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Abstract: Vehicle speed prediction can obtain the future driving status of a vehicle in advance, which
helps to make better decisions for energy management strategies. We propose a novel deep learning
neural network architecture for vehicle speed prediction, called VSNet, by combining convolutional
neural network (CNN) and long-short term memory network (LSTM). VSNet adopts a fake image
composed of 15 vehicle signals in the past 15 s as model input to predict the vehicle speed in the
next 5 s. Different from the traditional series or parallel structure, VSNet is structured with CNN
and LSTM in series and then in parallel with two other CNNs of different convolutional kernel sizes.
The unique architecture allows for better fitting of highly nonlinear relationships. The prediction
performance of VSNet is first examined. The prediction results show a RMSE range of 0.519–2.681
and a R2 range of 0.997–0.929 for the future 5 s. Finally, an energy management strategy combined
with VSNet and model predictive control (MPC) is simulated. The equivalent fuel consumption of
the simulation increases by only 4.74% compared with DP-based energy management strategy and
decreased by 2.82% compared with the speed prediction method with low accuracy.

Keywords: speed prediction; deep learning; energy management strategy; model predictive control

1. Introduction

With the development of technology, speed prediction has been widely used in eco-
nomic, industry and transportation [1–6]. In the vehicle industry, speed prediction has
become an important part of intelligent vehicle energy management strategies [7]. As one
of the innovative control architectures, hierarchical control architectures equipped with
prediction modules have an indispensable contribution in modern control theory [8,9].
In the hierarchical control architecture of new energy vehicles (NEVs), the upper control
architecture is mainly responsible for the acquisition of prior information. The vehicle
speed prediction, as an effective method to obtain information about future driving con-
ditions, has a direct impact on the control effect of the bottom control [4]. Therefore, the
accuracy and efficiency of prediction affect the performance and practicality of the energy
management system. Improving the accuracy of vehicle speed prediction will be the main
research content of this paper.

The accuracy of speed prediction affects the optimization effect of energy management
strategies. In the terms of instantaneous-optimization-based energy management strategies,
Jiazheng PEI used six different speed prediction methods to construct model prediction
control (MPC) energy management strategies, respectively. The results showed that the
method with smaller speed prediction error obtained better fuel economy [10]. In the terms
of global-optimization-based energy management strategies, dynamic programming (DP),
which belongs to the global-optimization-based energy management strategies, requires
prior information of the vehicle driving conditions before optimizing the optimal control
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scheme [11]. Prior information and heavy computation pose difficulties for its application
in real-time control. To remedy this deficiency, Menglin Li combined speed prediction and
DP. The driving cycle was divided into finite intervals and the speed prediction method of
deep neural network was used to solve in segments within intervals. The results showed
that the speed prediction accuracy could be improved to reduce the fuel consumption
by 3.34% per 100 km [12]. The higher the accuracy of speed prediction, the better the
optimization effect.

One of the challenge in studying energy management strategies for hybrid electric
vehicle (HEV) is improving the accuracy of vehicle speed prediction [13]. With the develop-
ment of speed prediction algorithms, more and more methods are available. The commonly
used methods for speed prediction are linear regression analysis [14,15], vehicle dynamics
model prediction [16,17], stochastic prediction [18,19] and machine learning [20–23].

Linear regression analysis is a statistical analysis method to determine the quantitative
relationship between two or more variables [24]. Based on the availability of extensive ob-
servational data, mathematical and statistical methods are used to establish the regression
relationship between vehicle speed and its influence factors. Mirbaha, B et al. selected
traffic and weather data of a two-lane highway located in northwestern Iran for their
analysis. A linear regression model was used for speed prediction and analysis of the
correlation between the average vehicle speed and variables including vehicle flow, per-
centage of heavy vehicles, rainfall, etc. [14]. Maji, A et al. used a multiple linear stepwise
regression method to develop 85th percentile and 98th percentile speed prediction models
for four-lane horizontal curves on rural roads and obtained a minimum Root Mean Square
Error (RMSE) of 4.37 km/h [15]. The regression analysis method has a simple model with
poor robustness, which cannot fit highly nonlinear relationships well.

The vehicle dynamics model prediction method is based on a vehicle dynamics model
that calculates the vehicle acceleration by analyzing the wheel forces to evaluate the vehicle
speed. Li et al. built a vehicle controller by predicting the maximum vehicle speed
based on the vehicle lateral dynamics when entering a curve. The controller provided
an energy management strategy that improved the safety and fuel economy compared
with equivalent consumption minimization strategy [16]. Ma, Z et al. proposed a novel
method to identify the normal load of each tire in a heavy truck in order to estimate the
longitudinal velocity. The simulation showed that the predicted velocity could follow the
trend of the real velocity and no significant lag was found [17]. Since the vehicle dynamics
model needs to consider various parameters such as turning radius, vehicle mass, tire
stiffness, etc., the model is simplified compared with the actual vehicle in order to reduce
the modeling difficulty. The speed prediction accuracy is limited by the model accuracy
and simplification conditions.

