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Abstract: Supervised training of human activity recognition (HAR) systems based on body-worn
inertial measurement units (IMUs) is often constrained by the typically rather small amounts of
labeled sample data. Systems like IMUTube have been introduced that employ cross-modality
transfer approaches to convert videos of activities of interest into virtual IMU data. We demonstrate
for the first time how such large-scale virtual IMU datasets can be used to train HAR systems that
are substantially more complex than the state-of-the-art. Complexity is thereby represented by the
number of model parameters that can be trained robustly. Our models contain components that
are dedicated to capture the essentials of IMU data as they are of relevance for activity recognition,
which increased the number of trainable parameters by a factor of 1100 compared to state-of-the-art
model architectures. We evaluate the new model architecture on the challenging task of analyzing
free-weight gym exercises, specifically on classifying 13 dumbbell execises. We have collected around
41 h of virtual IMU data using IMUTube from exercise videos available from YouTube. The proposed
model is trained with the large amount of virtual IMU data and calibrated with a mere 36 min of
real IMU data. The trained model was evaluated on a real IMU dataset and we demonstrate the
substantial performance improvements of 20% absolute F1 score compared to the state-of-the-art
convolutional models in HAR.

Keywords: human activity recognition; virtual IMU data; deep learning

1. Introduction

Human activity recognition based on wearable sensing platforms (HAR) is a core
component of mobile, ubiquitous, and wearable computing. Miniaturized inertial mea-
surement units (IMUs), integrated into either body-worn devices such as smart watches,
fitness bands, or head-worn units, or mobile devices such as smart phones are used to
capture a person’s movements. These movement signals are then automatically analyzed
to recognize and assess activities that are of relevance for many practical applications, in-
cluding, for example, gesture-based interaction [1], health assessments [2,3], or behavioral
authentication [4]. The algorithmic backbone for the vast majority of HAR techniques
is based on machine learning, typically utilizing supervised learning methods to derive
probabilistic recognizers that are used to segment and classify activities of interest [5].

Over the years, the HAR research community has developed numerous approaches to
derive effective recognition systems [6–9]. Arguably, the biggest challenge and restricting
factor for all supervised HAR learning methods is the often limited amount of labeled train-
ing data. Unlike in other application domains of machine learning, here it is challenging to
collect large amounts of correctly annotated data samples. Reasons for these challenges
are largely related to pragmatics of data collection procedures; it is simply impractical or
even inappropriate to annotate real-life data, for example, by continuously following a
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person over extended periods of time. Likewise, it is impractical to ask a person directly
to provide ground truth annotation for their everyday activities. As a consequence, many
HAR datasets have been recorded in lab environments resulting in relatively small-scale
datasets that do not always capture the richness of real-life activities.

The limited size of labeled training data for supervised model training is hindering
progress towards more accurate activity recognition and towards analyzing more complex
human activities, such as complex gestures and behaviors. To tackle this “small data”
problem, the research community has explored many different avenues, ranging from,
for example, data augmentation [10,11], transfer learning [12], to self-supervised learning
techniques [13]. Recently, a paradigm change to data collection for supervised recognizer
training has been introduced where existing repositories of videos of human activities are
utilized to generate virtual IMU training data [14–17]. The key idea here is appealing—large
numbers of videos capturing activities of interest can easily be retrieved from platforms
such as YouTube. Through a computer vision-based processing pipeline, these videos can
be assessed regarding their overall quality and suitability for the modality transfer into
virtual IMU data. As a result, virtually unlimited amounts of (weakly) labeled training data
can be generated automatically, serving as a basis for deriving robust activity recognition
systems. Training datasets generated through systems such as IMUTube [14] can be
used for significantly improved classification performance in HAR, thereby pushing the
limits of conventional machine learning techniques, such as random forests, as well as of
contemporary deep neural networks, such as DeepConvLSTM [7], arguably the de-facto
standard in the field.

The architectures of state-of-the-art HAR models, such as the DeepConvLSTM model [7],
were designed specifically respecting the restrictions of limited size labeled training sets. The
popular DeepConvLSTM model [7] can only afford four, moderately-sized convolution
layers to learn effective data representations, and two LSTM layers for sequence modeling.
Attempts to increase the complexity of such models for scenarios based on current bench-
mark datasets of labeled training data very quickly lead to overfitting. With the effective
alleviation of the “small data” problem as shown by systems like IMUTube, we are now in a
position to rethink HAR modeling and to design more complex model architectures that are
not primarily driven by limitations of the training data but rather can capture the character-
istics of sensor data directly. In this work, we aim to demonstrate that HAR models with
significantly increased model complexity compared to the popular DeepConvLSTM model
can be effectively trained by making use of IMUTube for generating large-scale virtual IMU
data. We hypothesize that with increased model complexity, i.e., more parameters trained
robustly on labeled virtual IMU data, the overall accuracy of human activity recognition
shall improve.

For the first time, in this paper we utilize a large-scale training set of virtual IMU
data from IMUTube and video repositories to train more complex HAR models and
demonstrate how these new models lead to substantially improved recognition accuracy.
We automatically extracted training data from videos that were retrieved from YouTube
through simple search queries with the search terms serving as (weak) labels for the
supervised training procedure. We used the most recent version of IMUTube [15] to
translate these videos into virtual IMU data. The design of the more complex HAR
model is strictly oriented on the characteristics of IMU data and not restricted by potential
limitations of small labeled training sets. Compared to state-of-the-art model architectures,
we increase the number of trainable parameters by a factor of 1100. We demonstrate the
effectiveness of the new model architecture on a challenging application case, namely the
automated, fine-grained assessment of free weight gym exercises. Our models lead to a
gain of more than 20% absolute in the F1 score compared to the state-of-the-art convolution
models. Such a significant improvement confirms our assumption that more complex
models lead to improved recognition performance—if trained robustly. We show that
systems like IMUTube lead to an effective elimination of restrictions on model training
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imposed by small-size training sets that allow for the aforementioned robust training of
more complex models.

2. Background

Machine learning plays a central role for most activity recognition scenarios. Tradi-
tionally, (variants of) the activity recognition chain (ARC, [5]) have been employed. While
ARC-based methods are still of value for various application scenarios, deep learning-based
methods have now taken over the field. However, for many application scenarios, such
sophisticated models are difficult to derive in a robust way. The labeled datasets, that are
needed for supervised model training, are simply too small—a challenge we refer to as the
“small data(set)” problem. In what follows, we will first give a brief overview of relevant
modeling techniques before we summarize how the community is addressing the “small
data” problem. We end with a description of the specific IMUTube tool that is used in
this paper.

2.1. Human Activity Recognition Using Wearables and Machine Learning (HAR)
2.1.1. Conventional Modeling through the Activity Recognition Chain

A traditional activity recognition system typically implements (variants of) the activity
recognition chain (ARC [5]). Data is recorded, pre-processed, and segmented into individ-
ual analysis frames that contain a fixed number of consecutive sensor readings. For these
frames features are extracted, which are then used for classifier training (and evaluation).

Building activity recognition system starts with data collection from users. In such
data recording sessions, users are invited to a laboratory environment, and data is recorded
and annotated as users perform sets of activities. The dataset is then preprocessed to
remove noise and to normalize the sensor readings with regards to range, sampling rate,
synchronization, etc. [18]. In order to automatically analyze sensor data, the recording
stream is divided up into individual frames using a sliding window procedure. For each
analysis window, features are calculated, often based on hand-crafted representations that
incorporate statistical, frequency, or distribution information [19–21]. As the final step of
the processing pipeline, machine learning models, such as support vector machines or
random forest, are trained as classification backend.

2.1.2. Feature Learning

As an alternative to the often not generalizable hand-crafted feature representations,
the HAR community has been actively exploring the automated extraction of data repre-
sentations through feature learning thereby often employing deep learning methods [6,22].
Plötz et al. [6] demonstrated that feature learning using deep belief networks (DBN) can
lead to significantly improved and especially generalized classification performance down-
stream when compared to hand-crafted features. Other variants of feature learning utilized
more contemporary forms of autoencoder networks showing similar improvements in
feature generalization capabilities [23,24].

Recently, end-to-end learning approaches have been introduced for supervised fea-
ture learning in HAR [22,25]. Such methods typically employ deep neural networks and
train both the feature extractor and classifier parts of an integrated network simultane-
ously [11,26]. In order to capture the temporal structure of the sensor time-series, Ordóñez
and Roggen proposed a hybrid model that combines both convolutional and recurrent
neural networks [7].

