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Abstract: Connected vehicle (CV) technologies are changing the form of traditional traffic models. In
the CV driving environment, abundant and accurate information is available to vehicles, promoting
the development of control strategies and models. Under these circumstances, this paper proposes a
bidirectional vehicles information structure (BDVIS) by making use of the acceleration information
of one preceding vehicle and one following vehicle to improve the car-following models. Then,
we deduced the derived multiple vehicles information structure (DMVIS), including historical
movement information of multiple vehicles, without the acceleration information. Next, the paper
embeds the four kinds of basic car-following models into the framework to investigate the stability
condition of two structures under the small perturbation of traffic flow and explored traffic response
properties with different proportions of forward-looking or backward-looking terms. Under the
open boundary condition, simulations on a single lane are conducted to validate the theoretical
analysis. The results indicated that BDVIS and the DMVIS perform better than the original car-
following model in improving the traffic flow stability, but that they have their own advantages for
differently positioned vehicles in the platoon. Moreover, increasing the proportions of the preceding
and following vehicles presents a benefit to stability, but if traffic is stable, an increase in any of the
parameters would extend the influence time, which reveals that neither β1 or β2 is the biggest the
best for the traffic.

Keywords: connected vehicle; bidirectional vehicles information structure; acceleration; derived
multiple vehicles information structure; linear stability

1. Introduction

Traffic flow modeling is a significant part of traffic flow theory and existing models
include microscopic models, mesoscopic models, and macroscopic models [1]. In recent
years, the development of advanced technologies such as sensing technology or commu-
nication technology enhance the vehicles’ ability to collect information, calculate data,
and optimize motion. Under the intelligent connected environment, connected vehicles
(CV) could exchange information effectively, and make decisions cooperatively [2,3]. Thus,
many extended models based on the traditional models have been proposed to describe
the movement of CV, including the bidirectional-looking model and the forward-looking
model. Specifically, the bidirectional-looking models utilize information from preceding
and following vehicles, and the forward-looking models utilize the information only from
preceding vehicles. Both of them contain macroscopic extended forms and microscopic
extended forms [4–9].

The microscopic extended models include the car-following model [10–13], and cel-
lular automaton (CA) models [14]. The extended car-following model can be grouped
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into three categories: extended basic car-following models with specific items (BE-CF),
multi-anticipative forward-looking car-following models (MFL-CF), bidirectional-looking
car-following models (BL-CF). For BE-CF models, the optimal acceleration/velocity of the
target vehicle was affected by one preceding vehicle. While under the structure of MFL-CF
models, the optimal acceleration/velocity of the target vehicle was affected by more than
one preceding vehicle. In terms of the BL-CF models, not only the vehicles in front but
also the vehicles behind were considered. In all, the main distinction between the BE-CF
models and the MFL-CF/BL-CF models is that the BE-CF models focus on the movement
of the target vehicle and its nearest preceding vehicle. For the target vehicle, its information
comes from one preceding vehicle. For the MFL-CF/BL-CF models, at least three vehicles’
information was calculated.

The first BL-CF model was proposed by Herman et al. [15] based on the relative veloc-
ity (RV) model, and it employs the information that comes from the preceding vehicle and a
following vehicle near the target vehicle. The relative velocity among them was considered
and the stability condition of the BL-CF model was investigated. The result shows that the
stability improves with the increase in the proportional of both the preceding and following
vehicles. After that, researchers studied the different forms of extended models based
on the optimal velocity (OV) model [16–23], full velocity difference (FVD) model [24–27],
Gipps’ safe distance model [28], and Gazis–Herman–Rothery (GHR) model [29], intelligent
driver model (IDM) [30,31], adaptive cruise control (ACC) model [32]. Among these mod-
els, the extended bidirectional OV model and bidirectional FVD model have been studied
enthusiastically, while other models have been studied to a relatively lesser extent. In terms
of the bidirectional OV model, Nakayama et al. [16] introduced an extended OV model
which depends on the headway of the following vehicle, and found that the extension
stabilizes the traffic flow. Then, Hasebe et al. [17] expanded this into an arbitrary number
of preceding and following vehicles. After that, Ge et al. [18] proposed an extended OV
model with the consideration of the arbitrary number of vehicles ahead and one vehicle
following. All of them consider the headway of vehicles from extra information. Based on
these models, Yang [19] extended the OV model with information of an arbitrary number of
preceding vehicles and one following vehicle, considering headways and relative velocities.
Hu et al. [21] proposed the extended OV models in considering of distance and relative
velocity of multiple vehicles. Zhang et al. [22] explored the distance and relative velocity
of multiple vehicles with anticipation time. Studies of bidirectional FVD models are the
extension of OV models. Sun et al. [20] extended the bidirectional FVD with headways
and relative velocities. Based on Sun, Ma et al. [26] improved the bidirectional FVD model
considering relative velocities with reaction-time delay. Hou et al. [24] and Ma et al. [27]
explored the influence of driver’s visual angle. Chen et al. [25] extended the reference [20]
by considering driver’s velocity difference memory. Moreover, there is also a batch of other
extended models. Yang et al. [28] explored the safe distance of the bidirectional-looking
model based on Gipps’ safe distance model. Barrachina et al. [29] explored the chaos of
bidirectional-looking vehicles based on the GHR model. Wang et al. [32] extended the
Adaptive Cruise Control (ACC) system considering the relative velocity and distance of
arbitrary vehicles ahead and followed. Yi et al. [33] proposed bidirectional IDM which
considered the ratio of back looking distance and desired distance. Montanino et al. [30,31]
extended the bidirectional IDM by utilizing the information in the same form as the original
model, and explored the pure and mixed traffic flow stability.

