAP scores of Audio
Tagging (AT) and Sound Event Detection (SED) at differing SNRs. In addition, it shows the
F1 score for each event class when the SNR is 0 and the output segmentation mask.

4.6.1. Effect of Applying GLU

The reason for applying the GLU is that the CNN, which extracts the segmentation
mask from the baseline model, proceeds without pooling so that the importance of the fea-
ture is not considered. The experiment was carried out by applying GLU to all convolution
layers except the 1 × 1 convolution. Looking at the experimental results in Tables 2 and 3,
AT performance was slightly higher than baseline across all performance indicators and
all SNRs, while SED performance differed only slightly at SNRs of 0 or 10, but, at 20, the
performance indicators excluding AUC were higher than baseline.

Table 2. Audio tagging performance according to SNR.

0 dB 10 dB 20 dB

Models F1 AUC mAP F1 AUC mAP F1 AUC mAP

FrameCNN [11] 0.301 0.675 0.319 0.318 0.696 0.352 0.320 0.708 0.367
WLDCNN [12] 0.289 0.599 0.268 0.312 0.621 0.309 0.300 0.617 0.295
Attention [13] 0.648 0.854 0.696 0.695 0.874 0.738 0.698 0.875 0.743
Baseline [14] 0.423 0.844 0.492 0.463 0.874 0.568 0.471 0.881 0.591

Baseline + GLU 0.427 0.846 0.499 0.465 0.874 0.571 0.482 0.886 0.605
Baseline + Dilated 0.559 0.902 0.687 0.616 0.928 0.758 0.616 0.931 0.764
Baseline + GLU + Dilated (DCGLU) 0.565 0.900 0.687 0.613 0.926 0.752 0.627 0.933 0.776
DCGLU + Noise label 0.565 0.900 0.687 0.614 0.925 0.754 0.628 0.933 0.776
DCGLU + Noise label + Noise loss 0.597 0.910 0.721 0.645 0.933 0.785 0.659 0.940 0.802
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Table 3. Sound event detection performance according to SNR.

0 dB 10 dB 20 dB

Models F1 AUC mAP F1 AUC mAP F1 AUC mAP

FrameCNN [11] 0.143 0.621 0.064 0.155 0.638 0.069 0.158 0.648 0.071
WLDCNN [12] 0.105 0.576 0.126 0.146 0.598 0.155 0.121 0.589 0.135
Attention [13] 0.117 0.781 0.218 0.129 0.799 0.235 0.137 0.802 0.242
Baseline [14] 0.366 0.715 0.284 0.426 0.749 0.344 0.445 0.760 0.374

Baseline + GLU 0.366 0.713 0.286 0.425 0.745 0.351 0.452 0.758 0.383
Baseline + Dilated 0.514 0.823 0.473 0.560 0.849 0.526 0.575 0.857 0.545
Baseline + GLU + Dilated (DCGLU) 0.517 0.819 0.471 0.568 0.851 0.533 0.588 0.861 0.558
DCGLU + Noise label 0.516 0.819 0.471 0.570 0.851 0.536 0.587 0.861 0.559
DCGLU + Noise label + Noise loss 0.543 0.832 0.502 0.595 0.861 0.564 0.610 0.870 0.583

4.6.2. Effect of Applying Dilated Convolution

The reason for using dilated convolution is to expand the receptive field without losing
information about the input data while retaining the number of parameters in baseline.
The convolution layers of the baseline model except the 1 × 1 convolution were replaced by
dilated convolution. Tables 2 and 3 show that at all SNRs AT and SED show significantly
higher performance than baseline. This indicates that for SED the receptive field plays a
very important role in the segmentation mask extraction-based method.