Convolutional neural networks learn feature extraction kernels that capture local
temporal patterns, which are then aggregated through multiple layers and in a hierarchical
manner for effective data abstraction. Combined with recurrent neural network elements
such as long short-term memory (LSTM) cells [27], effective models can be derived that
capture both short- and long-term temporal dependencies by aggregating historical fea-
tures along the sequence [7,25,26,28]. Feature representations from such models are then
processed with multiple layers of fully connected models (multi-layer perceptron) using
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either sigmoid or softmax activation functions for binary or multi-class classification tasks,
respectively.

2.2. Tackling the Small Data Problem in HAR

Collecting large-scale sensor data for human activity recognition is challenging when
targeting real-life situations. Typically, such endeavors have to be conducted in laboratory
environments to allow for manual data annotation. Since this process is expensive, time-
consuming, and labor-intensive, typically only relative small amounts of labeled data
can be collected—often covering only a few dozen users and activities, performed over
relatively short periods. For example, the Daphnet freeze of gait dataset consists of a mere
five hours of sensor data from 10 users [29], and the Wetlab activity dataset covers 13 h of
sensor data from 22 users [30]. Moreover, human activity datasets commonly exhibit class
imbalance with the NULL class being over-represented. A dataset such as Opportunity
has 75% of the samples assigned to the NULL (or ‘other’) class [31], which makes it
difficult to build classifiers without overfitting. Class imbalance in training datasets poses
challenges for designing classifiers not to neglect minority class samples. In the field of
human activity recognition, there have been multiple ways proposed to address this ‘small
data(set)’ problem, including data augmentation, transfer learning (or domain adaptation),
self-supervised learning, and cross-modality adaptation. We provide brief descriptions of
each category of approaches below.

2.2.1. Data Augmentation

Using data augmentation techniques, artificial data samples are generated from
the original data by adding noise or by applying specific geometric transformations.
Um et al. [11] improved their freeze-of-gait detection model by applying permutations,
rotations, and time warping operations on the original training set. Le et al. [10] and
Fawaz et al. [32] applied data warping techniques, including window slicing, window
warping, rotations, permutations, and dynamic time warping to existing datasets to aug-
ment their training base. Fernández et al. [33] also proposed techniques to oversample
minority samples to tackle the label imbalance problem.

Alternatively, generative model-based processes have been used to extend the size of
training datasets in HAR. In particular, generative adversarial networks (GANs) have been
adopted [34,35]. For example, Harada et al. [8] and Yao et al. [36] augmented biosignals
and IoT (Internet of Things) sensor signals with GANs, respectively. Ramponi et al. [37]
extended conditional GANs to augment irregularly sampled time-series data. Despite
outperforming data transformation approaches, GAN-based models showed only modest
performance gains, probably due to the difficulty of generating realistic time series data.

2.2.2. Transfer Learning and Self-Supervised Learning

A large body of research has explored transfer learning methods to tackle the small
data problem [12,26]. Transfer learning first trains a classifier on a base dataset/task.
Then, the trained classifier is transferred to the target task by re-purposing (or finetuning)
the representations (features) learned on the original task. For cases where the target
task came with only small datasets (compared to the base dataset for pretraining the
original model), transfer learning could significantly improve the classification perfor-
mance [38]. Gjoreski et al. [9] demonstrated that successful transfer learning depends on
the similarity of the domain between the base and target task. Hu et al. [39] proposed an
unsupervised technique to select the base task most effective for the target downstream
task. Chen et al. [40] developed an online domain adaptation model under the challenge of
dynamically changing feature dimensions, activity classes, and data distributions, simulta-
neously.

Recently, self-supervised learning has gained popularity in HAR as a form of transfer
learning. A self-supervised learning approach pre-trains a model using a “pretext” task,
rather than a base dataset. The “pretext” task is a prediction task derived with domain
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expertise to provide supervisory signals related to downstream analysis tasks such as
activity recognition. The pretrained model is then finetuned with a small dataset from
target task. Saeed et al. [41] proposed a multi-task pretext task to predict eight different
types of data transformations applied to the input data. Haresamudram et al. [13] pre-
trained a transformer network [42] to reconstruct signals in randomly masked timesteps
in sensor frames. For a federated learning framework involving multiple sensors, such
as WiFi, IMU, electroencephalogram, and blood volume pulse, Saeed et al. [43] applied
contrastive learning with wavelet transformations. Combining contrastive learning with
predictive coding, Haresamudram et al. [44] showed that the performance of downstream
classification tasks could be significantly improved.

2.2.3. Cross-Modality Transfer

Transfer learning and data augmentation help mitigate the “small data” problem
by utilizing sensor datasets, i.e., data of the same original modality. Research is also
underway to train HAR models using data from other modalities, including character
animations, motion captures, and human activity videos. Kang et al. [45] extracted IMU
signals from motion information generated by hand-designed 3D character animations
using the Unity game engine [46]. Designing and simulating complex human activities
is very challenging such that their dataset is limited to simple gestures and locomotions.
However, the usefulness of virtual IMU data from virtual 3D characters has inspired other
studies to explore large, public motion capture datasets available, for example, in the
computer graphics community [47–49]. Xiao et al. [50] and Takeda et al. [51] trained HAR
models with virtual IMU data extracted from hundreds of subjects performing thousands
of motions in the motion capture dataset. The training of HAR models with large-scale
virtual IMU datasets resulted in a significant improvement in classification performance.
Nevertheless, motion capture datasets are typically limited in capturing the full range of
everyday human activities.

Video repositories have recently attracted attention as potential training resources for
sensor-based HAR models [14,15,17]. Sites like YouTube host vast amounts of videos that
capture broad ranges of human activities in real-world scenarios. Utilizing computer vision
techniques has allowed researchers to extract core motion information about a person’s
activities in a video and then to translate these into virtual sensor data. As an example,
Rey et al. [17] regressed 2D keypoint location changes resulting from a person performing
activities in a video into time-synced accelerometer data. Kwon et al. [14,15] estimated
full 3D motions of multiple people in the video and derived 3D virtual IMU data from the
body part where the sensor was, virtually, attached. The IMUTube system serves as the
basis for the work presented in this paper, and a more detailed overview of the system is
given below.

2.3. Generating Large Scale Virtual IMU Data from Real World Videos Using IMUTube

IMUTube was introduced as a video retrieval and processing system that allows
to make use of large-scale video datasets for training IMU-based activity recognition
models [14,15]. IMUTube generates virtual IMU data from videos that have been retrieved
from online repositories such as YouTube by querying these for activities of interests. The
search terms, such as “cycling” or “biceps curl”, serve as (weak) label for the virtual IMU
data that are generated using IMUTube. The overall assumption for the cross-modality
adaptation is that the motion signals that are relevant for individual activities are captured
by both the video cameras and the (virtual) IMU sensors. IMUTube bridges the gap
between the two modalities by effectively transferring videos into IMU data through a fully
automated procedure. Figure 1 gives an overview of the IMUTube principle for generating
virtual IMU training data from videos.
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Figure 1. Deriving human activity recognition systems from large scale virtual IMU data generated through IMUTube [14].
Videos for specific activities are retrieved from public repositories such as YouTube through keyword-based queries. These
search terms serve as weak labels for all generated sensor data. The IMUTube system then processes the retrieved videos to
(i) suppress irrelevant videos; (ii) eliminate portions of the videos that are of insufficient quality (motion blur, occlusions, etc.);
(iii) generates virtual IMU data for on-body sensor positions as specified by the query; and (iv) calibrates the virtual IMU
data towards more realistic sensor data. The resulting, large-scale virtual IMU dataset is then used for HAR model training.

To collect high-quality, realistic yet virtual IMU data, accurate human motion informa-
tion needs to be extracted via 3D human motion tracking from unconstrained 2D videos.
To do so, IMUTube implements a processing pipeline that incorporates techniques from
the computer vision, computer graphics, and signal processing domains. Unconstrained
videos of human activities as they can be found in repositories such as YouTube often stem
from non-professionals who may use handheld cameras in non-ideal recording conditions.
These conditions result in multiple challenges for the automated process that aims at ex-
tracting human motion information, including motion blur, occlusions, and extreme camera
movements to name but a few. It is not yet possible to track 3D motion accurately under
the presence of such artifacts using state-of-the-art computer vision techniques. IMUTube
tackles these challenges by automatically filtering out videos and segments thereof that
fall short in recording quality, which would result in poor quality virtual IMU data. As
such, the IMUTube processing pipeline selectively chooses videos that are most suitable for
conversion into virtual IMU data. Given the sheer size of public video repositories, such
lossy data collection is appropriate.