These models contain the investigation of the effect of one vehicle preceding and
one vehicle following, multiple vehicles preceding and one vehicle following, an arbitrary
number of preceding vehicles and one following vehicle, an arbitrary number of vehicles
preceding or following vehicles. In addition, the bidirectional-looking information is
mainly about velocity difference, time-delay, space headway, or other forms, such as
driver’s sensory memory, driver’s visual angle, and desired speed. The BL-CF models
based on other forms of CF models are also investigated. For instance, Li et al. [34]
proposed a spring-mass system theory with considering the space headway and velocity
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difference between the host vehicle and its preceding/following vehicles and found out the
stability condition as well. Peter et al. [35] presented a bidirectional control framework to
describe the general back-looking models. Based on the synchronization theory of complex
networks, Du et al. [36] investigated the stability of an extended car-following model under
a honk environment.

The existing BL-CF model explores various information based on the bidirectional-
looking effect, such as velocity difference, space headway, driver’s visual angle, and desired
speed. Among the existing research, the application of the acceleration of the preceding
and following vehicles has not been fully studied and discussed. Acceleration represents a
decision signal of the vehicle, affecting the next time state of the vehicle. In some models,
acceleration is used to represent the longitude decision of a vehicle, such as IDM. When
the acceleration information is combined with the motion state of the object vehicle, some
information can be obtained indirectly, such as speed and position. Therefore, there is
some indirect information contained in the acceleration. If a vehicle’s acceleration can be
collected and transmitted to other vehicles through V2V or V2I technology, this information
can be used to improve vehicle decision-making in establishing extended car-following
models. Li et al. [37] found that the immediate acceleration of preceding vehicles brings
about positive effects on traffic flow stability under the MFL-CF structure. While they
defined the immediate acceleration of the front vehicle as to the original model of the
front vehicle at the last time. Following that logic, the front vehicle does not obtain the
acceleration information of the vehicle in front of it. Thus, this case degenerates as the
objective vehicle could only receive the velocity, headway, and velocity difference between
itself and its nearest preceding vehicle. If the vehicle is homogeneous and each vehicle can
be optimized according to the acceleration of the front vehicle when making decisions at
each time, the acceleration information of the front vehicle at a certain time contains the
historical motion state information of multiple vehicles. Existing research does not dig into
the implicit information of acceleration.

In addition, the existing research lacks a comparison between the forward and back-
ward information. In the macroscopic extended traffic flow model, researchers discussed
the influence of bidirectional information on anisotropy [1]. Since the traffic flow has a
direction, the forward and backward information has different impacts on the traffic flow in
the traditional sense. In the microscopic traffic flow, few researchers discuss the difference
influence between the forward and backward information on the traffic flow.

The innovation of this paper is to establish a bidirectional acceleration information
framework by exploring the relationship between the bidirectional structure and the
historical multiple vehicle motion information, deeply understanding the implication of
acceleration information, and exploring the difference between the preceding term and the
following term. Firstly, we propose a bidirectional vehicles information structure (BDVIS)
by making use of the acceleration information of one preceding vehicle and one following
vehicle. Then, we deduce the derived multiple vehicles information structure (DMVIS).
Next, we embed the IDM, the FVD, the OV, and ACC model into the framework to verify
the effects of two structures, investigating the stability condition for traffic flow under the
small perturbation and exploring traffic response properties with different proportions of
forward-looking or backward-looking terms. In this paper, the linear stability theory [38] is
employed to investigate the string stability of traffic flow.

The rest of the paper is organized as follows: Section 2 presents the BDVIS and deduces
the DMVIS. The linear stability condition is derived using the Laplace transform-based
method, exploring the stability condition of the two structures. Section 3 conducts the
numerical simulation to verify the linear stability condition, the disturbance influence time
was defined and the vehicle response properties were analyzed. Section 4 is the result and
discussion, Section 5 is the conclusion.
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2. Methodology
2.1. Bidirectional Information Structure for Car-Following Model
2.1.1. The BDVIS Based on Acceleration

Under a connected environment, the driver could receive the information of front and
rear vehicles, and the acceleration of adjacent vehicles could transmit to the host vehicle.
Hence, the acceleration of the near preceding vehicle and the near following vehicle in
the last step are considered to optimize the acceleration of the host vehicle. Acceleration
represents the tendency of longitudinal movement, which can be utilized to guide the
vehicle to adjust its movement in advance. The acceleration information exchange between
vehicles is indicated in Figure 1.
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The acceleration calculation of the vehicle using the BDVIS is as follows:

an(t) = f (an, t) + β1an−1(t− 1) + β2an+1(t− 1) (1)

where an(t) is the acceleration of the nth vehicle in time step t. f (an, t) is the original
car-following model, which does not include the acceleration information of vehicles. The
parameter β1 defines the coefficient of the preceding vehicle’s acceleration and the β2
defines the coefficient of the following vehicle’s acceleration.

