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Abstract: Much information can be derived from operational deflection shapes of vibrating structures
and the magnification of their motion. However, the acquisition of deflection shapes usually requires
a manual definition of an object’s points of interest, while general motion magnification is computa-
tionally inefficient. We propose easy extraction of operational deflection shapes straight from vision
data by analyzing and processing optical flow information from the video and then, based on these
graphs, morphing source data to magnify the shape of deflection. We introduce several processing
routines for automatic masking of the optical flow data and frame-wise information fusion. The
method is tested based on data acquired both in numerical simulations and real-life experiments in
which cantilever beams were subjected to excitation around their natural frequencies.

Keywords: motion magnification; optical flow; image segmentation; modal analysis; cantilever beam

1. Introduction

The application of computer vision in Structural Health Monitoring (SHM) is an ever-
growing field of research. Replacing classical sensors with cameras grants new possibilities
and overcomes some disadvantages of conventional methods. Due to the use of computer
vision solutions, the limitation of necessary equipment is possible. The set of sensors and
network connecting them might be replaced with just one camera. No need for close access,
and measuring equipment placement allows saving labor and time. Such a replacement of
tools results in an entirely different type of measurement. Instead of analyzing acceleration,
displacement is obtained directly by tracking movement on recorded video frames. Usage
of a camera allows inspection of hard-to-reach regions remotely, also from a far place
using zoom lenses. What is more, it is possible to analyze multiple points simultaneously
and select them after recording a video [1]. Relatively easy setup and the large area of
inspection are considered to be counterbalanced by a lower precision of measurement
comparing to contact non-destructive testing techniques [2]. A crucial part of computer
vision applications in SHM is displacement measurement. This area has recently been
examined considering abnormal circumstances like intensive sunlight or other unfavorable
illumination [3] and different environmental conditions [4].

Recently motion magnification is becoming a powerful method in movement analysis.
Its primary purpose is making imperceptible or barely perceptible motion observable.
The original technique [5], apart from accurate displacement estimation, bases on the
segmentation of pixels into clusters with correlated movement. Then, the selected group’s
motion is magnified, and a new video is rendered. Many extensions have been proposed:
various signals magnification [6], amplification of tiny motions occurring together with
large ones [7] and deep learning application [8]. Especially phase-based approach [9] is
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important for SHM applications. For image decomposition, complex steerable pyramids
are used. Their phase variations are connected with motion, so a new approach for dis-
placement calculation arises. Further, manipulation with these variations may result in
movement amplification. This method has been expanded with the use of Riesz pyramids,
based on Riesz transform, generalization of Hilbert transform [10]. Despite motion magni-
fication is a fairly new technique, it currently has applications in SHM. Wadhwa et al. [11]
presented an example of Mode Shapes (MS) visualization, amplifying vibrations in natural
frequencies bands.

Operational Deflection Shapes (ODS) are used to visualize vibration pattern at a given
frequency or in a given frequency range for a structure during its operation. Although
ODS are not exactly MS, as ODS are a linear combination of MS, they are commonly used
when identifying MS are difficult or impossible. ODS have a number of applications in
civil engineering [12], industrial rotary machinery [13] and transportation [14]. To obtain
an ODS, a simultaneous measurement of vibration responses at a number of locations is
required. The higher the number of measurement response locations, the more informative
ODS is. During the classical acquisition of vibration data, the number of sensors and data
acquisition system input channels has to be equal to the number of measurement response
locations, which is a serious limitation for complex structures. To overcome this limitation,
the ODS can be collected in a number of measurement runs utilizing one or more reference
sensors [13]. This type of measurement can often lead to problems related to the mass
loading effect, especially in the case of lightweight structures. Additionally, the collection
of vibration responses in a number of runs extends the total measurement time.

Computer vision techniques have been introduced into elements of modal analysis
recently. The remote identification of natural frequencies using vision motion analysis with
Optical Flow (OF) and image correlation techniques was presented by Caetano et al. [15].
Chen et al. [2] used phase-based video decomposition for displacement obtaining, which
grants very high sub-pixel accuracy and further examined frequencies.

MS visualization by color representation, coding phase of movement to hue, and
the amplitude to saturation and brightness was introduced by Davis et al. [16]. The
authors performed the motion analysis starting from video decomposition using complex
steerable pyramids.

The issue was examined further, especially paying attention to small motion. Besides
expanded color MS visualization, the authors carried out an estimation of material prop-
erties, damping, and extract resonant frequencies [17,18]. Chen et al. [19,20] selected the
frame with a maximum deflection after phase-based motion magnification and performed
Canny edge detection. Finally, the image was cleaned manually to reduce artifacts and
undesirable elements.