2.3.1. Adaptive Video Selection

Given a set of human activity videos that are returned by a query process that is
focused on the textual description of the activity of interest through appropriate search
terms (“cycling, or ”biceps curl”), IMUTube first detects and removes video segments that
contain certain artifacts, which may lead to a degradation of the quality of human motion
tracking results. Examples of such artifacts include noisy human poses, occlusions/self-
occlusions, and (too) fast foreground/background motions (Figure 1, orange box).

Noisy Pose Filtering: For motion tracking, IMUTube detects 2D poses in a video
sequence. Standard multi-person 2D pose detectors often confuse people in a scene with
non-human objects that may look like humans, which results in erroneous tracking [52]. To
avoid collecting such faulty motion data from non-human objects, IMUTube first employs
a human detector [53] to automatically find humans in a video frame. The system selects
the detected human with the highest confidence score to track and estimate 3D motion
through the remaining operations of the overall processing pipeline.

Occlusion Handling: The presence of occlusions in a 2D video can also complicate
the tracking of human poses and motion. As a result of occlusions between people and
between people and objects in a scene, and self-occlusions, i.e., the overlap of body parts
of individuals, human pose detectors often struggle determining where key points of the
to-be extracted skeleton model should be placed. IMUTube detects potential occlusions for
the position the virtual sensor shall be placed on and excludes those portions of a video
from further processing. To do so, the system applies human segmentation [54] and body
part parsing [55] for a detected human bounding box. The human segmentation mask is
compared with the locations of detected body keypoints to determine if the body keypoint
is occluded or not. If the body keypoint location is outside of the segmentation mask, it
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is flagged as occlusion and excluded from further processing. For those video portions
with non-occluded human poses, self-occlusion is examined next. IMUTube compares the
location of the body part keypoint with the body part parsing results. Keypoints detected
in the wrong part of the body, such as wrist keypoints in the lower body parts if the virtual
sensor shall be placed at the wrist, will result in the pose being deemed self-occluding and
removed from further processing.

Extreme Foreground & Background Motion Detection: All remaining human poses
and video segments are then examined for potential extreme background or foreground
movements. A person’s fast movements can cause motion blur in the video footage, which
may result in erroneous pose estimation such as estimating multiple poses from a single
individual. IMUTube detects such spurious poses by tracking changes in keypoint locations
and human bounding box shapes between successive frames. When extreme value changes
are detected, IMUTube discards such poses from further processing. Moreover, rapid
camera movements can produce extremely blurry background images that pose significant
challenges in estimating human motion. IMUTube quantifies background motion by using
optical flow estimations [56]. Optical flow measures displacements of each pixel between
subsequent frames. Background motion is characterized by the intensity of background
optical flows accumulated from the non-human area of the frame. Those frames that exhibit
extremely large background motion are removed from further analysis.

2.3.2. 3D Human Motion Tracking and Virtual IMU Data Extraction

The adaptive video selection procedure described above reduces the retrieved videos
for target activities to those that contain video frames that can be used for extracting
high-quality virtual IMU data. Subsequently, the system analyzes these remaining video
segments with regards to tracking 3D human motions through generating joint and global
motion estimations from which virtual IMU data can be extracted and calibrated for model
training (Figure 1, black box).

Joint Rotation Estimation: IMUTube first identifies the rotation of each joint in a
video. To do so, the system estimates 2D poses [52,57] from detected humans using a
human detector [53]. In order to estimate 2D pose changes across video sequences, a multi-
person tracker is utilized [58,59]. Then each 2D pose sequence is lifted to 3D poses using
3D pose estimators [60]. For capturing temporally smooth rotations of 3D joints, Kalman
filters are applied to the detected 3D pose sequences.

Global Motion Estimation: Videos of human activities may be recorded through the
camera following the person who is engaging in the target activity, resulting in substantial
camera movements that are not of relevance for the analysis of the target activity and may
actually degrade the quality of the generated data. IMUTube needs to estimate global body
acceleration across the entire video sequence while compensating for camera movements in
order to extract high-quality virtual IMU data. The body locations and orientations of each
tracked person within each frame are estimated by calibrating previously estimated 3D
human poses with the projective relationship for the matched 2D human poses in the scene
using Projective-n-Point estimation [61]. In the next step, IMUTube calculates the camera
ego-motion to account for 3D human pose location and orientation in accordance with the
camera movements. IMUTube does so by estimating the background depth maps from each
scene and lifting them to 3D point cloud models [62,63]. Based on subsequent 3D point
clouds, IMUTube calculates the camera’s ego-motion using the Iterative Closest Points (ICP)
method [64]. Finally, the camera ego-motion-compensated 3D global motion is integrated
with previously estimated 3D joint rotations throughout the entire video sequence.

Virtual IMU Data Extraction and Calibration: Following the estimation of the
full 3D motion for each person in the video, IMUTube extracts virtual IMU data from
specific body locations of interest. Based on forward kinematics from a predefined body
center, i.e., the hip, the motion of the target body locations and orientation can be tracked,
which results in estimates of linear accelerations and rotational velocities for local sensor
coordinates [65]. To do so, IMUTube uses the IMUSim model to generate realistic virtual
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IMU data [66]. IMUSim simulates noise from mechanical and electronic components in real
IMU sensors. The extracted virtual IMU data is then calibrated for the real IMU dataset
that is used during deployment. The specifications of different IMU sensors may vary
with regards to, for example, drift noise, bias, and the range of output values. In order to
minimize the discrepancies between the extracted virtual IMU data and the target real IMU
sensor data, IMUTube applies distribution mapping [67].

Finally, the calibrated, virtual sensor data are used for training HAR models. Search
queries serve as (weak) ground truth annotation of the training data. The advancements in
IMUTube have made it easier to collect weakly-labeled virtual IMU datasets, which have
been successfully used for exemplary HAR tasks, including classification of locomotions,
home activities, and gym exercises [31,68,69].

3. Complex Deep Neural Networks for Human Activity Recognition

With the availability of large-scale, annotated training sets of (virtual) IMU data we are
now in the position to freely design complex model architectures for deep learning-based
HAR. Large training sets us free to focus on capturing the relevant characteristics of IMU
data with models that have larger numbers of trainable parameters. The more complex
models result in improved activity recognition performance. In what follows, we first give
an overview of the novel model architecture before we give detailed explanations of all
model components.

3.1. Model Overview

In this work, sensor data is–in general–processed by following the standard deep
learning-based HAR paradigm [7,25]. A small analysis window is slid along the sensor
data stream and the resulting frames form the basis for all subsequent processing. Each
sensor frame is forwarded to the complex analysis model that we introduce in this paper,
which is trained in a supervised manner by utilizing the search queries as activity labels
for the extracted sensor frames using standard backpropagation [70]. Figure 2 gives an
overview of our new model architecture that starts off with the input sensor data frames
extracted through the aforementioned sliding window procedure. The new analysis model
targets improvements of the following three core parts of sensor data analysis: (i) Sensor
stream segmentation; (ii) sensor feature representation; and (iii) model training. We
introduce adaptive sensor window trimming that exploits automated detection of core
motion sequences, novel convolutional neural network models for effective feature learning,
and sample uncertainty quantification for handling noisy labeled samples. Specifically,
the adaptive trimming model (Section 3.2) captures that segment in a window of sensor
data that is most relevant for a given activity recognition task (core motions). Analysis
windows extracted by the sliding window method and curated through adaptive trimming
are then processed to extract multi-scale (Section 3.3.1), multi-kernel window (Section 3.3.2),
and multi-view (Section 3.3.3) feature representation to capture multiple temporal scales
and varying lengths of human actions. The HAR model is trained through adaptive
learning that explicitly takes into account potential sample uncertainty such that descriptive
and discriminative feature representations can be learned from raw, virtual IMU data
(Section 3.5).