Peter et al. [35] found that drivers take the information of the vehicle behind into
account, but the main attention of the driver is focused on the preceding vehicle, according
to the calibration of the real-world data. The forward information has a greater impact on
the vehicle. Therefore, when considering the acceleration of the preceding and following
vehicles, the proportion of the preceding vehicle should be larger, that is β1 > β2. Since
the coefficient of the original car-following model f(an,t) is 1, the sum of the coefficient
of preceding and the following vehicle should be smaller than the original car-following
model, which means β1 + β2 < 1.

2.1.2. The DMVIS Deduced from the BDVIS

In the homogeneous traffic flow, all of the vehicles consider the acceleration of their
preceding vehicle and following vehicle. The bidirectional acceleration can be deduced
from the movement of multiple vehicles as follows:

an(t) = f (an, t) + β1an−1(t− 1) + β2an+1(t− 1)

= f (an, t) + β1[ f (an−1, t− 1) + β1an−2(t− 2) + β2an(t− 2)]

+β2[ f (an+1, t− 1) + β1an(t− 2) + β2an+2(t− 2)]

(2)
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The DMVIS can be deduced by expanding the bidirectional expression, and the
acceleration of the nth vehicle at time step t is expressed as:

an(t) = f (an, t) + [χn−1β1 f (an−1, t− 1) + χn+1β2 f (an+1, t− 1)]

+[χn−2β1
2 f (an−2, t− 2) + 2χnβ1β2 f (an, t− 2) + χn+2β2

2 f (an+2, t− 2)]

+[. . .] + [χn−τ β1
τ f (an−τ , t− τ) + χn−τ+2

τ
1! β1

τ−1β2 f (an−τ+2, t− τ)

+χn−τ+4
τ(τ−1)

2! β1
τ−2β2

2 f (an−τ+4, t− τ) + . . . + χn+τ
τ!
τ! β2

τ f (an+τ , t− τ)]

(3)

χi =

{
1 , 0 < i ≤ N

0 , others
(4)

where f (an, t) is the original car-following model and τ is the time step. X is the judgment
coefficient to distinguish whether the vehicle is in the platoon, and N is the total number of
the platoon.

The acceleration of the nth vehicle at time t is determined by all of the vehicles in the
platoon if τ is big enough, which can be written as:

an(t) =
τ

∑
k=0

g(t, k) (5)

g(t, k) = [m(k, 0)× f (an−k, t− k) + m(k, 1)× f (an−k+2, t− k)

+m(k, 2)× f (an−k+4, t− k) + . . . + m(k, k)× f (an+k, t− k)]
(6)

m(k, j) = χn−k+2j

k
∏

l=k−j+1
l

j!
β1

k−jβ2
j (7)

Consequently, the information of the host vehicle contains the acceleration of its
preceding vehicle in the last time step, the acceleration of its next preceding vehicle in the
last two time step, and so on. Similarly, the information of the host vehicle also contains
the acceleration of its following vehicle in the last time step, the acceleration of its next
following vehicle in the last two time step, and so on. The information access for the nth
vehicle is shown in Figure 2. The difference between the DMVIS and the BDVIS is that
the latter uses the last step of acceleration, but the DMVIS utilizes the multiple steps of
information from multiple vehicles.
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2.2. Linear Stability Analysis for Car-Following Models

In this section, we apply the linear stability method for the two proposed structures.
The steady-state has the same homogeneous flow solution, all of the vehicles in the platoon
have the same velocity and the same headway.

2.2.1. Stability Analysis for BDVIS

Let yn(t) be a small perturbation with linear Fourier-mode expanding from the steady-
state position of the vehicle n at time t. The form is as follows:

yn(t) = ceiakn+zt = xn(t)− xn
∗(t) yn(t)→ 0, ak =

2πk
N

(k = 0, 1, L, N − 1) (8)

where c is a constant and xn
*(t) is the steady-state of the nth vehicle at time step t.

The second derivative of both sides of Equation (8) can be conducted:

..
yn(t) =

..
xn(t)− (xn

∗(t))′′ =
dvn(t)

dt
(9)

dvn(t)
dt

= an(t) (10)

Substituting Equations (8)–(10) into Equation (1):

.
yn(t + TD)−

.
yn(t) = TD f s

n(yn−1(t)− yn(t)) + f v
n (yn(t + TD)− yn(t))+

f ∆v
n (yn(t + TD)− yn(t)− yn−1(t + TD) + yn−1(t)) + β1(

.
yn−1(t)−

.
yn−1(t− TD)) + β2(

.
yn+1(t)−

.
yn+1(t− TD))

(11)

where

f s
n = ∂ f /∂sn(s, v, 0) ≥ 0, f v

n = ∂ f /∂vn(s, v, 0) ≤ 0, f ∆v
n = ∂ f /∂∆vn,n−1(s, v, 0) ≤ 0.