Yang et al. [21] after phase-based video decomposition, performed dimension re-
duction using principal component analysis (PCA). As obtained components still carry
information about multiple modes, blind source separation (BSS) was used for their split-
ting. Only individual modes are magnified, and the images are recomposed. The last
step of this method is edge detection. In this technique, preliminary analysis of natural
frequencies is not needed.

The method was expanded to allow the analysis of videos recorded at a frame rate
not fulfilling the Shannon-Nyquist sampling theorem [22]. Modal identification basing
on OF, PCA, and BSS from a video with removed or corrupted frames was proposed
by Martinez et al. [23]. An interesting approach for finding natural frequencies is the
use of analysis of probability distribution by maximum likelihood estimation [24]. It
allows further magnification in a calculated band instead of manually selecting frequencies.
Molina-Viedma et al. [25] introduced another representation of ODS. The digital image
correlation was used to obtain displacement, which is visualized by the contour plot. The
results improve if a video is analyzed after phase-based motion magnification. The method
was also extended for 3D applications [26]. The ODS have also been obtained using particle
tracking velocimetry, and phase-based motion magnification [27].
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Choi et al. [28] proposed the damage detection technique based on the natural fre-
quency comparison. Optimization of an analytical model in terms of damage location and
size using a genetic algorithm was performed. The cost function bases on the difference be-
tween frequency measured from amplified video and calculated analytically. Phase-based
motion magnification was also used for structural monitoring of wind turbine blades [29]
and buildings [30]. Comparison of performance of different optical acquisition techniques
with accelerometers measurement for experimental modal analysis was performed by
Kalybek et al. [31].

Tools proposed in this paper base on OF (original methods: Horn-Schunck [32] and
Lucas-Kanade [33,34]), which is fundamental motion analysis technique in computer vision.
OF describes the movement of pixels between consecutive frames of video. This method is
based on pixels’ brightness constancy assumption. Advanced displacement measurement
using Deepflow has been proposed by Won et al. [35]. Javh et al. [36] used OF for MS
recognition analyzing the amplitude of estimated displacements. Color mapping of motion
was performed by Kah and Narroschke [37] for visualization purposes allowing simple
results assessment. HSV color space (consisting of three channels denoted as H for hue, S
for saturation, and, finally, V for value) conversion of OF results for further processing has
been presented by Du et al. [38]. The authors used transformation into HSV and then into
RGB color space to perform object tracking.

In addition to the methods presented above, we present a set of novel OF processing
tools allowing straightforward displacement visualization, motion masking, and ODS
magnification. We obtain a binary mask of moving regions, analyzing the periodicity
of movement and performing k-means segmentation. This region mapping can be used
for area selection for motion magnification. Presented displacement visualizations are
based on converting OF using HSV and L*a*b* color spaces (L* stands for luminance,
a* describes shades between green and red, and b* denotes tones of blue and yellow).
Color representation grants a clear, uncomplicated movement description. Unlike previous
approaches [16–18] our relies on a straightforward OF transformation and is used for
further preparation of advanced depiction. Finally, we demonstrate one-dimensional ODS
visualization, which is an alternative novel motion magnification method.

In Section 2 detailed description of proposed techniques is provided. Next, in Section 3
results of the application of developed processing tools are presented. The simulation and
the experimental test case are described. Finally, Section 4 is conclusions.

2. Materials and Methods

Developed tools allow for straightforward motion analysis, giving new visualization
capabilities, basing on OF computation. They consist of three components enabling binary
masking of moving regions, color visualization of motion, and magnifying ODS. In this
section, each of them is described in detail. A simulation of a cantilever beam setup excited
in its third natural frequency (208 Hz) will be used to visualize the algorithms’ principles
of operation. The details of the simulation setup will be provided in Section 3.1. All
processing was performed using software prepared in Matlab. The source code is available
on demand from the corresponding author.

2.1. Binary Mask and Movement Direction

The first processing step is the preparation of a binary mask of moving regions. Its
purpose is to mark an area with objects in motion to use this information for further
analysis. Such region indication allows clarity enhancement of results in subsequent stages
of processing. Furthermore, in this step, the main direction of movement is found, which
is used in preparing visualizations. Simple OF magnitude thresholding have limitations
such as promoting the largest shifts and the inability to separate different moving objects.
Therefore binary mask is prepared based on OF direction changes counting. Input data
for this method is a raw video presenting an oscillating object. This video processing aims
to indicate moving objects or their parts, during related or similar movements, especially
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with the same frequency. Results of OF direction changes might be further processed using
normalization and thresholding or by segmentation.