3.2. Adaptive Trimming of Sensor Window for Detecting Core Motion Signal

Following the standard sliding-window paradigm, we first segment continuous
streams of sensor data. The window size is an important design factor for recognition
performance. It has to be large enough to capture the core motion in an ongoing activity
while at the same time short enough to exclude irrelevant motion parts. In contrast to
previous work, our method does not use a fixed analysis window but rather explicitly
learns a core motion detector, which can adaptively capture the key aspects of the signal as
they are of relevance for target activities.
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Figure 2. Overview of the novel model architecture for deep learning-based human activity recognition using wearables.
An input sensor frame is first processed with Adaptive Trimming (AdapTrimm or AT) to determine the sub-window region
that contains the core motion of the target activity. The feature representation is then extracted for this core motion sub-
window (green segment). Non-linear multi-scale convolution (MS Conv) captures temporal dynamics at multiple temporal
scales. Multi-kernel window convolution (MW Conv) captures varying lengths of motion signals from multi-scale features.
Multi-view convolution (MV Conv) uses diverse shapes of convolutional kernels to capture time-channel correlations. The
feature representation from intermediate convolutional layers is used as input to the final classifier in the form of auxiliary
inputs with skip-connections to enhance gradient flow in the bottom layers of the recognition network. The convolutional
feature representations are aggregated by a non-linear multi-scale recurrent neural network (MS RNN), which is used to
predict the activity class of the input sensor frame. Along with the class label, the confidence for the prediction is generated
by the model, which is for loss calculation to regularize the contribution of noisy inputs for model updates during training.

As shown in Figure 2, our Adaptive Trimming (AdapTrimm or AT) model automat-
ically detects the start and end times of core motions as defined above. Given a sensor
frame X ∈ RT×d of length T and dimension d (number of channels) that is sufficiently
large to capture target activities in various contexts, AdapTrimm first predicts the center
location c (index in the data stream) and width w (number of samples to be included in the
window) of the sub-window that contains the core motion:

c = sigmoid(Fcenter(Fat(X))) (1)

w = exp(Fwidth(Fat(X))). (2)

In a given sensor window, Fat(x) extracts the features using a four-layer convolutional
model for regressing two real values corresponding to the center and width of the core
motion signal. Based on the extracted features, Fcenter and Fwidth are two-layered fully
connected models for predicting the center 0 < c < 1 and the width w > 0.

Following this, the center location c and window width w are used to derive start s,
and end e indices of the core sub-window, where 0 < s, e < T:

s = T × sigmoid(c− w
2
) (3)

e = T × sigmoid(c +
w
2
) (4)

XC = X[s : e] = Fcrop(X, s, e). (5)

The core sub-window XC ∈ RT′×d, where T′ = e − s, is passed on to the feature
extraction part of our model. If the fixed-size input is needed for the subsequent classifier,
the cropped sub-window can be either interpolated or zero-padded to the required size.

The cropping operation, Fcrop(X, s, e) = Fsampler(Fgrid_gen(X), s, e), of AdapTrimm is
fully differentiable, which is adapted from the grid generator, X́ = Fgrid_gen(X), and sam-
pler, Fsampler(X́, s, e), used in spatial transformer networks (STN) [71]. STNs learn to
adaptively apply geometric manipulations, such as translation, scaling, or rotation to given
input data to localize their most relevant parts. For the geometric manipulations, STNs
first generate a parameterized 2D affine grid for the location of the relevant parts of the
data and then samples the grid to generate new data samples that only contain the target
parts. The grid generator and sampler are fully differentiable operations, which effectively
resemble an interpolation process. For AdapTrimm to crop the input sensor stream, the 1D



Sensors 2021, 21, 8337 10 of 26

temporal grid is generated from the detected start and end time of the core motion signal,
and the core motion segment is sampled according to the generated 1D grid.

3.3. Multi-Scale, Multi-Window, Multi-View Convolutional Model

Once the core motion parts have been determined by AdapTrimm, as described in
the previous section, our model focuses on extracting three different kinds of features
that capture the essentials of the underlying movement data, specifically targeting key
information that is of relevance for a subsequent classification task: (i) Multi-scale temporal
information; (ii) multiple lengths of motion units; and (iii) time-channel correlations. In
what follows we provide the technical details of this feature extraction process that is
integrated into our end-to-end learning procedure.

3.3.1. Non-Linear Multi-Scale Feature Representation

Different frequency components of a signal represent different levels of motion in-
formation. Typically, global and dynamic acceleration information is captured by low-
and high-frequency components, respectively. To incorporate such multi-scale motion
information into our data representation, we capture sensor features at multiple temporal
scales of the underlying input time-series (MS-Conv) by using multiple branches of hour-
glass network models [72–74]. Hourglass network models are often used for, e.g., image
segmentation or human pose estimation tasks. Such networks are deemed effective for
capturing low-dimensional spatial representations of images. Aiming to directly capture
the relevant frequencies in the (trimmed) signales, we adopt hourglass models such that
each model targets different scaling factors of the input data [72].

Input segments are first downsampled through a temporal convolution (left part of
models in Figure 3) and then, after passing through the intentional bottleneck (middle part
of models in Figure 3), upsampled by the transposed temporal convolutional model (right
part of models in Figure 3). Assume [ 1

2 , 1
4 , 1

8 ] are defined as the range for the temporal scales
with three branches in our hourglass network model from XC ∈ Rh×T×d, where h is the
number of feature map, T is the temporal length, and d is the number of sensor modalities
(Figure 3). Then, the targeted multi-scale feature representation, XMS = Fms(XC), is
extracted from the MS-Conv model:

XMS = Fms(XC) (6)

= F5×1(concath([U×2(D× 1
2
(XC)), U×4(D× 1

4
(XC)), U×8(D× 1

8
(XC))])) (7)

U×m and D× 1
m

are non-linear up- and downsampling operators with factor m, defining
multiple layers of the transposed and the non-transposed convolutional models, respec-
tively. We use a kernels size of 5× 1 and a stride size of 2 with ReLU activation for both
convolution and transposed convolution. The outputs of all rescaling branches are concate-
nated in a feature map and the bottleneck layer, Fk1×k2(·) = ReLU(convk1×k2(·)), is used to
aggregate multi-scale feature representation from each branch. For the bottleneck layer, we
use a temporal convolutional operator with 5× 1 kernel.

3.3.2. Multiple Kernel Window Size for Capturing Varying Motion Length

For different human activities across different people, the length of the core motion
signal may differ. For example, the average duration of a (walking) step is between 0.3
and 0.6 s depending on age [75–77]. Depending on the specifics of eccentric motions in,
e.g., gym exercises (as we study them in this paper) these durations can get extended to
1–3 s [78,79]. Modeling such variations of motion lengths is important for deriving effective
feature representations, be it explicitly through feature engineering or implicitly through
end-to-end learning [80,81]. Our model explicitly captures varying lengths of movement
signals by utilizing multi-length kernel windows (multi-window) for the convolution
operation, i.e., feature extraction.
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Figure 3. Non-linear multi-scale feature extraction (MS-Conv) with rescaling factors of [ 1
2 , 1

4 , 1
8 ]. To

capture low dimension temporal representation at each scaling factor, we adopt hourglass networks,
which are often used to capture low dimensional spatial representations of 2D images in computer
vision scenarios [72]. The hourglass network first downsamples input with the convolutional model
and then upsamples back to the original scale with the transposed convolutional model with ReLU
activation. We apply separate hourglass network models to capture each temporal scale information
independently, which is then aggregated and remixed with the bottleneck convolutional layer for
final output.

In our multi-kernel window convolution (MW-Conv) method we use a variety of
kernels with sizes ranging from 3 × 1 to 90 × 1 sensor readings. For an exemplary
30-Hz signal a 3 × 1 kernel extracts 0.125 s of motion signal, whereas the 90 × 1 ker-
nel covers 3 s of input data. Given a feature output from the preceding MS-Conv model,
XMS = Fms(XC) ∈ Rh×T×d, we compute multi-window feature representation
XMW = Fmw(XMS) through our MW-Conv model:

XMW = Fmw(XMS) = F5×1(concath([F3×1(XMS), F5×1(XMS), · · · , F91×1(XMS)])). (8)

The resulting features, extracted using the set of kernels with different sizes and
shapes, of varying temporal kernel sizes are concatenated along the feature map axis. The
concatenated feature vector is then passed through the bottleneck layer to recombine the
multi-kernel window feature representation. Figure 4 illustrates the procedure.