As an important method for stochastic prediction, Markov chains are widely used [25,26].
Markov chain is a stochastic data-driven model that utilizes the state transfer matrix and
the current state to predict the future driving state. Jaewook shin et al. proposed a vehicle
speed prediction algorithm based on a Markov chain model with speed constraints. The
algorithm was experimentally verified to provide a mean square error of 3.8041 km/h [18].
Karbowski et al. used Markov chains to predict the future speed of the vehicle and designed
an energy management strategy for plug-in hybrid vehicles. Fuel savings of up to 5.7%
were achieved on a 36 km route in Munich [19]. The Markov chain method captures vehicle
speed to construct a state transfer matrix for speed prediction. The speed variation is more
in line with the real driving conditions of the vehicle. However, little historical information
is considered and stochastic prediction leads to large fluctuations in vehicle speed.

The methods described above have simpler prediction models with fewer adjustable
parameters, which means weaker fitting of nonlinear relationships and poorer accuracy in
predicting vehicle speeds. The development of machine learning techniques has brought
new solutions for vehicle speed prediction. Machine learning can learn features from a
limited amount of observed data, utilize the features to predict output and has a better
nonlinear fitting capability [20,27,28]. Machine learning is divided into shallow learning
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and deep learning. Traditional shallow learning is weak in feature extraction and requires
effort for data processing. If the features are not properly selected, there is no guarantee
that there is a stable mapping relationship between the input and output of the sample
so that the prediction effect is seriously affected [29,30]. Deep learning differs from tra-
ditional shallow learning in that: (1) it emphasizes the depth of the model architecture
and improves the nonlinear fitting ability by setting a large number of parameters; (2) it
explicitly highlights the importance of feature processing by transforming the feature in the
original space to a new feature space through layer-by-layer feature transformation, which
makes classification or prediction easier and does not depend on expert experience. In
recent years, convolutional neural network (CNN), a powerful deep learning method, has
been widely used in prediction due to its excellent feature extraction capability [21,31,32].
Loaiza, F.A. et al. presented a CNN method for speed prediction of a large-scale traffic
network. The empirical results showed that the method reduced the convergence time
without losing the performance of the predictions [33]. Ma, X. et al. proposed a CNN
method that learns traffic as images and predicts large-scale, network-wide traffic speed.
The results showed that the CNN outperformed other algorithms on testing data with an
average accuracy improvement of 42.91% [34]. CNN reduces the number of parameters to
be adjusted by neural networks through perceptual field and weight sharing, minimizes the
preprocessing requirements of data and achieves high accuracy vehicle speed prediction.
However, CNN is not designed to handle temporal data specifically. For vehicle speeds
with time-series characteristics, the prediction accuracy of CNN is subject to loss.

Compared with CNN, long short-term memory (LSTM) neural network with long
sequence processing capability has good performance in sequence prediction to detect
long-term dependencies [35]. Hochreiter and Schmidhuber proposed LSTM in 1997 [36].
It has been refined by many researchers in the following decade [37–39]. In the field of
transportation, LSTM is one of the most commonly used prediction models. Ma et al.
pioneered the introduction of LSTM for vehicle speed prediction and found that the LSTM
neural network achieved the best results in terms of prediction accuracy and stability by
comparing it with other neural networks [22]. Yeon, K. et al. used information from the
past 30 s to predict the future vehicle speed based on LSTM. The results showed that
LSTM has better prediction performance compared with CNN [23]. LSTM gets an edge on
sequence problem and has long time memory capability. However, except for the temporal
features, it has a poor ability to extract the remaining features.

The complexity of machine learning allows for a stronger nonlinear fitting capability.
A high accuracy model for speed prediction can be obtained by training a large amount of
data. However, a general machine learning model that solves a series of complex problems
does not exist. Individual model always has certain limitations in application.

In the context, this paper combines CNN and LSTM to propose a novel neural network
structure based deep learning specifically for vehicle speed prediction, named VSNet.
VSNet can identify the mapping relationship between vehicle signals and vehicle speed to
accurately predict the future vehicle speed. In this paper, VSNet is compared with Markov
chain combined with Monte Carlo (MCMC), support vector machine (SVM) and CNN to
verify the effectiveness of VSNet in predicting vehicle speed. Finally, for a parallel HEV,
the four speed prediction methods are combined with MPC for simulation experiments to
verify the impact of prediction accuracy on MPC.

The innovations of this paper are as follows.

(1) The temporal vehicle signals are arrayed as fake images, which are adopted as the
input sample of VSNet. Three types of convolutional kernels with different sizes
are used to extract the temporal features, vehicle signal features and comprehensive
features in a single sample, respectively.

(2) Generate sample sequences based on time series. LSTM is used to extract the sequen-
tial features between the sample.

(3) The combination of CNN and LSTM is used to construct VSNet, which makes up for
the defects of the individual model and enhances the learning ability.
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The remainder of this paper is structured as follows. Section 2 introduces the deep
learning method and proposes VSNet. Section 3 introduces the vehicle model and MPC
model. Section 4 shows the speed prediction results and combines MPC with speed
prediction methods for vehicle simulation validation. Section 5 shows the conclusion and
future outlook.

2. Speed Prediction Method

Road experiments are conducted to collect raw data of a vehicle. By calculating the
Pearson correlation coefficient between each signal and vehicle speed, the top 15 signals
that have the strongest correlation with vehicle speed are selected for feature extraction. The
fake image is obtained by fixed-step interception and the training set is obtained by rolling
interception. The prediction model of vehicle speed is obtained by training the parameters
offline through error back propagation. When the vehicle is in motion, the vehicle speed
can be predicted online in real time by simply inputting the vehicle information into the
trained model. The flow chart of speed prediction is shown by Figure 1.