TD is the differential step size. The homogeneous traffic flow satisfies:

f s
n = f s

n−k = . . . = fs, f v
n = f v

n−k = . . . = fv, f ∆v
n = f ∆v

n−k = . . . = f∆v (12)

Substituting Equation (12), yn(t) = ceiαkn+zt and
.
yn(t) = zceiαkn+zt into Equation (11),

the algebraic equation for z can be obtained for any mode of perturbation
(k = 0, 1, . . . , n − 1) as:

z
(
ezTD − 1− β1e−iαk (1− e−zTD )− β2eiαk (1− e−zTD )

)
= TD fs

(
e−iαk − 1

)
+

fv
(
ezTD − 1

)
+ f∆v

(
ezTD − 1

)(
1− e−iαk

) (13)

Expanding z = z1(iαk) + z2(iαk)
2 + · · · , ez = 1 + z + z2

2 + · · · and inserting it into
Equation (13), the first order and second-order terms of coefficients of the expression of z
can be given, respectively, as follows:

z1 =
fs

fv
(14)

z2 =
fs

(
− 1

2 fv
2 − TD

2 fs fv − fv f∆v + fs(1− β1 − β2)
)

fv3 (15)

For small disturbances with long wavelengths, the stationary traffic flow is stable if:

z2 > 0 (16)
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When β1 = 0, β2 = 0, the stability condition degenerates as the stable condition:

z2 =
fs

(
− 1

2 fv
2 − TD

2 fs fv − fv f∆v + fs

)
fv3 (17)

The traffic flow is stable if z2 > 0. Under the situation, all vehicles have the same
velocity, as a consequence, the acceleration and velocity difference are 0 for all vehicles.

2.2.2. Stability Analysis for DMVIS

Substituting Equations (6), (8)–(10) into Equation (5) can obtain:

..
yn(t) =

τ

∑
k=0

g(t, k) =
τ

∑
k=0

[m(k, 0)× f (an−k, t− k) + m(k, 1)× f (an−k+1, t− k)
+m(k, 2)× f (an−k+4, t− k) + · · ·+ m(k, k)× f (an+k, t− k)]

(18)

Linearizing the f (an, t):

TD f s
n(yn−1(t)− yn(t)) + f v

n (yn(t + TD)− yn(t))+

f ∆v
n (yn(t + TD)− yn(t)− yn−1(t + TD) + yn−1(t))

(19)

where

f s
n = ∂/∂sn(s, v, 0) ≥ 0, f v

n = ∂ f /∂vn(s, v, 0) ≤ 0, f ∆v
n = ∂ f /∂∆vn,n−1(s, v, 0) ≤ 0.

Substituting Equations (11) and (19), yn(t) = ceiαkn+zt and
.
yn(t) = zceiαkn+zt into

Equation (18), the linearization of an(t) can be simplified as:

z
(
ezTD − 1

)
=
[
TD fs

(
e−iαk − 1

)
+ fv

(
ezTD − 1

)
+ f∆v

(
ezTD − 1

)(
1− e−iαk

)]
×

τ

∑
k=0

e−zk[m(k, 0)e−iαkk + m(k, 1)e−iαk(k−2) + m(k, 2)e−iαk(k−4) + . . . + m(k, k)e−iαk(−k)]
(20)

Expanding z = z1(iαk) + z2(iαk)
2 + · · · , ez = 1 + z + z2

2 + · · · and inserting it into
Equation (20), the first order and second-order terms of coefficients of the expression of z
can be given, respectively, as follows:

z1 =
fs

fv
(21)

z2 =

fs

(
− 1

2 fv
2

τ

∑
k=0

k
∑

j=0
m(k, j)− TD

2 fs fv
τ

∑
k=0

k
∑

j=0
m(k, j)− fv f∆v

τ

∑
k=0

k
∑

j=0
m(k, j) + fs

)

fv3
τ

∑
k=0

k
∑

j=0
m(k, j)

(22)

2.2.3. Results of Stability Analysis

In this paper, four kinds of car-following models—the OV, FVD, ACC, and IDM—are
introduced to analyze the linear stability with the structure of the BDVIS and DMVIS.
Table 1 list the formulation and parameters of four classical models.

For small disturbances with long wavelengths, the stationary traffic flow is stable
if z2 > 0. Substituting TD = 0.1, and the values in Table 1 in Equation (14), the stability
regions for four classical models in BDVIS can be explored. It can be found in Equation
(14) that β1 and β2 have the same effect on the theoretical analysis. Hence, the relationship
between traffic stability and parameters β1 or β2 can be studied by exploring the change in
β1. Figure 3 shows the relationship between the string stability of the traffic and β1, under
the condition where β2 = 0.
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Table 1. The introduction of the four car-following models.