Aggregate

0.15
sec

0.5
sec

1
sec

1.5
sec

Conv

2
sec

𝑋!"

𝑋!#

Figure 4. Multi-kernel window convolution (MW-Conv) with kernel sizes of [0.15, 0.5, 1, 1.5, 2]
seconds, respectively, to capture short and long motions in human activities. We used different colors
for each kernels to show that they are independent and not sharing the weights. Features from each
kernel are concatenated along the feature map axis and recombined through the bottleneck layer.
We have explored other feature aggregation approaches, such as summation or bilinear pooling [82],
but concatenation was most effective over others.
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3.3.3. Multi-View Kernels for Time-Channel Representation

For effective activity recognition, feature representations for multi-channel sensor
data in HAR models need to capture the relationships between time and channel infor-
mation [83]. In order to extract time-channel correlations from input time-series XMW ∈
Rh×T×d we process sensor data through four different views of convolutions (MV-Conv),
as shown in Figure 5. Kernels of shapes t× 1 and 1× c implement convolutions along
the time and channel axes, respectively, to capture the features according to each view
of the sensor time-series. The t× c kernel implements a 2D convolution along both axes
to capture local correlations of time and channel patterns. We also apply a 1× 1 kernel
to extract sample-wise features that are independent of any time or channel axis. Subse-
quently, the four features extracted through the individual kernels are fused, resulting in
an aggregated representation that effectively integrates information from four different
viewpoints on a multi-modal sensor stream. Given a feature output from the preceding
MW-Conv model, XMW = Fmw(XMS) ∈ Rh×T×d, the multi-view convolution MV-Conv
with kernels of shape t× c is derived as XMV = Ft×c

mv (XMW) via:

XMV = Ft×c
mv (XMW) (9)

= F5×1(concath([Ft×1(XMW), F1×c(XMW), Ft×c(XMW), F1×1(XMW))])). (10)

The four feature sets are concatenated along the feature map axis, and a bottleneck
layer is used to recombine the concatenated features.

3.4. Full Feature Extraction Model with Skip-Connection and Temporal Aggregation

So far we have introduced multi-scale (MS-Conv), multi-window (MW-Conv), and multi-
view (MV-Conv) convolutional models to capture relevant aspects of sensor time-series. In
what follows, we show how those convolutional modules are used in the overall feature
extraction scheme. We also introduce skip connections to enhance gradient backpropaga-
tion for model training and incorporate recurrence into the overall network architecture to
facilitate temporal aggregation of convolutional features for classification.

Aggregate

Temporal
(t x 1)

Channel
(1 x ch)

Temporal
&

Channel
(t x ch)

Sample
-wise
(1x1)

Conv

𝑋!"

𝑋!#

Figure 5. Multi-view convolution (MV-Conv) with kernel shapes t× 1, 1× c, t× c, and 1× 1 are
used to capture the time and channel correlations. We used different colors for each kernels to show
that they are independent and not sharing the weights. Features from each kernel are concatenated
along the the feature map axis and recombined through the bottleneck layer. We have explored other
feature aggregation approaches, such as summation or bilinear pooling [82], but concatenation was
most effective over others.

3.4.1. Composite Convolutional Layer

The proposed model employs a sequence of multi-scale, multi-window, and multi-
view convolution—each integrated into the MSMWMV-Conv layer. MS-Conv (Section 3.3.1)
is first applied to the input time-series XMS = Fms(XC). Then the resulting multi-scale
feature representations are further processed to facilitate multi-window (Section 3.3.2),
multi-view (Section 3.3.3) convolution through MWMV-Conv. Multi-window multi-view
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convolutions (MWMV-Conv) capture time-channel correlated features at different motion
length ranges. Specifically, MVMW-Conv feature representations XMV = Fmwmv(XMS) are
extracted as follows:

XMV = Fmsmwmv(XC) = Fmwmv(Fms(XC)) = Fmwmv(XMS) (11)

= F5×1(concath([F3×3
mv (XMS), F5×3

mv (XMS), · · · , F61×3
mv (XMS)])) (12)

where multi-view features are captured for different temporal lengths [3, 4, · · · , 61]. The
extracted features are concatenated and aggregated with a bottleneck layer. Lastly, we use
multiple MSMWMV-Conv layers to extract high-level sensor features.

3.4.2. Handling Vanishing Gradients with Skip Connections

The basis for our novel model architecture are multiple stacks of MSMWMV-Conv
layers to represent high-level feature representations extracted from the raw sensor input
data. As MSMWMV-Conv layers are stacked, the width and depth of the model increase
significantly. Compared to the standard convolutional network model, which uses a
single convolutional kernel in each layer, the size of the proposed model in terms of
model parameters has multiplied compared to standard models in the field (such as
DeepConvLSTM [7]). The intended increase in the number of trainable model parameters
stems from the increased number of kernels used for feature extraction, their sizes, and
their shapes (as described before). For example, the number of convolution kernels for a
single MSMWMV-Conv layer increased to 25 from a single kernel per layer in a standard
convolution layer, with [1, 1

2 , 1
4 ] scales, [5, 11, 15] kernel windows, and four different shapes

for multi-view convolution.
In our experiments, we use four MSMWMV-Conv layers for convolutional feature

extraction. Previous work showed that training a large model is challenging because it
becomes more likely that the gradient during optimization becomes infinitesimally small at
the bottom layers [84–86]. The weights in multi-layer neural network models are updated
during training proportional to the partial derivative of the error function with respect to
the current weights. Backpropagation is calculated through the chain rule for derivatives.
Multiple multiplications of small gradients in higher layers exponentially decreases the
gradient error signals in the bottom layer effectively stopping the weight from further
training. Adding so-called skip-connections from intermediate layers directly to layers
later in the model seemingly helps to counteract the vanishing gradient by preserving
the flow of backpropagated gradient signals [86,87]. As shown in Figure 6, we introduce
skip-connections into our new, complex HAR model, specifically from all intermediate
layers to the final layer (classifier input) through Fax(x):

XSkip = Fax([XMV
1 , XMV

2 , · · · , XMV
L ]) (13)

= F5×1(concath([D1(XMV
1 ), D2(XMV

2 ), · · · , XMV
L ])). (14)

Features XMV
l=1,··· ,L−1 from intermediate MSMWMV-Conv layers l = 1, · · · , L− 1 are

concatenated with the final output XMV
L . When a downsampling operator, such as max-

pooling, is used at each convolutional layer, the dimensionality of the feature vectors
decreases along the hierarchy of the model. We apply multi-layer convolutional models
with max-poolings, Dl(·), to downscale the feature representation from early model layers
to match the size of the feature representation of the final layer. Similar to previous
operations, the concatenated feature vectors are again processed through the bottleneck
layer, and then fed to the classifier.
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Figure 6. MSMVMW-Conv model with skip connections and temporal aggregation through multi-
scale recurrent neural network. To handle vanishing gradients at the bottom layers of the MSMVMW-
Conv model, skip connections are introduced to directly feed feature representations from intermedi-
ate layers as auxiliary inputs to the classifier (blue). In this example, feature representations from each
intermediate layer are processed by the multi-layer convolutional neural network with max-pooling
to match the size of the feature representation from the final layer. The fused features from all
convolutional layers are passed to the multi-scale recurrent neural network model for temporal
aggregation and classification (orange).

3.4.3. Temporal Aggregation with Multi-Scale Recurrent Neural Network

Recurrent neural networks (RNNs) are often used in combination with convolutional
operators in an effort to capture global temporal dynamics of the feature representations
learned by the convolutional part of the model [7]. Furthermore, studies have shown that
multi-scale recurrent neural networks are effective through hierarchically aggregating the
inherent temporal dynamics of the data sequences analyzed [88–90].