4.6.3. Effects of Simultaneous Application of GLU and Dilated Convolution (DCGLU)

This experiment applies Dilated convolution and GLU together. As in the above exper-
iments, the convolution layer of the baseline model was replaced with a dilated convolution
layer, and the activation function was changed to GLU. For the proposed model, as shown
in Tables 2 and 3, all indicators except for AUC at SNR 10 show better performance than
when only dilated convolution is applied. Since GLU, which is a learnable activation
function, is learned through CNN in the same way as the general features, the degree of
the effect differs according to the size of the receptive field.

4.6.4. Change When Noise Label Is Added

This experiment added a noise label to the DCGLU model. It was conducted to deter-
mine the effect of extracting the noise segmentation mask by adding only the noise label
without noise loss. Looking at the difference from the DCGLU model in the experimental
results presented in Tables 2 and 3 indicates that the results do not differ significantly with
SNRs. There is almost no difference in the average F1 score performance of the entire
class in Tables 4 and 5. As for events with a slight difference, the DCGLU model showed
somewhat higher AT and SED performance in events distributed in low frequency bands,
such as bass drum, chime, and double base. However, with the model to which the noise
label was added, AT and SED performance were better for events occupying a rather wide
frequency band, such as cough and shatter, or a high frequency band, such as snare drum.
In some cases, in Figure 5, events not included in the audio clip are extracted from the
segmentation mask output when the noise label is added, but compared to other models
the microwave has the cleanest output. That is, although, when the noise label is added,
the effect is insignificant, event and noise are nevertheless separated. Performance is
different for each event class because noise is heavily distributed in the low frequency
band, and, so, for events occupying a low frequency band, the separation from noise causes
more performance degradation.
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Table 4. F1 score of audio tagging for each class at SNR 0.

Models Acous.
Guitar

Appla
-use

Bark Base
Drum

Burp
-ing

Bus Cello Chime Clari
-net

Keyb
-oard

Cough Cow
-bell

Double
Bass

Draw
-er

Elec.
Piano

Fart Finger
Snap

Fire
Works

Flute Glock. Gong

FrameCNN [11] 0.275 0.577 0.249 0.288 0.225 0.499 0.345 0.296 0.416 0.217 0.202 0.179 0.218 0.195 0.368 0.233 0.206 0.188 0.423 0.288 0.270
WLDCNN [12] 0.194 0.855 0.195 0.190 0.191 0.589 0.230 0.190 0.468 0.192 0.196 0.190 0.186 0.193 0.252 0.196 0.199 0.196 0.449 0.349 0.194
Attention [13] 0.307 0.866 0.860 0.529 0.787 0.669 0.526 0.693 0.750 0.640 0.783 0.841 0.353 0.337 0.536 0.599 0.711 0.430 0.749 0.534 0.442
Baseline [14] 0.372 0.569 0.518 0.269 0.384 0.441 0.389 0.512 0.446 0.480 0.402 0.345 0.273 0.262 0.422 0.377 0.379 0.273 0.440 0.439 0.348

Baseline + GLU 0.382 0.557 0.514 0.266 0.406 0.432 0.399 0.522 0.453 0.486 0.406 0.346 0.264 0.252 0.420 0.375 0.382 0.270 0.449 0.438 0.355
Baseline +
Dilated 0.437 0.763 0.706 0.397 0.558 0.542 0.484 0.604 0.574 0.572 0.555 0.565 0.367 0.314 0.506 0.534 0.494 0.343 0.572 0.567 0.406

Baseline + GLU +
Dilated
(DCGLU)

0.429 0.746 0.734 0.399 0.560 0.517 0.486 0.646 0.609 0.574 0.566 0.589 0.368 0.312 0.510 0.533 0.505 0.336 0.602 0.582 0.405

DCGLU + Noise
label 0.425 0.752 0.737 0.375 0.566 0.513 0.488 0.632 0.599 0.577 0.581 0.602 0.349 0.320 0.492 0.526 0.497 0.328 0.602 0.582 0.404

DCGLU + Noise
label + Noise
loss

0.466 0.783 0.763 0.431 0.607 0.556 0.494 0.688 0.629 0.586 0.605 0.635 0.380 0.331 0.528 0.599 0.523 0.368 0.627 0.603 0.461

Models Gunsh
-ot

Harmo
-nica

Hi
-hat

Keys Knock Laugh
-ter

Meow Micro
-wave

Oboe Sexop
-hone

Sciss
-ors

Shatt
-er

Snare
drum

Sque
-ak

Tambo
-urine

Tear
-ing

Telep
-hone

Trum
-pet

Violin Writ
-ing

Avg.