Model Formulation fs, fv, f ∆v Parameters

IDM [39–41]

an(t) =

a
[

1−
(

vn(t)
v0

)δ
−
(

s∗(vn(t),∆vn,n−1(t))
sn(t)

)2
]

s∗(vn(t), ∆vn,n−1(t)) =

s(n)0 + Tnvn(t) +
vn(t)∆vn,n−1(t)

2
√

ab

fs =
2as∗2

s3

fv = − 4av3

v0
4 − 2aTs∗

s2

f∆v = −
√

avs∗

s2
√

b

a = 1 m/s2

b = 2 m/s2

vd= 120 km/h
s0= 2 m

δ = 4

FVD [42,43] a = λ1[V1 + V2tanh(C1(s− l)− C2)−
vn(t)] + λ2∆v

fs = λ1V2C1(1− tanh2[C1(s− l)− C2])
fv = −λ1
f∆v = λ2

λ1 = 0.41 s−1

λ1 = 0.4 s−1

V1 = 6.75 m/s
V2 = 7.91 m/s
C1 = 0.13 m−1

C2 = 1.75
L = 5 m

OV [42] a = λ1[V1 + V2tanh[C1(s− l)− C2]− vn(t)]
fs = λ1V2C1(1− tanh2[C1(s− l)− C2])

fv = −λ1
f∆v = 0

λ1 = 0.85 s−1

V1 = 6.75 m/s
V2 = 7.91 m/s
C1 = 0.13 m−1

C2 = 1.75
L = 5 m

ACC [44] a = k1(xk−1 − xk − thwvk) + k2(vk−1 − vk)
fs = k1

fv = −k1thw
f∆v = k2

k1 = 0.23 s−2

k2 = 0.07 s−1
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Figure 3. Relationship between the string stability of the traffic and β1 under the BDVIS for four
models. (a) Stability curves of traffic in IDM under the BDVIS; (b) Stability curves of traffic in FVD
under the BDVIS; (c) Stability curves of traffic in OV model under the BDVIS; (d) Stability curves of
traffic in ACC model under the BDVIS.
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The vertical axis in Figure 3a, Figure 4a,b and Figure 5a,b, represent the desired time
gap. These figures display that the traffic remains stable under conditions where the
desired time gap is greater than the corresponding value. Other figures, where the vertical
axis is stable, display the stability result using Equation (14) or Equation (22). This means
that the traffic is stable when the stability results are bigger than 0. Note that the black line
is the boundary.
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when its position is further back. Readers should note that the premise is the backward 
information is zero. It can be inferred from the symmetry in the formula that the traffic 

Figure 4. Relationships among the string stability of the traffic, β1, and the vehicle position under the DMVIS for four
models. (a) Stability curves for 2nd vehicle in IDM under the DMVIS; (b) Stability curves for 8th vehicle in IDM under the
DMVIS; (c) Stability curves for 5th vehicle in FVD under the DMVIS; (d) Stability curves for 5th vehicle in OV model under
the DMVIS; (e) Stability curves for 5th vehicle in ACC model under the DMVIS; (f) Stability curves for 8th vehicle in ACC
model under the DMVIS.
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(b) Relationship between platoon length and stability in IDM when β1 = 0.5 and β2 = 0.3; (c) Re-
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(e) Relationship between the position of the vehicles and stability in OV model when β1 = 0.5 and
β2 = 0.0; (f) Relationship between the position of the vehicles and stability in ACC model when
β1 = 0.5 and β2 = 0.0.

In Figure 3a, the lines decline with the increase in β1, indicating that the stability
region of traffic flow is increased. For Figure 3b–d, the line rises with the increase in β1,
resulting in more cases above the black line. Consequently, the string stability of the traffic
flow is enhanced in all four models under the BDVIS. Similarly, the string stability of the
traffic flow increases with the increase in β2. This means that the traffic flow will be more
stable by considering the acceleration of the preceding or the following vehicle.

Substituting TD = 0.1, and the values in Table 1 in Equation (22), the stability regions
for four classical models in BDVIS can be explored. It can be found from Equation (22), as
well as Equation (14), that β1 and β2 are symmetrical on the expression of stability formula.
However, the position of vehicles on the platoon affects the information acquirement.
Figure 4 shows the relationship among β1, the vehicle position, and the string stability of
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the traffic. These cases are carried out in the platoon with 10 vehicles, obeying four models
under the DMVIS, respectively.

In the same models under the DMVIS, the stability improves as the vehicle’s position
increases. The reason for this is that the host vehicle receives more abundant information
when its position is further back. Readers should note that the premise is the backward
information is zero. It can be inferred from the symmetry in the formula that the traffic
has the same characteristics as the β2. Moreover, the shape of the stability region in the
DMVIS is approaching the stability region in the BDVIS to some degree. This means that
the immediate acceleration of the near preceding and following vehicles can be replaced
by the movement information of multiple vehicles in some circumstances.