Accordingly, we adopt and adapt multi-scale RNNs with multi-branch hourglass
networks similar to what was described earlier (Section 3.3.1). First, the output of the
final convolutional layer, XSkip ∈ Rh×t×c , is rearranged to match the sequential input to
the RNN: xSkip ∈ Rt×d, where d = h× c. Similar to what was described in Section 3.3.1,
the input is then rescaled according to the desired scaling factors by using the temporal
hourglass network. Given the feature representations XSkip = Fax(XMV

l=1,··· ,L) from the
skip-connection layers, when using [1, 1

2 , 1
4 ] as scaling factors, the multi-scale RNN feature

representation xMS
RNN = Fmsrnn(XSkip) becomes:

xMS
RNN = Fmsrnn(XSkip) = RNN(Fms(XSkip)) (15)

= RNN(F5×d(concatd([XSkip, U×2(D× 1
2
(XSkip)), U×4(D× 1

4
(XSkip))]))). (16)

Here, U×m and D× 1
m

are non-linear upsampling and downsampling operators (fac-
tor m), respectively. In contrast to previous convolution operations (Section 3.3.1) we
employ a convolutional kernel of size k× d to extract temporal-channel representations by
convolving along the time axis and with regards to the entire feature channel information.
The features from each rescaling operation are then concatenated along the feature channel
axis and further processed through the bottleneck layer. The output of that bottleneck layer
then serves as input to the RNN layer.

3.5. Uncertainty Modeling for Noisy Samples

The proposed model is trained using the large virtual IMU dataset that we extract from
YouTube by utilizing the IMUTube system as described in Section 2.3. Such automatically
generated training data are likely to contain outliers, i.e., samples of sub-optimal quality as
explained below. IMUTube uses search queries as, arguably, weak labels to be associated
with the generated virtual IMU data. The videos retrieved from YouTube (or any other
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public video repository, for that matter) are not guaranteed to only cover the activities that
the search query was targeting. Instead, at least parts of the retrieved videos may contain
other activities that are irrelevant if not detrimental for our modeling process. Such outlier
samples impose, if not treated properly, challenges for HAR models to learn effective
motion features for target activities. Previous work showed that handling outlier samples
in HAR datasets is important and, if successful, can significantly improve the performance
of the resulting HAR model [91–93].

To effectively train our HAR model with a dataset that potentially contains “noisy”
samples, we integrate a sample uncertainty quantification model that effectively assesses
the quality of training samples through their degree of “noise” both at sample- as well as
label-level. The model identifies outliers in a dataset, i.e., samples that are deemed of lower
quality due to the aforementioned noise. It is based on the principle of heteroscedastic
aleatoric uncertainty, which is defined as input-dependent uncertainty for the samples in a
given task [94,95]. Kendall et al. [94] quantify sample-specific uncertainties as a function of
input, which was predicted along with class labels. The quantified uncertainty of a sample
is used to regularize the amount of backpropagated gradient from the classification loss
that is actually used for the model parameter update. In doing so, the model selectively
learns from those samples in a dataset that are more relevant for deriving effective feature
representations for the target activities.

Figure 7b illustrates the robust model training procedure that automatically focuses
on more relevant training examples. For those samples that the uncertainty assessment
procedure determines to be of higher relevance for model training, the relative weight,
i.e., their contribution to model training, is increased. In contrast, the weights for outlier
samples is decreased. Formally, for a feature vector xMS

RNN = Fmsrnn(XSkip), extracted by a
multi-scale RNN model (Section 3.4.3), the uncertainty learning (UL) model quantifies
the sample uncertainty σ = Ful(xMS

RNN) ∈ R, which is used to regularize the cross-entropy
loss for the overall model Lc(W) = − log so f tmax(y, ŷ = Fcls(xMS

RNN)) measured between
target class y and the predicted class ŷ, where Fcls(·) represents the standard softmax
classifier for multi-class classification:

L(W, σ) =
1
σ2

2
Lc(W) + log σ. (17)

For Ful(x), we use two fully-connected layers with ReLU activations. As the un-
certainty σ increases, the cross-entropy loss Lc(W) decreases. At the same time, σ is
regularized to avoid pushing σ → ∞, which would result in effectively ignoring Lc(W)
for the entire loss L(W, σ). By using aleatoric uncertainty, the learning signal from noisy
samples that do not belong to the target activity is regularized for backpropagation.

To summarize, the proposed model captures the core motion signal of a sensor analy-
sis window and extracts multi-scale, multi-window, and multi-view (time-channel) feature
representations. The resulting model is trained end-to-end thereby explicitly incorporating
sample uncertainty estimations as effective means for model regularization. The presented
modifications and extensions to the HAR model result in an substantial increase in the
number of trainable model parameters. As we hypothesized, the increase in model com-
plexity leads to more flexible and robust HAR models—if trained robustly on a suitably
sized training dataset. In fact, the proposed model contains approximately 1100 times more
trainable model parameters compared to a standard convolutional model. Given that the
limitations on the size of a labeled training dataset can be alleviated through the use of the
IMUTube system, the novel, complex HAR model can now be trained effectively as will be
demonstrated in the next section.
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(a) Standard model training. (b) Model training with sample uncertainty.

Figure 7. Comparison between model training with (right) and without considering sample uncer-
tainty (left). Information flows related to outlier and relevant samples are colored in red and blue,
respectively. The size of the backward arrows illustrates the relative contribution of the samples to
the overall gradient signal as it is distributed to the model parameters through backpropagation.
(a) For standard model training, the contributions from outliers and relevant samples are the same
for the model update. (b) Our uncertainty assessment model quantifies the degree of uncertainty for
a given sample and then regularizes model training accordingly.

4. Case Study: Analyzing Free Weight Gym Exercises

Based on our assumption that more complex activity recognition models lead to
improved classification accuracy—if the models can be suitably trained—we now evaluate
the novel HAR model architecture on an exemplary, challenging analysis task. Using the
IMUTube system, we generated a large dataset of virtual IMU sensor readings, which puts
us in the position to be able to train the complex model architecture introduced in Section 3
in a robust manner.

In what follows, we will first introduce the case study and provide details of the
dataset generated using IMUTube. We then give details on the experimental evaluation
in which we not only compare classification capabilities of the overall, new HAR model
architecture to the state-of-the-art in the field, but also analyze the impact each individual
component of the new model architecture has on the overall assessment capabilities.

4.1. Scenario

For the experimental evaluation of the proposed model, we focus on free-weight
gym activity classification where we capture movement data with a single wrist-worn
inertial measurement unit. Specifically, we analyze 13 dumbbell exercise classification tasks
(Table 1), which were considered the most challenging activities in previous, related stud-
ies [69]. Many dumbbell exercises exhibit very similar motions (low inter-class variability),
while at the same time substantial intra-class variability can be observed due to differences
in individual posture, weight, and skill level.

We investigate how the increase in model complexity impacts activity recognition
accuracy when the classifiers can be robustly trained using a large-scale, virtual IMU
dataset. As we implement all of the proposed models in Section 3, we will evaluate
changes in classification performance as we integrate them one at a time from the standard
convolutional neural network model. Furthermore, incrementally adding each module
allows us to analyze the effectiveness of the proposed models individually, which will
provide suggestions for further in-depth investigation in future research.
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Table 1. A total of 13 dumbbell activities from MyoGym [69] datasets for evaluation.

Name Muscle Group Posture One-Arm, Both
or Alternate

One-Arm Dumbbell Row Middle Back Bent Over One-arm

Incline Dumbbell Flyes Chest Seated inclined Both

Incline Dumbbell Press Chest Seated inclined Both

Dumbbell Flyes Chest On back Both

Tricep Dumbbell Kickback Triceps Bent Over One-arm

Dumbbell Alternate Bicep Curl Biceps Standing Alternate

Incline Hammer Curl Biceps Seated inclined Both

Concentration Curl Biceps Seated One-arm

Hammer Curl Biceps Standing Alternate

Side Lateral Raise Shoulders Standing Both

Front Dumbbell Raise Shoulders Standing Alternate

Seated Dumbbell Shoulder Press Shoulders Seated Both

Lying Rear Delt Raise Shoulders On stomach Both

4.2. Datasets

The IMUTube system requires small portions of real IMU data to be used along with
the virtual IMU data as they are produced by the framework [14]. These real sensor samples
are used for calibration, i.e., to match the generated virtual IMU data with the real life
scenarios. As shown in the original IMUTube publications, the amount of real sensor data
is very small indeed, amounting to only a fraction of the virtual IMU data. Replicating
previous protocols ([14,15]), we use the MyoGym dataset [69] as a source for real sensor
data to be used in our experiments. It includes 30 free-weight activities from 10 users. On
average, we have 2.81 min of real IMU data available per activity.