FrameCNN [11] 0.220 0.559 0.279 0.302 0.175 0.208 0.223 0.285 0.489 0.548 0.231 0.208 0.383 0.202 0.339 0.226 0.312 0.381 0.467 0.213 0.301
WLDCNN [12] 0.245 0.362 0.472 0.197 0.198 0.191 0.200 0.202 0.482 0.702 0.191 0.237 0.296 0.189 0.192 0.197 0.233 0.486 0.495 0.193 0.289
Attention [13] 0.572 0.879 0.924 0.851 0.546 0.651 0.586 0.652 0.678 0.782 0.603 0.597 0.848 0.500 0.753 0.526 0.548 0.845 0.787 0.505 0.648
Baseline [14] 0.398 0.532 0.515 0.506 0.327 0.424 0.463 0.360 0.487 0.511 0.404 0.429 0.497 0.362 0.649 0.444 0.388 0.502 0.438 0.378 0.423

Baseline + GLU 0.401 0.555 0.515 0.502 0.320 0.417 0.474 0.371 0.494 0.521 0.409 0.410 0.517 0.374 0.689 0.450 0.387 0.525 0.448 0.373 0.427
Baseline +
Dilated 0.514 0.763 0.764 0.731 0.385 0.537 0.611 0.493 0.674 0.636 0.500 0.599 0.655 0.497 0.867 0.559 0.510 0.720 0.638 0.446 0.559

Baseline + GLU +
Dilated
(DCGLU)

0.505 0.742 0.721 0.740 0.389 0.559 0.646 0.478 0.695 0.660 0.505 0.587 0.639 0.492 0.889 0.575 0.528 0.729 0.643 0.449 0.565

DCGLU + Noise
label 0.504 0.746 0.734 0.730 0.382 0.554 0.652 0.484 0.700 0.664 0.495 0.606 0.652 0.509 0.892 0.577 0.525 0.736 0.627 0.445 0.565

DCGLU + Noise
label + Noise
loss

0.546 0.790 0.765 0.752 0.407 0.588 0.675 0.528 0.730 0.690 0.524 0.642 0.695 0.544 0.892 0.610 0.573 0.746 0.657 0.477 0.597
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Table 5. F1 score of sound event detection for each class at SNR 0.

Models Acous.
Guitar

Appla
-use

Bark Base
Drum

Burp
-ing

Bus Cello Chime Clari
-net

Keyb
-oard

Cough Cow
-bell

Double
Bass

Draw
-er

Elec.
Piano

Fart Finger
Snap

Fire
Works

Flute Glock. Gong

FrameCNN [11] 0.136 0.343 0.111 0.046 0.071 0.262 0.206 0.157 0.227 0.071 0.064 0.049 0.072 0.061 0.191 0.077 0.055 0.061 0.228 0.132 0.142
WLDCNN [12] 0.000 0.544 0.000 0.000 0.000 0.417 0.113 0.000 0.358 0.000 0.000 0.000 0.002 0.000 0.075 0.060 0.000 0.000 0.283 0.114 0.000
Attention [13] 0.069 0.233 0.076 0.065 0.154 0.189 0.170 0.163 0.231 0.036 0.051 0.070 0.026 0.008 0.127 0.077 0.057 0.023 0.217 0.072 0.110
Baseline [14] 0.290 0.607 0.403 0.149 0.341 0.388 0.346 0.562 0.401 0.457 0.262 0.319 0.062 0.048 0.381 0.305 0.278 0.133 0.401 0.372 0.332