Figure 1. The flow chart of speed prediction.

2.1. Data Processing

In this paper, road experiments are performed on a hybrid electric vehicle to collect
data of signals. The data from each signals forms a vector that changes over time. Vectors
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need to be arranged into a matrix as a fake image to be input to VSNet. To ensure the
reasonableness of fake images, selected signals need to be able to establish a mapping
relationship with vehicle speed. In order to make a mapping between input data and
predicted vehicle speed, this paper uses Pearson correlation to judge the relationship
between each vehicle signal and vehicle speed and selects fifteen signals for subsequent
research, which ensures data quality and reduces the input data scale.

Pearson correlation is a method proposed by the British statistician Pearson in the 20th
century to calculate the linear correlation [40]. The Pearson correlation coefficient between
vehicle signal and vehicle speed can be calculated by

ρXiV =
Cov(Xi, V)√
D(Xi)

√
D(V)

=
E((Xi − EXi)(V − EV))√

D(Xi)
√

D(V)
(1)

where E denotes expectation, D denotes variance, Cov denotes covariance, V denotes
vehicle speed and Xi denotes the ith vehicle signal. The selected signals and their Pearson
correlation coefficients with vehicle speed are shown by Table 1 and Figure 2.

Table 1. Pearson correlation coefficient of selected signals.

CAN Bus Signal Pearson Correlation
Coefficient

Vehicle Speed (km/h) 1
Powertrain Speed (rpm) 0.971832

Engine Speed (rpm) 0.832933
Generator Speed (rpm) 0.83258

Generator Efficiency 0.786406
Motor Speed (rpm) 0.768914

Motor Efficiency 0.707602
Engine Fuel Consumed (gram) 0.686369

Engine Fuel rate (g/kwh) 0.657577
Engine On 0.581088
Clutch On 0.45993

Engine Torque (Nm) 0.397152
Engine Throttle 0.36374

Regen Brake 0.250294
Battery Current (A) 0.225507

Figure 2. The illustration of Pearson correlation coefficient.

Samples used for training model consists of input and output. The input of samples
is obtained by intercepting the selected vehicle signal sequences with sampling time of
15 s and rolling time of 1 s. The output of samples is obtained by intercepting the vehicle
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speed sequence with sampling time of 5 s and rolling time of 1 s. The format of samples is
described by Equations (2) and (3).

xk =


Sk−14

1 Sk−13
1 · · · Sk

1
Sk−14

2 Sk−13
2 · · · Sk

2
...

...
. . .

...
Sk−14

15 Sk−13
15 · · · Sk

15

 (2)

yk =



Sk+1
1

Sk+2
1

Sk+3
1

Sk+4
1

Sk+5
1


(3)

where k denotes both the time and the sample label; xk and yk are input and output of the
kth sample, respectively; Si denotes the ith vehicle signal in Table 1.

2.2. CNN

The data collected in this paper are two-dimensional fake images with vehicle signal
dimension and time dimension. Due to the unique structure, CNN has high accuracy
regression results and classification results for image processing. Therefore, it is chosen to
build speed prediction model. A basic CNN architecture is shown by Figure 3. CNN is a
deep feedforward neural network that extracts features of the data within the coverage by
a unique convolutional computation [29]. Its structure consists of input layer, intermediate
layer and output layer, where the intermediate layer includes convolutional layer, pooling
layer, activation function and batch normalization layer.

Figure 3. The illustration of a basic CNN.

2.2.1. Convolutional Layer

The role of the convolution layer is compression and purification in order to enhance
input signals and reduce noise. The neurons between the convolutional layers are locally
connected and share the weights. This design greatly speeds up the training and decreases
the number of weights and biases. Local connectivity means that the neurons in the upper
layer are connected to the neurons in the lower layer only in a local area, which is also called
local receptive field. The mapping from the previous layer to the next layer is called the
feature mapping. The weight that defines the feature mapping is called the shared weight.
The bias of the feature mapping is called shared bias. Collectively, they are referred to as a
convolution kernel. A single convolution kernel can detect only one type of local feature
in most cases, so multiple convolution kernels are often needed in order to implement
the mapping of multiple features. The rules of convolution operation for multiple input
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features are shown by Equation (4). Additionally, for the convolution operation with step
size d, the formula is described by Equation (5).

Zl+1
i,j,k = ∑

s,m,n
Al

s,j+m−1,k+n−1W l+1
i,s,m,n + Bl+1

i (4)

Zl+1
i,j,k = ∑

s,m,n
Al

s,(j−1)d+m,(k−1)d+nW l+1
i,s,m,n + Bl+1

i (5)

where Z denotes the input of the neuron, l denotes the lth layer, i denotes ith feature vector,
j and k denotes the jth row and kth column of a feature vector, respectively, A denotes the
output of the neuron, s denotes the number of feature vectors in the layer, m and n denotes
the value of (m, n) position in a convolution kernel, and B is the bias.

2.2.2. Pooling Layer

The reason why convolution is used to extract features is that features in one region
of the input data are most likely to be present in another region as well. Therefore,
it is necessary to further aggregate statistics of features at different regions, which is
called pooling. The pooling layer is less prone to overfitting and can reduce the feature
resolution. The pooling method used in this paper is maximum pooling, whose equation is
described by

apl
i,j,k = max

m,n

{
al

i,(j−1)d+m,(k−1)d+n

}
(6)

where ap denotes the output of the pooling layer, d denotes the step size of the pooling, m
and n denotes the value of (m, n) position in a pooling kernel, and the rest of the parameters
are the same as before.