For virtual IMU data, we generated a large dataset through using IMUTube as is and
with the names of the 13 selected dumnbell exercises as search terms in YouTube. The
resulting dataset contains approximately 3.20 h per activity (>41 h of virtual data total)
with YouTube search terms serving as (weak) labels [15].

4.3. Evaluation Protocol

Typical YouTube videos are recorded with a 30-Hz frame rate. In order to match the
characteristics of real and virtual IMU data, we downsampled the real IMU data to 30 Hz
(from the original 50 Hz). For the sensor frame size input to the model, we use a 4-second
window with 1-second overlap across all experiments, as a single repetition of concentric
and eccentric contractions is known to take between 3 to 4 seconds [78].

For the MyoGym real IMU dataset, we use subjects 1 through 5 as training set, subjects
6 and 7 as validation set, and data from subjects 8 through 10 as the test set for all experi-
ments. For evaluation metrics, the mean F1 score is used to account for label imbalance
in the dataset. For the statistical significance test, Wilson score intervals are derived from
15 runs for each experiment [96].

The use of virtual IMU data for HAR model training requires calibration with small
amounts of real IMU data to resolve domain discrepancies between the real and virtual
IMU datasets [14]. To do so, we replicate the training protocol from [15] and train the
proposed HAR model with both real and virtual IMU data. We first calibrate the virtual
IMU dataset with the training set from the real IMU dataset. Next, the model is pretrained
with the calibrated virtual IMU data and then fine-tuned with training sets in the real
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IMU dataset. Testing is based on the model with the highest validation score in the real
IMU dataset.

4.4. Model Hyperparameters

For model training, regardless of using real or virtual IMU data, the batch size is fixed
to 16. The learning rate is fixed to 1× 10−3 with the Adam optimizer. When fine-tuning
with real IMU data for the model pretrained with virtual IMU data, we reinitialize the last
classifier layer and set the learning rate to 1× 10−5. Unless specified differently, we set the
number of feature maps to 64 and kernel size to 5× 1 for all convolutional modules in our
model and use two layers of fully connected layers with 128 units for the final classification
layers, which is in line with related work [7]. Furthermore, except for the first layer with
raw sensor input, max-pooling operation with a 2× 1 kernel with 2× 1 stride is used to
downsample the size of feature resolution at each layer.

4.5. Results

Table 2 lists the evaluation results for the comparison of the effectiveness of the pro-
posed model architecture to the state-of-the-art. As baselines, we compared the proposed
method with a four-layer convolutional neural network (ConvNet) and the DeepConvL-
STM architecture [7]. For the proposed model, we incrementally applied the individual
modules as they were introduced in Section 3 to explore not only the overall effectiveness
of the new model architecture but also the impact each part has on the recognition accu-
racy. By doing so, we can assess the increase in classification performance in relation to
the increasing number of trainable parameters, which represents the model complexity.
When trained with the virtual IMU dataset, our best model (6th row in the “proposed
model” block in Table 2, AT + MS + MW + MV + AX + RNN) achieves an 80.2% mean
F1 score, which is a significant improvement over the state-of-the-art baselines: +17.6%
absolute when comparing to the CNN baseline, and +6.2% absolute when comparing to
DeepConvLSTM. It is worth reiterating that these substantial gains in recognition accuracy
come with no additional costs with regard to collecting and annotating training data but
can exclusively be attributed to the fact that with the availability of high-quality virtual
IMU data, we can now train more complex HAR models in a robust manner.

Table 2 documents the changes in recognition accuracy (mean F1 scores) aligned
with the increasing model complexity, indicated through the number of trainable model
parameters. Using all proposed modules (last row), the final model architecture contains
ca. 1100× more trainable model parameters than the convolutional modeling baseline
(Convnet). The corresponding gain in recognition accuracy totals to a 12.64% absolute F1
score when using real IMU, and a 17.63% absolute F1 score when using both real and virtual
IMU data. The performance gain when using virtual IMU dataset was more pronounced
for the more complex model (as directly listed in the last column—∆).

As soon as adaptive trimming (AT) is introduced (Table 2, 1st row under “Proposed”),
the number of model parameters grows by a factor of about 10 when compared to ConvNet.
This demonstrates that detecting core motions before the actual feature extraction step
helps improve model performance significantly, resulting in an average gain of 4.33% F1
score for both real, and real+virtual IMU data scenarios.
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Table 2. Classification performance (mean F1 score, Wilson score interval) for our experimental evaluation. The baseline
models are a standard four-layer convolutional models (ConvNet) and the DeepConvLSTM architecture [7]. Starting from
ConvNet, we incrementally added individual components of the proposed model architecture to evaluate the effect of
each of them along with the assessment of the overall effect more complex HAR model architectures have on recognition
performance. The components are listed as follows: Adaptive trimming (AT, Section 3.2), multi-scale feature extraction (MS,
Section 3.3.1), multi-kernel window feature extraction (MW, Section 3.3.2), multi-view convolution for temporal-channel
feature extraction (MV, Section 3.3.3), skip connections from intermediate layer features (AX, Section 3.4.2), 2-layer MS-GRU
unit for temporal aggregation of convolutional features (RNN, Section 3.4.3), and sample uncertainty modeling (UL,
Section 3.5). The number of model parameters is shown to provide a direct comparison of the model complexity. The last
column shows the performance difference, ∆ in percentage, when using virtual IMU data for model training.

Model Number of Training Data
∆Parameters Real IMU Real + Virtual IMU

ConvNet 106,054 0.589± 0.026 0.625± 0.026 5.7%

DeepConvLSTM 394,189 0.594± 0.025 0.740± 0.023 19.7%

Proposed
AT MS MW MV AX RNN UL

4 5 5 5 5 5 5 1,239,519 0.622± 0.026 0.679± 0.026 8.3%

4 4 5 5 5 5 5 1,335,519 0.656± 0.026 0.714± 0.024 8.1%

4 4 4 5 5 5 5 10,855,199 0.687± 0.025 0.755± 0.023 9.0%

4 4 4 4 5 5 5 42,727,455 0.691± 0.025 0.774± 0.022 10.6%

4 4 4 4 4 5 5 42,933,599 0.695± 0.025 0.800± 0.021 13.1%

4 4 4 4 4 4 5 112,810,015 0.707± 0.024 0.802± 0.021 11.8%

4 4 4 4 4 4 4 116,473,632 0.716± 0.024 0.799± 0.021 10.4%

The introduction of multi-window size kernels (MW-Conv) increases the model com-
plexity by another factor of 10 (second row under “Proposed” in the table). To extract
multi-scale feature representation at each layer, we applied non-linear rescaling with factors
of [1, 1

2 , 1
4 , 1

8 ] (Section 3.3.1). Capturing multi-scale features was very effective for increasing
model performance in a statistically significant manner with an increase of 3.44% in the
absolute F1 score on average.

The addition of multi-view kernels (MV-Conv) increased the model complexity by
another factor of 4 (Table 2, third row under “Proposed”). Capturing varying lengths of
motion signal significantly improved the model performance, resulting in an average F1
score gain of 3.58% absolute for both real, and real+virtual IMU training datasets. To capture
varying durations for activities under study, we employed 10 different 1D kernel sizes,
namely [3, 5, 7, 15, 23, 31, 37, 45, 53, 61]. For a 30-Hz signal, each kernel size corresponds to
0.125 s, 0.166 s, 0.25 s, 0.5 s, 0.75 s, 1 s, 1.25 s, 1.5 s, 1.75 s, and 2 s of sensor data, respectively.
Observing the effectiveness of using an extremely large kernel window size over 1-second
calls for further investigation on the use of large kernel windows specifically for modeling
a sensor time-series.

Modeling time-channel representations with varying kernel shapes (fourth row under
“Proposed” in the table) improved model performance by 1.15% for absolute F1 score on
average for both training datasets, which represents a statistically insignificant improve-
ment. The model trained only with real IMU data showed only a marginal gain, namely
an increase of 0.45% for the F1 score absolute. We consider that a single wrist sensor with
three channels did not provide many benefits from modeling the channel axis explicitly.
Modeling a single wrist sensor depends more on how to encode temporal information,
as we could observe from the analysis in multi-scale multi-window convolution.