2.1.1. Main Direction of Movement

Determining the main direction of movement is crucial for obtaining further visual-
izations. OF is calculated for each point of the frames in the whole video and stored. OF
is computed from grayscale images, although it might be obtained from images in the
RGB color space. Then OF orientation from all frames and all points is sorted into bins
of size π

100 . An exemplary histogram for the movement of a simulated beam is shown in
Figure 1a. Irrelevant, noisy motion vectors tend to have a smaller magnitude in compar-
ison to the vectors characterizing the main motion. As the intention is to determine the
dominant orientation of movement, an additional restriction is applied. If OF magnitude is
less than 0.1 orientation is not taken into account. Schemetically this process is shown in
Figure 2. Figure 1b shows histogram including this constraint. This limiting threshold and
size of bins have been set experimentally. Finally, the midpoint of the bin with the largest
number is chosen as the main direction of movement in the video.

(a) (b)
Figure 1. Orientation histogram: (a) without magnitude restriction, (b) magnitude restricted to greater than 0.1.

Figure 2. Irrelevant, noisy motion vectors tend to be shorter, and omitting them by magnitude
thresholding helps to distinguish the dominant direction of movement.

2.1.2. OF Direction Changes

Having OF calculated, results obtained for two consecutive frames of a video are
compared to detect movement direction changes. For each pixel, the number of OF sign
changes with respect to the vertical axis is counted. Method’s accuracy has been increased
using two additional constraints that have to be fulfilled at a particular time for a specific
point to be analyzed.
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• OF magnitude must be greater or equal to 0.01.
• OF orientation is restricted to the regions of the previously determined main direction

and to the opposite direction. Angles difference has to be smaller than π
4 .

Values of these thresholds have been set experimentally based on real case data (see
Section 3.2). These limitations help to distinguish the main object of interest.

The simplest way of obtaining a binary mask is normalization by dividing all values
by their maximum and thresholding. This approach has some drawbacks. The first is
the possible presence of fragments of undesirable elements that happen to move in the
main direction by coincidence. The second one is substantial discontinuities in the binary
mask, which might be caused by occlusions, vibration nodes, or imperfections in the
acquired data.

2.1.3. Segmentation and Masks Combination

Segmentation is used to obtain a binary mask instead of normalization and thresh-
olding. In this case, clusterization with the k-means method is applied. Only values
representing the sum of OF direction changes are analyzed regardless of position in the
image. The number of clusters is set to three for separating the object of interest, other
undesirable elements, and background.

If an analyzed object is recorded multiple times while moving with different frequen-
cies, the beneficial approach is combining masks obtained in different conditions. Especially
it helps to handle discontinuities in nodes of vibration at various natural frequencies. Multi-
ple case analysis allows the preparation of the final mask by choosing pixels present on a
certain number of individual instances. For example, the point of an image must be present
on at least half of the masks to be placed on the resulting one. Further, in more difficult
cases, morphological operations might be useful to increase accuracy. Figure 3 shows the
whole process of obtaining a binary mask using real case data (see Section 3.2).

Figure 3. Scheme of mask preparation. OF direction changes among frames are detected and segmented. Data are combined
for different frequencies, repeating pixels are selected, and morphological operations are performed.

2.2. Color Visualization

This stage can be conducted independently or use previously obtained binary mask
and main direction of movement. Processing starts with OF. To prepare color visualization,
the following steps are taken. OF orientation and magnitude for each point in the image are
transformed to obtain a new representation. The orientation is rotated, so the main direction
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of movement (determined in the previous step or set manually) will be represented by the
value of − 2π

3 . It is essential for the preparation of ODS visualization in the next stage and
will be justified in Section 2.3. The original orientation range is [−π, π], thus values are
shifted by adding π and then divided by 2π, so the final range is [0, 1] and relations between
values are retained. Transformed orientation is considered as a hue in HSV color space.

OF magnitude is scaled into range [0, 1]. The new value mr is obtained by sub-
tracting minimum from the old value m and dividing by difference between maximum
and minimum:

mr =
m − min

max − min
. (1)

The minimum and maximum are the smallest and the largest magnitude in all image
points at a certain time. Further, magnitude treated as a grayscale image is adjusted by
saturating the bottom and the top 1% of values and mapping the other ones to the full
range to increase contrast, making final visualization more transparent. The transformation
is appropriate considering that relative displacements are of interest. Moreover, a three-
element wide border is set to zero to reduce noise at the edges of the image. Converted
values are interpreted as saturation in the HSV domain. The further noise reduction is
conducted by applying the median filtering of hue and saturation with a window of size
W1, in this research set to 3 × 3. The third component–value is completed with ones. OF
orientation and magnitude are represented by the color of each point. In order to show or
save the HSV-based result, the RGB color space is used. The entire conversion process is
schematically shown in Figure 4.