2.2.3. Activation Function

The activation function is responsible for mapping the input of a neuron to the output.
It is crucial for artificial neural network models to learn and understand complex and
non-linear functions. The activation function used in this paper is the ELU function, which
performs constant operations on positive inputs and exponential nonlinear operations on
negative inputs. Its function expression is described by

ELU(x) =

{
x x ≥ 0
α(ex − 1) x < 0

(7)

where x is the input of the activation layer and α is the adjustable parameter.

2.2.4. Batch Normalization Layer

The most widely used normalization method in convolutional neural networks is
batch normalization. Batch normalization has the role in preventing gradient explosion and
gradient disappearance. In the backpropagation process of neural network, the gradient
of each layer is calculated by multiplying the gradient passed from the upper layer. If the
gradient of each layer is close to 0, the more layers are propagated, the smaller the gradient
is. This causes the gradient disappearance during the back propagation. On the contrary, if
the gradient of each layer is more than 1, it will lead to gradient explosion. The normalized
data is mapped by the activation function to keep the gradient at a suitable level, so that
the gradient does not disappear or explode during the training back propagation. In the
training process, batch size is used to determine the number of samples selected for once
training. Assuming that there are m elements in a batch size, the set B = {x1, . . . , xm}
is formed. The strategy of batch normalization is to first compute the sample mean and
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sample variance in turn for B, and then perform normalization, translation and scaling on
the sample data. The formulas are described by Equations (8)–(11).

µB =
1
m

m

∑
i=1

xi (8)

σ2
B =

1
m

m

∑
i=1

(xi − µB)
2 (9)

x̂i =
xi − µB√

σ2
B + ε

(10)

BNγ,β(xi) = γx̂i + β (11)

where µB is the sample mean, σ2
B is the sample variance, ε is an infinitesimal positive

number, and γ and β are training parameters.

2.2.5. Output Layer

The CNN implements regression through a fully connected layer. The fully connected
layer extracts and integrates all useful information through matrix multiplication, which is
equivalent to feature space transformation. Together with the nonlinear mapping of the
activation function, multiple layers of fully connected layers can theoretically simulate any
nonlinear transformation.

2.3. LSTM

LSTM is a temporal recurrent neural network suitable for processing and predicting
important events in time series with relatively long intervals and delays [39]. The structure
of LSTM is shown by Figure 4. LSTM adds a unit called cell that judges whether the
information is useful or not. Only information that meets the conditions is remembered,
the ones that do not are ignored.

Figure 4. The illustration of a basic CNN.

The sigmoid function is applied as a gate to return a value in the interval from 0 to 1.
In this way, the proportion of information flowing out is controlled. The expression of the
function is described by

σ(x) =
1

1 + e−x (12)

The tanh function is derived from the basic hyperbolic functions. It returns a value in
the interval from −1 to 1 to control the increase or decrease of the information. Its function
expression is described by

tanhx =
sinhx
cosh x

=
ex − e−x

ex + e−x (13)

In LSTM, three sigmoid functions manage three gates, namely forget gate, input gate
and output gate. LSTM adds the element of memory state C. The current memory state Ct is
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determined by the portion of the previous memory state Ct−1 filtered through the forgetting
gate plus the portion added in the current period. The portion that is filtered in the previous
period depends on the forgetting gate based on the sigmoid function. When the value of
the forgetting gate is 0, it means that the previous memory is completely forgotten. While
when the value of the forgetting gate is 1, the previous memory is completely retained. The
output formula of the forgetting gate is described by

ft = σ(w f · [Ht−1, xt]) + b f (14)

where Ht−1 is the model output in period t− 1, xt is the model input in period t, w f and
b f is the weight and bias of the forgetting gate, respectively, and ft is the output of the
forgetting gate in period t.

The input gate is used to update the new memories. The sigmoid function controls
the proportion of updated information and the tanh function controls the magnitude and
direction of the update. The two portions are multiplied to get the new memory of the
current period. Then, the portion of the previous memory is added to get the memory state
of the current period. The formula is described by Equations (15)–(17).

it = σ(wi · [Ht−1, xt]) + bi (15)

ut = tanh(wu · [Ht−1, xt]) + bu (16)

ιt = it · ut (17)

where wi and bi are the weight and bias of the information update ratio, respectively, it is
the output of the sigmoid function of the input gate in the tth period, wu and bu are the
weight and bias of the information update magnitude and direction, ut is the output of the
tanh function of the input gate in the tth period and ιt is the output of the input gate in the
tth period.

The sigmoid function of the output gate and the tanh function of the current memory
are multiplied to obtain the output Ht for the current period. Ct and Ht will flow cycli-
cally to the next period and participate in the calculation. The formula is described by
Equations (18)–(20).

ot = σ(wo · [Ht−1, xt]) + bo (18)

ct = ct−1 · ft + ιt (19)

Ht= ot · tanh(ct) (20)

where wo and bo are the weight and bias of the output gate, and ot is the output of the
output gate in period t.