Baseline + GLU 0.296 0.596 0.392 0.151 0.337 0.365 0.347 0.545 0.415 0.453 0.265 0.315 0.054 0.046 0.352 0.305 0.272 0.125 0.423 0.358 0.317
Baseline +
Dilated 0.418 0.740 0.637 0.265 0.493 0.520 0.463 0.629 0.589 0.552 0.476 0.507 0.266 0.186 0.505 0.507 0.462 0.241 0.539 0.462 0.388

Baseline + GLU +
Dilated
(DCGLU)

0.396 0.725 0.657 0.264 0.501 0.471 0.443 0.652 0.596 0.558 0.495 0.535 0.251 0.162 0.498 0.506 0.472 0.216 0.571 0.465 0.375

DCGLU + Noise
label 0.388 0.731 0.662 0.245 0.500 0.469 0.448 0.639 0.602 0.554 0.500 0.515 0.232 0.164 0.472 0.499 0.469 0.223 0.575 0.469 0.384

DCGLU + Noise
label + Noise
loss

0.432 0.753 0.672 0.310 0.538 0.520 0.474 0.672 0.621 0.566 0.532 0.553 0.281 0.177 0.505 0.545 0.505 0.250 0.590 0.477 0.425

Models Gunsh
-ot

Harmo
-nica

Hi
-hat

Keys Knock Laugh
-ter

Meow Micro
-wave

Oboe Sexop
-hone

Sciss
-ors

Shatt
-er

Snare
drum

Sque
-ak

Tambo
-urine

Tear
-ing

Telep
-hone

Trum
-pet

Violin Writ
-ing

Avg.

FrameCNN [11] 0.080 0.311 0.129 0.139 0.048 0.081 0.082 0.169 0.310 0.286 0.087 0.076 0.223 0.074 0.208 0.077 0.157 0.214 0.256 0.079 0.143
WLDCNN [12] 0.031 0.264 0.119 0.000 0.000 0.00 0.024 0.100 0.287 0.618 0.003 0.039 0.215 0.000 0.000 0.000 0.000 0.253 0.382 0.000 0.105
Attention [13] 0.056 0.309 0.110 0.098 0.035 0.014 0.054 0.166 0.276 0.294 0.033 0.032 0.149 0.061 0.114 0.031 0.139 0.268 0.269 0.040 0.117
Baseline [14] 0.237 0.593 0.441 0.448 0.159 0.295 0.313 0.341 0.585 0.503 0.349 0.310 0.574 0.287 0.624 0.353 0.363 0.568 0.469 0.346 0.366

Baseline + GLU 0.248 0.622 0.433 0.460 0.153 0.291 0.309 0.319 0.605 0.529 0.350 0.304 0.600 0.298 0.638 0.360 0.361 0.579 0.475 0.360 0.366
Baseline +
Dilated 0.431 0.753 0.635 0.682 0.263 0.487 0.517 0.489 0.669 0.627 0.482 0.548 0.671 0.479 0.713 0.515 0.500 0.695 0.637 0.438 0.514

Baseline + GLU +
Dilated
(DCGLU)

0.424 0.743 0.612 0.695 0.261 0.509 0.568 0.480 0.693 0.646 0.503 0.531 0.677 0.500 0.724 0.520 0.501 0.716 0.641 0.427 0.517

DCGLU + Noise
label 0.425 0.752 0.610 0.700 0.254 0.500 0.554 0.485 0.701 0.659 0.506 0.546 0.685 0.492 0.722 0.522 0.515 0.717 0.639 0.435 0.516

DCGLU + Noise
label + Noise
loss

0.457 0.762 0.644 0.709 0.285 0.534 0.595 0.514 0.706 0.675 0.511 0.562 0.703 0.526 0.725 0.550 0.539 0.728 0.652 0.468 0.543
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Figure 5. Changes in the output of the segmentation mask as the techniques proposed in this model
are applied to the baseline. Ground truth is the log mel spectrogram extracted from each event.