Introducing skip-connections into the model increased the overall complexity of our
model to 402 times the complexity of the reference ConvNet. The resulting recognition
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accuracy increased by 2.65% for the F1 score absolute when training with virtual IMU
data and 0.32% in the F1 score when only using real IMU data (Table 2, fifth row under
“Proposed”). This shows that skip-connections help to avoid the vanishing gradient effect
in the bottom layers and that these auxiliary connections have a bigger positive impact
when variable gradient signals are available from large-scale virtual IMU datasets.

Introducing recurrency into the model (sixth row under “Proposed”) resulted in
marginal improvements in model performance, namely an absolute 0.19% F1 score increase
when using both virtual and real IMU data for training. In this experiment, we used a
two-layer GRU model with 1536 units for each layer. As discussed in Section 3.4.3, we
applied non-linear multi-scale operation on the input at each layer of GRU with scaling
factors of [1, 1

2 , 1
4 ]. We also explored different sizes of GRU units, different numbers of

layers, and replacing GRU with LSTM, but neither of them provided statistically significant
differences. We consider that aggregating temporal information has an insignificant effect
due to the usage of multi-scale multi-window kernel convolution. The convolutional layer
already captures long-range motion signal from using the kernel that covers two seconds
of data in a four-second analysis window. In addition, the multi-scale operation enables
the model to capture long-term temporal dynamics at multiple scales.

The effect of using uncertainty modeling (Table 2, last row under “Proposed”) for
pretraining was marginal not resulting in significant performance differences (0.27% abso-
lute F1 score increase). This shows that, when sufficiently large training data is provided,
the complex model can learn effective feature representations that are already robust to
label noises, which is in line with previous studies [97]. As discussed in Section 3.5, the fea-
ture representation from the last layer of the GRU model is forwarded to the classifier
and uncertainty detection model. In this experiment, we used a two-layer fully-connected
model with ReLU activation. To gradually decrease the feature dimension from the GRU
layer (1536) to a single real value regression for quantifying uncertainty, we used 768 and
384 units for each layer.

5. Discussion

In this paper we have explored how modeling for human activity recognition using
wearable movement sensors can be changed if the typical restriction of not having sufficient
amounts of labeled training data effectively disappears. Building our work on systems like
IMUTube allowed us to focus our efforts on capturing the relevant essentials of IMU data
without being constrained by keeping the number of trainable parameters low for robust
model training. We have successfully demonstrated how more complex models lead to
substantial improvements in HAR accuracy, given that we are now in the position to train
these in a suitable way. The large amount of easy-to-retrieve virtual IMU data is key to this
paradigm change.

Our work opens up opportunities for future work in this field. In what follows we
discuss potential next steps along with a general call for further exploration and concerted
developments across communities. We also show and discuss limitations of our approach
in its current form.

5.1. Collect Even Larger Datasets of Virtual IMU Data

The substantial improvements in HAR accuracy, which we have shown in this paper,
indicate that it is possible to derive more complex HAR models using virtual IMU data and
that the increased complexity, in terms of number of model parameters that can be trained
robustly, is, in fact, the reason for the performance improvements. The dataset that we used
in this paper was generated by using the IMUTube system on an exemplary, challenging
recognition task, namely, the assessment of free-weight gym exercises. Compared to the
original dataset that contains real IMU data, we could increase the amount of (weakly)
labeled training data by a factor of 100 to a total of approximately 41 hours, i.e., about
150,000 samples of 4-second data frames, which are the basis for our analysis.
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Even though this increase in training data is substantial, the dataset we used is still
relatively small when compared to datasets as they are typically used in other analysis
domains that utilize machine learning models. For example, the popular ImageNet dataset
consists of about 14 million annotated images [98], which is two orders of magnitude
larger than our dataset. With such a massive dataset it is now possible to train very large
models, such as the popular AlexNet [99], or ResNet-152 [86] that consists of 60 million
trainable parameters. Encouraged by the promising results presented in this paper, we
hypothesize that generating even larger datasets of virtual IMU data will further improve
recognition accuracy in supervised HAR scenarios. Yet, it remains to be explored to what
extent the inevitable increase of noise that is introduced into the virtual IMU dataset will
counteract or perhaps even eliminate the performance gains that can be made by increasing
the size of the training datasets. In contrast to the aforementioned examples from the image
processing/computer vision community, the additional training data are virtual IMU data
and not real sensor readings.

5.2. Analyze Complex Activities

While assessing the free-weight exercises is a challenging task, the underlying move-
ments are relatively constrained. Many physical activities are either more complex or more
subtle (or both) than the exemplary gym exercises that we studied in this paper. As such,
future studies should expand towards other, complex activities to explore how virtual IMU
data can effectively be utilized for improved modeling in HAR. Recently, Liu et al. [16]
demonstrated that virtual IMU data from videos could be used for American Sign Lan-
guage (ASL) recognition tasks. Signs in ASL, arguably, resemble complex activities where
subtle changes often result in entirely different semantics of the underlying movement. The
reported preliminary results indicate that systems like IMUTube can be used to successfully
generate training data for more complex activities than the ones studied in this paper.

5.3. End-to-End Learning of Complex Model Architectures

We designed the complex model architecture presented in this paper with the specific
focus on capturing relevant aspects of the underlying movement data as they are of
importance for human activity recognition using body-worn movements sensors. The
result of these design efforts is a complex model architecture (Section 3) that includes a
large number of individual, manually-defined components. While the design of these
components, and hence the analysis model overall, was done manually by experts who
have been working in the field for many years, the model parameters itself were learned
automatically from virtual training data.

While the achieved performance improvements are substantial, which confirms our
assumption that more complex models lead to improved classification performance if the
models can be trained suitably, it, arguably, begs the question if those model extensions
itself could have been learned automatically from the training data. The emerging field of
Neural Architecture Search (NAS [100]) studies how model topologies–rather than model
parameters only–can be learned automatically. For example, one could include the number
of hidden layers of a network, or the connectivity between layers (to name but a few
examples) into the learning process. NAS methods typically employ meta-learning, such
as genetic algorithms or reinforcement learning–each based on specific utility functions–
to automatically derive model topologies/architectures. It remains to be seen if such
fully automated, end-to-end learning approaches would lead to similar or even further
improvements in classification accuracy.

5.4. Virtual IMU Data as Basis for Alternatives to Supervised Learning

The main motivation for systems like IMUTube is to overcome the shortage of labeled
training data in machine learning-based HAR scenarios. The work presented in this paper
essentially falls into the same category of supervised training of, now more complex,
machine learning models. While it is encouraging to see the substantial improvements in
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classification accuracy in HAR through the use of large amounts of weakly labeled virtual
IMU data, it is worth expanding the view towards alternatives to conventional, supervised
learning approaches.

Recently, semi-supervised and especially self-supervised learning methods [101–103]
have become popular in many machine learning application domains including human
activity recognition using wearables [13,43,44]. Here the idea is to enhance small amounts
of labeled data through specific modification, formalized through so-called pretext learning
tasks, such that, through solving the auxiliary task, a meta-learning procedure is forced to
learn higher-level concepts that eventually lead to improved activity recognition perfor-
mance. Future studies could explore to what extent large scale virtual IMU dataset can be
utilized to support self-supervised learning methods.

Relaxing the requirements on annotations even further, one could explore to what
extent virtual IMU data can be used for fully unsupervised learning scenarios where,
for examples, feature representations are learned directly from raw sensor data [6,24].

6. Conclusions

With the development of systems like IMUTube [14], it has now become possible
to generate virtually unlimited amounts of weakly labeled, virtual IMU data. As such,
modeling for human activity recognition using wearables (HAR) is, in principle, no longer
constrained to account for the typically rather small labeled sample sets. In this paper,
we utilized a large, virtual IMU dataset to develop complex HAR models that include
substantially larger amounts of trainable model parameters than state-of-the-art models in
the field. Our assumption was that more complex models lead to improved recognition
performance if the models can be trained sufficiently.

We presented a HAR model that contains more than 1100 times more trainable parame-
ters than state-of-the-art models. Using a dataset that contains 41 hours of virtual IMU data
and a small amount of real IMU data for calibration, we were able to train the new model
robustly and could demonstrate substantial improvements in classification accuracy on an
exemplary, challenging assessment task, namely the analysis of free-weight gym exercises
captured by wrist-worn inertial measurement units. Our findings are significant because
they show that more complex models indeed lead to an improved HAR performance,
and also that such more complex models can actually be derived in a robust manner by
utilizing virtual IMU data that can easily be generated using systems such as IMUTube.
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