2.4. The Architecture of VSNet

The deep learning architecture built in this paper is called VSNet whose architecture
is shown by Figure 5. Three different sizes of convolutional kernels are used to extract the
features of the samples in parallel. Convolutional kernels of the first size are shaped as a
horizontal bar, and extract the sequential features of each vehicle signal in a single sample.
As the training progresses, kernels of this size look for a timing variation, which is common
to all signals. Convolutional kernels of the second size are shaped as a vertical bar, which
tends to extract the relationship features between each vehicle signals related to vehicle
speed in a single sample. Convolutional kernels of the third size are a rectangle, which
extracts the combined features of signals and sequences. After the process, a LSTM layer is
used to extract the sequential features between the sample. Eventually, final results of three
types convolution is concatenated by the concatenation layer. The output is performed by
a two-layer fully connected neural network to predict the vehicle speed.



Sensors 2021, 21, 8273 10 of 24

Figure 5. The architecture of VSNet.

The input data format of VSNet is shown by the expression of Equations (2) and (3)
above. The input data with time series are combined to constitute the training set, as shown
by Equation (21).

X =



x1
x2
x3
...

xn


Y =



y1
y2
y3
...

yn


(21)

where X and Y are the input and output of the training set, respectively.
In the initial stage of model training, the initial weights W0 of the model is set randomly.

After inputting the training set, the model brings X and W into the calculation for speed
prediction, as shown by

Ŷ = VSNet(X, W) =



ŷ1
ŷ2
ŷ3
...

ŷn


(22)

where Ŷ is the set of prediction results. The prediction results are compared with the actual
output results Y to verify the model prediction accuracy, as shown by

S =
n

∑
i=1

(yi − ŷi)
2 (23)

where S is the sum of the squared errors. The goal of training is to minimize S by con-
tinuously adjusting W. The W is adjusted using the back propagation method and the
adjustment magnitude of each weight is calculated by gradient descent method. The
calculation formula is shown by

∆wj = −η
∂S
∂wj

(24)
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where ∆wj is the step size of once adjustment of the weight and η is the learning coefficient.
In order to find the minimal value of S, it is necessary to correct W gradually from its initial
value to the value where the partial derivative of S is 0. The chain rule is used to solve the
partial derivative of the complex function S. The error is propagated from the output layer
by layer and no intermediate steps can be skipped in this process.

W0 tends to produce a large error. The calculation based on its derivative also results
in a large initial step size. As the error function is adjusted so that S gradually converges to
a minimal value, the absolute value of the derivative gradually converges to 0 and the step
size is continuously reduced. If η is set too small, the learning speed is too slow and takes
too long. On the contrary, if η is set too large, it is very likely to skip the extreme point and
continue to oscillate without convergence. Therefore, η is adopted 1.5 × 10−3 in this paper
to improve the learning speed while ensuring convergence to the extremum.

The update of weights in VSNet is completed in this way.

3. Model

In this paper, a HEV is modeled in Simulink platform and a MPC-based energy
management strategy is built.

3.1. Vehicle Model

The vehicle model is a parallel HEV. According to the placement of the electrification
component, the vehicle belongs to the P2 type, i.e., the motor is placed behind the clutch 0
and before the transmission. The vehicle configuration is shown by Figure 6. When the
clutch 0 is disengaged, the motor drives the vehicle alone, avoiding engine operating in the
inefficiency area and allowing for brake energy recovery. When the clutch 0 is engaged, the
engine and motor work together. According to the power distribution relationship between
the engine and the motor, the vehicle driving model can be divided into motor traction
model, engine traction mode, charging mode and hybrid traction mode. The switching
conditions between modes are mainly determined by the overall vehicle demand power
and the state of charge (SOC). Vehicle and component parameters are shown by Table 2.

Figure 6. The schematic of the PHEV configuration.
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Table 2. Vehicle and component parameters in the studied vehicle.

Component Parameter Value Unit

Vehicle
Vehicle weight 1200 kg

Tire radius 0.323 m
Final drive ratio 4.021 /

Engine Maximum torque 165 Nm
Maximum power 105@6500 kW@rpm

Motor
Maximum torque 307 Nm
Maximum power 126@12,584 kW@rpm

Battery Rated capacity 20.8 Ah
Rated voltage 366 V

Gear

First 3.527 /
Second 2.025 /
Third 1.382 /

Fourth 1.058 /
Fifth 0.958 /

3.2. Model Predictive Control

MPC, as a control method that allows rolling optimization, is widely used in industrial
control processes [41]. The mechanism of MPC is described below. At each sampling
moment, a finite stages open-loop optimization problem is solved online based on the
obtained current measurement information. The first element of the obtained control
sequence is applied to the controlled object. At the next stage, the optimization problem is
refreshed and solved again by using the new measurements as the initial conditions for
predicting the future dynamics of the system.

3.2.1. State Update

Predicting the future state of the system, as shown by Figure 7. The system variables,
given control variable and parameters are input at each stage. The system variables and
outputs for the next stage can be calculated by combining the input with the vehicle
model. The system variables, control variable and parameters are defined as shown by
Equation (25). The differential equation of the system is described in Equation (26).

x = [v, a, Qm, Qe]
T

u = λ

p = [vp, gear]T
(25)

{
x′ = f (x, u, p, t)
y = g(x, u, p, t)

(26)

where x is the system variable, v is vehicle speed, a is acceleration, Qm is motor energy
consumption, Qe is engine energy consumption, u is the control variable, λ is power
distribution ratio, p is parameter, vp is target speed and Gear is the gear of the transmission.
The vehicle equation constraint for the objective function is shown by

dv
dt = a

da
dt =

ak−ak−1
step

dQm
dt = Pm
dQe
dt = Pe

(27)

where ak is the acceleration of the kth stage, step is the step size of the integration, Pm is the
motor power and Pe is the engine power.
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Figure 7. Illustration of the status update process.