Figure 4. Scheme of color visualization. OF orientation is mapped as hue and magnitude as saturation in HSV domain in
order to obtain color representation of movement.

2.3. ODS Visualization

The most important part of the described processing is ODS visualization based on
OF transformation with HSV color space usage. To increase the capabilities of the method,
a previously obtained binary mask is applied. The area outside indicated region becomes
the white background. This step allows the extraction of an object of interest and reduces
the impact of noise.
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This stage of processing includes the next color transformation and starts with the
conversion of previously obtained representation (Section 2.2) from RGB to L*a*b* color
space. Further, only the b* component is analyzed, thanks to the coding of the main
direction of movement with yellow and its opposition with blue. Before further processing,
rotation of the image is necessary in order to place the yellow-blue direction vertically.
Component b* range is [−128, 127], with negative values representing blue and positive
yellow. From each column of this channel, the mean is calculated. Averaging is performed
only from nonzero elements. Therefore, the background has no impact on estimation.
The resulting vector describes the ODS. Further, the moving average is calculated over
it, using a window of size W2. In this research, based on preliminary tests, W2 is set
to 150. To increase accuracy, the moving mean can be calculated over a vector limited
to the object’s length, reducing the background’s impact. For this purpose, the shape
can be restricted according to the previously obtained binary mask or by neglecting part
on the side of the image, where all values of the b* component are equal to zero. For
visualization purposes, the result might be multiplied by a number set by a user, which
allows increasing or reduction of a shift in the next step. The shape is rounded to integers.
Obtained vector’s length is equal to the number of columns in the original image. To
build a new representation of ODS, points indicated by the binary mask are shifted by the
values in the calculated vector. The empty space after the moved points is filled in with a
white background.

Additionally, ODS magnification on raw video frames is performed. For this pur-
pose, pixels indicated by the binary mask are shifted in accordance with the transforma-
tion of color visualization. Resultant blank spaces have to be refilled. In these regions,
inward image interpolation is performed. Figure 5 illustrates the entire procedure of
ODS visualization.

Figure 5. Scheme of ODS visualization. Shape obtained from b* component of L*a*b* domain allows determining pixels
shift to visualize mods.
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3. Results and Discussion

In this part, the results of the application of described techniques are presented. The
first case demonstrates the simulation of movement of a cantilever beam and the second
example is the real test case. All results have been obtained using Farnebäck’s method [39]
for OF computation.

3.1. Simulation

In this example movement of the cantilever beam is simulated. The object is 800 mm long,
40 mm wide, and 4 mm thick. The beam is fixed at the length of 50 mm (Figure 6). The
model was prepared in Altair HyperMesh using hexahedral FEM mesh of size 1× 1× 4 mm.
First, the computational modal analysis was computed to identify the natural frequencies of
the structure. Next, the Dynamic Transient Modal Superposition simulation was conducted.
This was done independently for each particular mode shape considered in the individual
simulation. In each case, the impulse force of 100 N lasting 0.002 s excited the structure.
Thanks to the Modal Superposition approach only the required mode shape was taken into
account in the transient response, not introducing other modes. Next, the FEM simulation
results were used to create animation using the Blender graphics program. This procedure
is discussed by the authors in their recent paper [40].

Figure 6. Scheme of the simulated cantilever beam.

Figure 7a presents raw frame and Figure 7b shows color visualization of movement.
The main direction of movement is vertical. Yellow regions indicate parts moving upwards
at this moment and blue–downwards.

(a)

(b)
Figure 7. Simulation: (a) raw frame, (b) color representation for 208 Hz.

As the video presents only the beam and background, the use of the binary mask is
unnecessary. Also, the direction of movement is vertical, so any rotation is not required.
Figure 8 shows ODS visualization for different frequency cases: 106 Hz, 208 Hz, 345 Hz.
Color representation and raw frame transformation are set together with FEM simula-
tion results.