In contrast to the BDVIS, the stability of DMVIS is influenced by the position of the
vehicles. Figure 5 compares the stability curves between BDVIS and information from
different positions of vehicles under DMVIS in a certain combination of β1 and β2. The
total number of the platoon equals 10, and n denotes the different positions of the vehicles
under the DMVIS. It can be seen that vehicles in the rear of the platoon perform better than
those in the front of the platoon when β1 is large and β2 is relatively small. Vehicles on
the two sides of the platoon perform worse than those in the middle section when β1 is
close to β2. In all, vehicles in the middle of the platoon perform better than those in the
front and rear parts in DMVIS. In addition, models with BDVIS perform better than those
in DMVIS in some circumstances and sometimes the opposite is true. However, they are
close to each other approximately. The theoretical analysis reveals the acceleration implied
history movement information of multiple vehicles. However, the degree of implication is
limited and they can only replace each other approximately. As a result, both structures
have advantages in terms of improving traffic stability. If vehicles are on the two sides
of the platoon, choosing the BDVIS is better to improve string stability. If vehicles are in
the middle section of the platoon and are able to obtain the multiple steps of historical
information, DMVIS is a better option.

3. Experiment and Simulation
3.1. Description of the Experiments

Table 2 lists several experiments which aim to:

(1) Verify the theoretical stability results through numerical simulations of a platoon,
taking the BDVIS as the representative. (Experiments 1)

(2) Explore traffic response properties with different proportions of forward-looking (β1)
or forward-looking terms (β2) based on the BDVIS. (Experiments 2~3)

Experiments are conducted by numerical simulations of a platoon under the open
boundary condition on a single lane.

3.2. Evaluation Index

The disturbance influence time (DIT) is defined to investigate the vehicle response
properties under the combination of different proportions of the forward-looking term (β1)
or forward-looking term (β2). The disturbance influence time describes the acceleration
fluctuation time influenced by the perturbation for each vehicle, which is the duration
of time that the vehicle begins to decelerate or accelerate due to the influence of the
perturbation, and then go back to the equilibration so that the acceleration returns to zero
and remains zero. The mathematical expression of the assumption is as follows:

DITn = (TS − TB)n (23)

where DITn is the disturbance influence time of the nth vehicle. Ts is the time when the
vehicle goes back to the equilibration so that the acceleration returns to zero and remains
zero. TB is the time when the vehicle begins to decelerate or accelerate in the influence of
the perturbation. (Ts − TB)n is the time for the nth vehicle.
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Table 2. The introduction of the experiments and their parameter settings.

Experiment Basic Model
Parameter Settings

Characteristics
T/S/thw β1 β2

1

IDM
T = 1.5

0 0 unstable
0.4 0 stable

T = 0.6
0.3 0 unstable
0.3 0.2 stable

FVD S = 20
0.0 0 unstable
0.8 0 stable

OV S = 20
0.0 0 unstable
0.8 0 stable

ACC thw = 2.5 0.0 0 unstable
0.8 0 stable

2 IDM T = 1.5 0~0.4 0~0.9 β1 + β2 < 1, β1 > β2

3

IDM T = 1.5

0.5 0.3

β1 + β2 = 0.80.6 0.2
0.7 0.1
0.8 0

IDM T = 1.5

0.0 0

β2 fixed0.3 0
0.6 0
0.9 0

IDM T = 1.5

0.5 0

β1 fixed0.5 0.2
0.5 0.3
0.5 0.4

3.3. Simulation Environment

The experiments were implemented in MATLAB. They were conducted on hard-
ware configured with Inter Core i7-10750H CPU, 16GB memory, an Nvidia GeForce GTX
1650 GPU graphics card.

In the proposed structure, the moving of the platoon was simulated for 3500 s.
All the vehicles ran at the initial velocity v0 = 10 m/s, other parameters were set as
Tables 1 and 2 indicate. Except for FVD and OV model, the initial space distance ∆x = 20
m; other experiments set the initial space distance ∆x = 40 m. To eliminate the influence
of the initial state, the disturbance was applied after the traffic reached equilibrium. The
equilibrium criterion was a = 0 m/s2 for all the vehicles. The disturbance induced by the
leading vehicle suddenly decelerated with a =−1 m/s2 during the time t = 600 s to t = 602 s,
and a = 0 m/s2 was maintained after that. Then, the response of the following vehicles was
investigated with the different combinations of parameters in the structure. The simulation
was divided into two groups distinguished by the number of vehicles in the platoon. To
verify the analytical results, the experiment was conducted in a platoon that contains 100
vehicles.