In order to solve the differential equations, the fourth-order Longacurta method is
used in this paper, which has high accuracy, converges faster and does not require the
calculation of higher order derivatives [42]. The calculation formula is shown by

xk+1 = xk +
K1
6 + K2

3 + K3
3 + K4

6
K1 = h f (xk, tk)

K2 = h f (xk +
K1
2 , tk +

h
2 )

K3 = h f (xk +
K2
2 , tk +

h
2 )

K4 = h f (xk + K3, tk + h)

(28)

where k is the current stage, f denotes the vehicle model, t is the time, and h is the
integration step.

3.2.2. Optimization

Solving the open-loop optimization problem, as shown by Figure 8. The control
variable and parameters in the given time domain can continuously update the state
variables of the system to obtain the output sequence in the time domain. The output
sequence is accumulated to calculate the optimization objective function. The automatic
derivative (AD) tool CasADi is used to find the partial derivatives of the objective function
with respect to the control variable [43]. The control variable is solved optimally by
combining the inequality constraints of the control variable and vehicle components.
The optimization method used is a nonlinear primal-dual interior point method, which
solves for the optimal sequence of control variable at each moment of the predicted time
domain [44].

min f = min
n

∑
i=1

yi = min
n

∑
i=1

[α(vi − vp
i )

2
+ βQe + χQm] (29)

where f is the objective function, n is horizon; yi is the output of the ith stage, vi is the
vehicle speed of the ith stage, vp

i is the target vehicle speed of the ith stage, α, β and χ are
the scale factor of each item, and Qe and Qm are energy consumption of engine and motor,
respectively.

Figure 8. Illustration of the optimization process.
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3.2.3. Constraints

The inequality constraints are set up in order to keep the vehicle and its components
in a reasonable state and ensure that the results are in the feasible domain. The inequality
constraints for the objective function are shown by

−1 ≤ λ ≤ 1
−1 ≤ pedal ≤ 1

−Tn
m,min ≤ Tn

m ≤ Tn
m,max

−Tn
e,min ≤ Tn

e ≤ Tn
e,max

−nm,min ≤ nm ≤ nm,max
−ne,min ≤ ne ≤ ne,max

(30)

where pedal indicates the load of pedal, Tn
m and Tn

e are the torque of motor and engine
at the rotate speed of n, respectively, nm and ne are the rotate speed of motor and engine,
respectively, Tn

m,max, Tn
e,max, nm,max and ne,max are the maximum value of the parameters,

respectively, Tn
m,min, Tn

e,min, nm,min and ne,min are the minimum value of the parameters,
respectively.

After determining the constraints and objective function, the solution can be solved
by the optimizer. The first element of the optimization solution is applied to the system to
complete the calculation of MPC at the current moment and obtain the real vehicle state at
the next moment. Finally, the optimization problem is refreshed and the control strategy
for the next moment is solved again based on the new information.

4. Results and Validation

Speed prediction can obtain the future vehicle driving state in advance, which is
helpful for energy management strategy to make more reasonable control and further de-
velop the vehicle energy saving potential. The speed prediction and simulation experiment
adopts a 1300 s driving cycle without training of any model.

4.1. Performance of VSNet

Figure 9 shows the tail figures of the four methods for the test driving cycle. Figure 10
shows the distribution range of the predicted tails for the different methods. Figures 11–14
show the heat maps of the predicted vehicle speed for MCMC, SVM, CNN and VSNet,
respectively. Figures 15 and 16 compare the vehicle speed distributions for the first and
fifth seconds for the four methods in the form of heat maps. Figure 17 shows the box plots
of the speed prediction errors. Figure 18 shows the performance of the four methods.

Figure 9. The tail figures of the four methods for the test driving cycles.
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Figure 10. The distribution ranges of the predicted tails of the four methods.

Figure 11. Heat map display of the predicted results of MCMC.

Figure 12. Heat map display of the predicted results of SVM.



Sensors 2021, 21, 8273 16 of 24

Figure 13. Heat map display of the predicted results of CNN.

Figure 14. Heat map display of the predicted results of VSNet.

Figure 15. Heat map display of the predicted results for the next 1 s.
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Figure 16. Heat map display of the predicted results for the next 5 s.

Figure 17. The box plots of the speed prediction errors.

Figure 18. The performance of the four methods.