3.2. Experimental Case

In this example, recording of the aluminum cantilever beam with dimensions of
800 × 40 × 5 mm, fixed at one end, is analyzed. The beam is damaged by a 20 mm notch.
Figure 9 shows the beam schematically. Five tests have been conducted. The first test was
with the use of white noise excitation to identify the natural frequencies. The remaining
tests were conducted with the use of a sine excitation at the beam’s resonant frequencies.
Video is obtained with the use of a high-speed camera Phantom V9 with Carl Zeiss lens
(focal length 50 mm, f-number f/5.6) at 1000 frames per second. Face side of the beam was
covered in a random speckle pattern to allow OF calculation.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)
Figure 8. ODS visualization: FEM simulation results (colors are unrelated to the proposed visualization), color representation
and original frames transformation, according to the transformation procedure presented in Figure 5: (a–c) 106 Hz,
(d–f) 208 Hz, (g–i) 345 Hz.
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Figure 9. Scheme of the examined cantilever beam.

The original frame is presented in Figure 10a. As this image is not very clear, for
visualization purposes, histogram equalization has been performed—Figure 10b. Such
processing has also been applied to present further results. Color representation for sine
347 Hz excitation is shown in Figure 10c. This visualization allows the user to distinguish
moving regions and describes the direction and relative magnitude of imperceptible move-
ment. In this case, as the direction of the beam movement is vertical, blue regions indicate
parts moving downward and yellow upward.

(a)

(b)

(c)

Figure 10. Real object example. (a) Raw image of the beam. (b) Image after histogram equalization–
only for visualization purposes, not used during processing. (c) Color visualization of the beam
movement: yellow parts are moving up and blue down.

The process of obtaining a binary mask starts with OF direction changes counting
and k-means clustering of its results. Segmentation outcomes overlaid on original frames
are presented for different frequencies in Figure 11. The number of clusters is set to three,
except in the case of 40 Hz excitation (Figure 11a), where it is set to four and three of them
are selected. A relatively low frequency of movement causes this situation. In the 110 Hz
case (Figure 11b), one of three clusters is chosen and in 209 Hz (Figure 11c) and 347 Hz
(Figure 11d) examples, two are selected. This approach is used in order to cover a larger
area. Segmentation results vary depending on the frequency of analyzed movement. In
the case of 40 Hz excitation, numerous elements, e.g., elements of wires, are present in a
cluster representing the main parts of the beam. As frequency increases, these elements are
neglected. Finally, the case of 347 Hz sine shows significant difficulty, which is possible
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omitting regions neighboring nodes. In these areas, movement magnitude is low, resulting
in the classification of these parts as other objects or even as background closer to nodes.

(a) (b)

(c) (d)
Figure 11. Results of k-means segmentation. Gray area is the background. To cover the object
accurately different number of clusters were chosen depending on case. (a) 40 Hz–four clusters, three
selected (red, orange, yellow) (b) 110 Hz–three clusters, one selected (red) (c) 209 Hz–three clusters,
two selected (red, yellow) (d) 347 Hz–three clusters, two selected (red, yellow).

Further, results obtained for different frequencies are combined. Their normalized
sum is shown in Figure 12a. Next, only points present in at least two cases are retained
(Figure 12b). Again, the threshold is relatively low, so a greater region is included. Finally,
only pixels connected into one largest object are preserved (Figure 12c). Despite the
shortcomings of singular binary masks, their combination grants sufficient object indication.

(a)

(b)

(c)
Figure 12. Binary mask preparation: (a) sum of binary masks for different cases (pointed in Figure 11),
(b) selection of points present at at least two masks, (c) final mask–only main object selected.

Figure 13 shows ODS visualization for the aforementioned four different frequencies.
Color representation and raw frames transformation, both obtained without additional
multipliers, are set together. Results have been obtained using the binary mask presented
in the previous step. Color visualization is suitable and clear for the user. On the other
hand, raw transformation shows the real scene, which is also beneficial. An important
inconvenience is the presence of additional objects, e.g., accelerometers, reflecting on the
obtained visualization. In this case, sensors have become an integral part of the object.
However, their influence is noticeable and reduces the smoothness of ODS.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)
Figure 13. ODS visualization: color representation and original frames transformation after histogram
equalization: (a,b) sine 40 Hz, (c,d) sine 110 Hz, (e,f) sine 209 Hz, (g,h) sine 347 Hz. The remaining
parts of accelerometers were placed outside the binary mask.
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4. Conclusions

We have presented a set of tools allowing motion analysis using high-speed camera
recordings. Preparation of binary mask based on movement periodicity helps to indicate
objects or their parts vibrating similarly and reject irrelevant elements. Color transforma-
tion of OF results in a simple representation of movement, especially including very small
motion. The main achievement is novel ODS magnification based on the image transfor-
mation. Proposed tools have been assessed on the simulation data and real case recording
presenting a vibrating cantilever beam. The principal advantages of described techniques
are their simplicity, clarity, and no need of performing motion magnification for movement
analysis. As a serious drawback might be pointed one-dimensional magnification of ODS.
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