4. Result and Discussion
4.1. Verification of Theoretical Stability Results of the BDVIS

Figure 6 shows time–position and acceleration changes in the traffic when the basic
model is the IDM in experiment 1. Figure 6a,b,e,f shows that the disturbance is amplified
when β1 and β2 are equal to 0. It reveals that the platoon tends to deviate from equilibrium
in the wake of propagation of the perturbation, causing the instability of the traffic flow. In
Figure 6c,d,g,h, the disturbance is diminished and the platoon is stable. This means that
the traffic stability improved with the increase in β1 or β2, which is also consistent with the
analytical results.
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Figure 6. Time–position and acceleration changes in the traffic when basic model is the IDM. (a) Time–position of the 
traffic when β1 = 0, β2 = 0, T = 1.5 s; (b) Acceleration changes in the traffic when β1 = 0, β2 = 0, T = 1.5 s; (c) Time–position of 
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Figure 6. Time–position and acceleration changes in the traffic when basic model is the IDM. (a) Time–
position of the traffic when β1 = 0, β2 = 0, T = 1.5 s; (b) Acceleration changes in the traffic when β1 = 0,
β2 = 0, T = 1.5 s; (c) Time–position of the traffic when β1 = 0.4, β2 = 0, T = 1.5 s; (d) Acceleration
changes in the traffic when β1 = 0.4, β2 = 0, T = 1.5 s; (e) Time–position of the traffic when β1 = 0.3,
β2 = 0, T = 0.6 s; (f) Acceleration changes in the traffic when β1 = 0.3, β2 = 0.0, T = 0.6 s; (g) Time–
position of the traffic when β1 = 0.3, β2 = 0.2, T = 0.6 s; (h) Acceleration changes in the traffic when
β1 = 0.3, β2 = 0.2, T = 0.6 s.

Figure 7 shows the time–position of the traffic when the basic model is the FVD,
OV, and ACC model in experiment 1, respectively. Figure 8 shows the 1st~10th vehicles
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as examples to observe the transmission of disturbance between vehicles, helping to
distinguish the traffic state. Figure 7a,c,e presents the shock waves that appeared in the
traffic after the leading vehicle suffered from a small disturbance. In Figure 8a,c,e, the
fluctuation of vehicles amplified along with the platoon. Comparing Figure 7a,c,e with
Figure 8a,c,e, the instability of the platoon can be seen. While observing Figure 7b,d,f, it
can be seen that the shock wave disappeared under these circumstances. This, combined
with Figure 8b,d,f, shows the fluctuation of vehicles alleviated along with the platoon.
Consequently, the traffic is stable under these conditions. These values are also consistent
with the analytical results. Readers should note that in Figure 7c, the OV model has failed
because of the instability, while vehicles could run normally under the BDVIS in Figure 7d.
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Figure 7. Time–position of the traffic when the basic model is the FVD, OV mode, and ACC model.
(a) Time–position of the traffic when basic model is the FVD and β1 = 0, β2 = 0, ∆x = 20 m; (b) Time–
position of the traffic when basic model is the FVD and β1 = 0, β2 = 0.8, ∆x = 20 m; (c) Time–position
of the traffic when basic model is the OV model and β1 = 0., β2 = 0, ∆x = 20 m; (d) Time–position of
the traffic when basic model is the OV model and β1 = 0.8, β2 = 0, ∆x = 20 m; (e) Time–position of the
traffic when basic model is the ACC model and β1 = 0.0, β2 = 0, thw = 2.5 s ACC; (f) Time–position of
the traffic when basic model is the ACC model and β1 = 0.8, β2 = 0.0, thw = 2.5 s.
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Figure 8. Acceleration changes in the traffic when the basic model is the FVD, OV, and ACC model. (a) Acceleration 
changes in the traffic when the basic model is the FVD and β1 = 0, β2 = 0, ∆x = 20 m; (b) Acceleration changes in the traffic 
when the basic model is the FVD and β1 = 0, β2 = 0.8, ∆x = 20 m; (c) Acceleration changes in the traffic when the basic model 
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Figure 8. Acceleration changes in the traffic when the basic model is the FVD, OV, and ACC model. (a) Acceleration changes
in the traffic when the basic model is the FVD and β1 = 0, β2 = 0, ∆x = 20 m; (b) Acceleration changes in the traffic when
the basic model is the FVD and β1 = 0, β2 = 0.8, ∆x = 20 m; (c) Acceleration changes in the traffic when the basic model is
the OV model and β1 = 0., β2 = 0, ∆x = 20 m; (d) Acceleration changes in the traffic when the basic model is the OV model
and β1 = 0.8, β2 = 0, ∆x = 20 m; (e) Acceleration changes in the traffic when the basic model is the ACC model and β1 = 0.0,
β2 = 0, thw = 2.5 s ACC; (f) Acceleration changes in the traffic when the basic model is the ACC model and β1 = 0.8, β2 = 0.0,
thw = 2.5 s.

In the traditional environment, vehicles make decisions depending on the moving
information of the near preceding vehicle. In the connected environment, vehicles could
receive accurate and abundant information from preceding and following vehicles. When
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a disturbance appeared, vehicles who followed the proposed structures could decide to
respond to the perturbation in advance and coordinate with the movement of the following
vehicle at the same time. However, in the traditional environment, vehicles obey the
original car-following model, which neither foresees the intention of the preceding vehicle
nor considers the movement of the vehicle followed. As a result, the proposed structures
have a better performance in maintaining the string stability of the platoon. The theoretical
and simulation results indicated that the BDVIS improves the traffic flow stability. The
stability can be further improved by increasing the proportion of the sum of β1 and β2.