The black line in Figure 9 is the actual vehicle speed for the test driving cycle. Each
colored line is the prediction result of vehicle speed for the next 5 s corresponding to its
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starting moment. When the colored curves are closer to the black curve, it means the better
prediction result. Figure 9 shows that yellow has the widest coverage, followed by green.
The blue and dark purple, on the other hand, have a more concentrated distribution of
curves, which can only sometimes be distinguished at the turn of the curve. This also
means that MCMC has the worst prediction effect, followed by SVM, while CNN and
VSNet have better prediction effect. As can be seen from the partial enlargement of Figure 9,
MCMC has a strong randomness in the predicted speed change due to the randomness
of the process of moving from one state to another in the state space. The process has the
non-aftereffect property, which means future evolution does not depend on past evolution
under known current conditions. The detail view of SVM has more regular prediction
results compared with MCMC because SVM belongs to supervised learning. Supervised
learning minimizes the empirical risk and confidence range by finding the structured risk
minimum. In this way, the generalization ability of learning machine can be improved and
good statistical rules can be obtained. However, the predicted results during acceleration
often show a braking state and the predicted results during deceleration are driven. Such
opposite prediction affects the performance of energy management strategy. After adopting
the deep learning method, the features of input data can be automatically extracted for
prediction by combining the vehicle component signal with the vehicle chassis signal and
the prediction accuracy is significantly improved. CNN can quickly identify the current
vehicle driving state and give the prediction speed of the corresponding state, which leads
to a significant reduction of the blue line coverage. However, the prediction results of CNN
have a large error when the vehicle state changes. The prediction results of VSNet have
higher accuracy compared with those of CNN. The detail view of VSNet shows that the
future state of the vehicle can be predicted before the vehicle state changes, which indicates
that VSNet can find a more exact mapping relationship between input and output.

Figure 10 shows the distribution of the ranges of predicted tails. The plotting scheme
with transparency has been adopted in order to show the overlapping parts more clearly.
The intersection of different regions can be identified by color changes. The original colors
of the ranges are shown in the legend. From Figure 10, we can get same conclusions
as before. MCMC has the widest coverage and SVM is next, which indicates that the
predictions are subject to a wide margin of error. The obvious blue area can be found in
the process of vehicle state switching, which indicates that the prediction effect of CNN
method is still slightly insufficient, while VSNet achieves the best result. A clear blue area
can be found in the process of vehicle state switching, indicating that the prediction effect
of CNN is still slightly insufficient. VSNet, on the other hand, achieves the best results
among all methods.

In order to further evaluate the prediction results reasonably, the errors of each pre-
diction horizon and various prediction methods are compared next. Figures 11–16 show
the heat maps of the different methods and horizons. The colors in the figure represent
density. The closer the color is to red indicates the more consistent prediction results at
the actual vehicle speed. The closer the distribution is to the boundary of 45 degrees in
the first quadrant, the higher the prediction accuracy is. Firstly, the prediction errors of
different time horizons are compared. From Figures 11–14, it can be seen that distributions
of all prediction methods are gradually deviating from the boundary of 45 degrees as
the prediction horizon increases. This represents a gradual increase in prediction error
and a significant decrease in prediction accuracy. With the increase of prediction horizon,
the driving state of vehicles has more possibilities and the prediction difficulty increases.
Moreover, prediction results at the same speed gradually disperse, which leads to a de-
crease in concentration and even disappearance of the red area. Comparing the high-speed
prediction with the low-speed prediction, the results of high-speed prediction of different
methods and horizons are better than the results of low-speed prediction. This result arises
from the fact that low-speed conditions are mostly caused by environmental constraints,
which lead to high complexity and difficulty for prediction. Comparing the different meth-
ods, the results of MCMC are slightly higher than the boundary of 45 degrees, especially
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for predicting the next 3 to 5 s. This indicates that MCMC is more inclined to predict the
accelerated results when the state is transferred. The prediction results of SVM at the 3rd
second are significantly smaller compared with the actual speed. From the concentration
and distribution, it can be seen that the prediction results of CNN and VSNet based on deep
learning methods are significantly better than those of SVM and MCMC. This conclusion is
easier to draw in Figures 15 and 16. In addition, it can be seen from Figure 17 that VSNet
has extremely high accuracy in predicting the speed in the next 1 s and all the data are
almost concentrated around the boundary of 45 degrees.

Figure 17 shows the errors distribution of different prediction methods in the form of
the box plot. The middle line of the box, which is the median of the data, represents the
average level of the predicted errors. The upper and lower limits of the box, respectively,
are the upper and lower quartiles of the predicted errors. Therefore, the width of the box
reflects to some extent the degree of fluctuation of the data. The whiskers extend to the
most extreme data points not considered outliers, and the outliers are plotted individually
using the ‘+’ symbol. All bounds except the median are gradually moved away from
0 km/h as the predicted horizon increases. As the range between the lower and upper
boundaries is wider, the outliers beyond the range also gradually decrease. Since there
are more acceleration states than braking states during the historical state transfer of the
vehicle, the median MCMC gradually increases as the prediction horizon increases. The
median of SVM fluctuates around 0 km/h with the third second being the most obvious.
The medians of CNN and VSNet are approximately maintained at 0 km/h. The 25th and
75th percentiles of VSNet are obviously closer to 0 km/h, which proves that VSNet has
better prediction effect.

Figure 18 shows the RMSE, Mean Absolute Error (MAE), Maximum Absolute Error
(ME) and R Squared (R2) for the different methods at different horizons. It can be observed
intuitively from the figure that VSNet outperforms the other three methods in terms of
MAE, RMSE, ME and R2 in all horizons.