4.6.5. Validity of Noise Label and Noise Loss

This experiment adds noise label and noise loss to the DCGLU model. Noise
loss is added to extract as much noise information as possible into the noise segmen-
tation mask. Figure 6 shows the extracted noise. Figure 6a is the noise information
obtained by adding only a noise label to the DCGLU model, and Figure 6b is the noise
information obtained by applying both noise label and noise loss. In Figure 6, yellow
represents a value closer to 1, and the darker color a value closer to 0. Comparing the
two figures, it seems that the model to which only the noise label was added extracts
information about noise from all pixels. On the other hand, for the model to which
both the noise label and noise loss are applied, less noise is extracted than the model to
which only the noise label is added. However, looking at Figure 5, you can see that the
model using noise label and noise loss together extracts each event segmentation mask
better than other models, and produces the clearest output for Cello, Clarinet, and
Fireworks events, which are absent from the audio clip. Therefore, the phenomenon
shown in Figure 6 seems to reflect the event and the noise being rather effectively
separated and maximally extracting noise through noise loss.

Figure 6. The noise segmentation mask of the model to which only the noise label is applied, and the
model to which both the noise label and noise loss are applied. The yellow areas are judged to have
noise and represent values closer to 1, and the darker areas values closer to 0.

5. Discussion

This is the experimental result of the model that added both noise label and noise
loss to the DCGLU proposed in this paper and the weakly labeled data-based model,
including the baseline proposed previously. As with the previously proposed models,
we experimented with FrameCNN, which is an autoencoder model [11], a WLDCNN
model in which all layers are convolutional [12], and an attention model that combines
CNN and biRNN, and applies GLU [13]. As Table 2 shows, the attention model
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demonstrated the highest F1 performance, that is, 0.648 when SNR was 0, 0.695 when
it was 10, and 0.698 when it was 20. However, its F1 performance of SED, as shown in
Table 3, was lower than for other models, including the baseline. On the other hand,
the proposed model, showed better AUC and mAP AT performance, than the Attention
model, as Table 2 shows. Furthermore, the proposed model demonstrated the best
SED performance across all indicators and all SNRs. AT performance is high for the
attention model because global max pooling is used in its last layer to determine the
presence of audio events. However, its SED performance is lower than that of the other
models because it does not perform backpropagation well due to the effect of global
max pooling, which delivers only the largest value. In the case of SED, the proposed
model shows the F1 best performance, 0.543 at 0 SNR, 0.595 at 10 SNR, and 0.610 at
20 SNR. This represents increases compared to the baseline of 0.177, 0.169, or 0.165,
respectively, with the largest difference at 0 SNR where the most noise was mixed.
As for performance by class, in terms of AT, the proposed model outperformed the
attention model in 12 event classes, including acoustic guitar and double base, out of
a total of 41. However, in the case of SED, the proposed model performed the best
across all event classes, as is shown in Tables 4 and 5. Therefore, considering the
above experimental results, it can be seen that other proposed papers are vulnerable to
the noise environment and it can be proved that the proposed noise label and noise
loss work effectively to distinguish between event contents and noise. Although the
performance has been improved, it needs improvement because the performance is
not yet usable in a real system. As a future research direction, we plan to apply it to a
speaker separation model that extracts a mask, such as a segmentation mask.

6. Conclusions

In this paper, a more efficient model was constructed by applying dilated convolution
and GLU to improve the lack of receptive field and non-interference of feature importance,
which was the problem with the SED models extracting segmentation masks from time-
frequency domains. Moreover, a noise-robust model was developed by proposing a noise
label that could separate the noise contents in the segmentation mask extraction process and
a noise loss that could extract the noise contents to the maximum to solve the performance
degradation problem due to noise inevitably mixed with the input data. In the experiment,
we proved the performance of the proposed model by showing how the model changed
and improved through the performance when the techniques used were applied step by
step and the segmentation mask output.
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