4.2. Sensitivity Analysis of β1 and β2 Based on the BDVIS

β1 and β2 represent the degree of considering the preceding and following vehicle,
respectively. The moving direction of the traffic flow means that these two parameters have
different effects on the vehicle. The later experiment is to explore the differences between
β1 and β2 in the effect of traffic flow.

4.2.1. The Disturbance Influence Time in Different Combination of β1 and β2

In experiment 2, the conditions β1 + β2 < 1 and β1 > β2 wre explored under the
setting of T = 1.5 s. The mean DIT of 99 vehicles (except for the 1st vehicle) was calculated
and drawn.

From Figure 9a, it can be found that when β2 = 0, the DIT of vehicles decreases and
then increases with the increase in β1. In other circumstances, the DIT of vehicles increases
with the increase in either β1 or β2. The reason is that the traffic is unstable when β1 + β2 is
small. If traffic is stable, any of the parameters extends the influence time. This reveals that
neither β1 or β2 is the biggest or the best for the traffic. Figure 9b,c explores the influence
of β1 and β2 when β1 + β2 is fixed. It can be seen, with the increase in β2, that the DIT
decreased a little. As a consequence, the β2 presents the benefit of reducing DIT, while the
β1 has the opposite influence.
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4.2.2. The Characteristics of Acceleration Curves in Different Combinations of β1 and β2

To investigate the reason why the β1 and β2 have different effects on the DIT, experi-
ment 3 is conducted to analyze the characteristics of acceleration curves of each vehicle
in the platoon under the different combinations of β1 and β2. Figures show the 1st~10th
vehicles as examples to observe the transmission of disturbance between vehicles.

Figure 10 shows the acceleration changes for each vehicle in a platoon in four scenarios
with different combinations of β1, β2,and β1 + β2 = 0.8. Figure 10 verifies the analysis results
above; that the stability of these four cases is almost the same. However, the acceleration
curves are not smooth in Figure 10a–c, especially in Figure 10b,c, in which there are more
tiny fluctuations appearing in the curves. Therefore, although the stability of traffic is
nearly the same in these circumstances, the reactions of vehicles differ.
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Figure 11 shows the acceleration changes for each vehicle in a platoon in four scenarios
with β1 = 0, β1 = 0.3, β1 = 0.6 and β1 = 0.9, respectively. It can be seen that the traffic is
unstable in Figure 11a,b, and stable in Figure 11c,d. With the increase in β1, the acceleration
curves of vehicles became unsmooth, and more corners appeared. The shapes of these
acceleration lines are close to the broken lines, and the acceleration change point appeared
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earlier. This reveals that the acceleration curves changed more rapidly and strongly with
the increase in β1. The reason is that the vehicle responds quickly and strongly when it
pays more attention to preceding vehicles.
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Figure 12 shows the relationship between the acceleration changes with β2. Under the
settings that β1 = 0.5. It can be seen, when β1 is fixed, more tiny fluctuations appeared in
the curves with the increase in β2. The acceleration curves are gentler, but the rough shape
of these curves changed little. The smoothing effect of the β2 is achieved by increasing tiny
fluctuations to reduce the large abrupt accelerate or decelerate.

Consequently, it can be concluded that when β1 increases, the acceleration curves
change more rapidly and strongly, and the shape of acceleration curves change greatly.
When β2 increases, the tiny fluctuation increased and the acceleration curves become
more softly.
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5. Conclusions

This paper proposes a bidirectional vehicles information structure (BDVIS) by making
use of the acceleration information of one preceding vehicle and one following vehicle in a
CV environment. Then, we deduce the derived multiple vehicles information structure
(DMVIS), making use of the historical movement information of multiple vehicles, except
for the acceleration information of near vehicles. Next, the paper embeds the IDM, FVD,
OV, and ACC model into the framework, using linear stability theory to investigate the
stability condition of two structures. Lastly, we conduct the simulations to verify the effects,
and explore traffic response properties with different proportions and combinations of
forward-looking or backward-looking terms. In addition, we define a disturbance influence
time (DIT) to describe the acceleration fluctuation time influenced by the perturbation for
each vehicle.

The following conclusions can be made:

(1) The theoretical and simulation results indicated the BDVIS and the DMVIS improve
the traffic flow stability. The stability can be further improved by increasing the
proportion of the acceleration of the preceding or following vehicles.

(2) If vehicles are on the two sides of the platoon, the BDVIS is better for improving string
stability. If vehicles are in the middle section of the platoon and are able to obtain the
multiple steps of historical information, DMVIS is a better option.
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(3) The preceding and following proportions β1 and β2 have different influences on traffic
response properties. The β2 has the benefit of reducing DIT, but the β1 extends DIT.

(4) If traffic is stable, any of the parameters extends the influence time. This reveals that
neither β1 or β2 is the biggest and the best for the traffic.

In the future, the other effects of the β1 and β2, as well as the best combination of these
parameters should be investigated to supplement the study for better implementation in
the CV environment.
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