4.2. Simulation

In this paper, the vehicle model under the Matlab/Simulink platform is established
based on the vehicle configuration in Section 3.1. The vehicle model is equipped with
different energy management strategies and simulated for the driving cycle in Section 4.1.
The different energy management strategies are the rule-based energy management strategy,
the global-optimization-based energy management strategy, and the MPC-based energy
management strategies adopting the vehicle speed prediction methods of MCMC, SVM,
CNN, VSNet and the known cycle. The known cycle method achieves 100% prediction
accuracy by taking the known information of the test driving cycle as the result of speed
prediction. The simulation results are analyzed in equivalent fuel consumption, fuel
consumption, SOC and operating points of components. The effectiveness of the MPC-
based energy management strategy is verified, and the relationship between the speed
prediction accuracy and the optimization effect of strategies is explored. The initial SOC
set for the simulation is 28% and the vehicle is driven in Charge Depleting (CD) mode
during the first half of the simulation. As the power is consumed the vehicle enters Charge
Sustaining (CS) mode. The entire process is based on the vehicle speed and the overall
vehicle demand power to choose single power source traction mode, hybrid traction mode
or charging mode, maintaining the SOC near 25%. The single traction mode, hybrid traction
mode or charging mode is selected according to the overall vehicle demand power and
SOC to maintain SOC around 25%.

Figure 19 and Table 3 show the equivalent fuel consumption for the simulations with
different energy management strategies. Figure 20 shows the fuel consumption during
the simulations with different energy management strategies. Figure 21 shows the SOC
during the simulations with different energy management strategies. Figure 22 shows
the distribution of engine operating points. Figure 23 shows the distribution of motor
operating points.
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Figure 19. The equivalent fuel consumption for the simulations with different energy management
strategies.

Table 3. Simulation results.

Method Fuel Consumption
(mL)

Final SOC
(%)

Equivalent Fuel Consumption
(L/100 km)

Increased Equivalent Fuel
Consumption Compared with DP (%)

DP 141.64 25.00 2.534 /
Known Cycle 145.05 24.79 2.636 4.03

VSNet 149.55 24.88 2.654 4.74
CNN 148.93 24.83 2.665 5.17
SVM 169.17 25.33 2.712 7.02

MCMC 167.03 25.20 2.731 7.77
Rule-based 193.35 25.32 2.941 16.06

Figure 20. The fuel consumption during the simulations with different energy management strategies.

As can be seen in Figure 19, optimization-based energy management strategies have
lower equivalent fuel consumption compared with the rule-based energy management
strategy, regardless of the optimization method adopted. As a criterion of optimization
effectiveness, DP has the best economy with an equivalent fuel consumption of only
2.534 L/100 km. In the terms of instantaneous-optimization-based energy management
strategies, known-cycle-based MPC can be optimized according to real future driving
conditions and achieves an equivalent fuel consumption of 2.636 L/100 km with 4.03%
more than DP. MCMC-based MPC achieves the highest equivalent fuel consumption in
the MPC methods with 7.77% more than DP and 7.14% less than rule-based because of
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its fluctuating predicted speed. VSNet, which has the best speed prediction capability,
achieved the best MPC-based optimization results except for known cycle. The equivalent
fuel consumption of VSNet-based MPC is 2.654 L/100 km, which is 4.74% less than DP
and only 0.018 L/100 km higher than known-cycle-based MPC.

Figure 21. The SOC during the simulations with different energy management strategies.

Figure 22. The distribution of engine operating points under various strategies.

The changes of fuel consumption in Figure 20 show that the DP starts the engine
frequently to keep the fuel consumption slowly rising. CNN-based MPC, VSNet-based
MPC and known-cycle-based MPC approximately maintain the same operating period
and fuel consumption. The rule-based energy management strategy obtains the high-
est energy consumption of all methods. Since not optimized for operating points of
the engine, it has an approximately constant fuel consumption rate. Combined with
Figure 21, results show that DP often starts the engine to assist the motor in sharing the ve-
hicle demand power. Therefore, its SOC changes are also relatively flat and nearly linearly
decreasing. For MPC, the SOC fluctuation range is roughly the same for all five methods.
The difference is that the fuel consumption and SOC of MCMC-based MPC and SVM-based
MPC increase more gently and charge more slowly. CNN-based MPC and VSNet-based
MPC are closer to known-cycle-based MPC. The rule-based energy management strategy
has the maximum charging power. In the terminated state, CNN-based MPC, VSNet-based
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MPC and known-cycle-based MPC maintain similar SOC. Rule-based energy management
strategy, MCMC-based MPC and SVM-based MPC have higher SOC and less electricity
consumption at the cost of greater fuel consumption.

Figure 23. The distribution of motor operating points under various strategies.

In order to further analyze the working condition of components, distributions of
engine operating points and motor operating points under DP, VSNet-based MPC, MCMC-
based MPC and rule-based energy management strategy are compared. From Figure 22,
points represent the engine operating points and colors represent the efficiency of the
engine. In the results of DP, the engine adopts a high power to drive the motor to charge
the battery each time it is turned on. The large throttle percentage increases the engine
loading rate and improves the engine efficiency. MPC does not select engine operating
points of high power in order to obtain the smallest objective function in the predicted
horizon. The operating points of the motor are only partially distributed in the high
efficiency area. VSNet-based MPC relies on high accuracy prediction of vehicle speed
to obtain a better distribution of engine operating points compared with MCMC-based
MPC. The rule-based energy management strategy has poor regulation capability and more
concentrated distribution.

From Figure 23, points represent the motor operating points and colors represent
the efficiency of the motor. Observe the distribution, as most of operating points are
concentrated in the high-efficiency region, with DP being the most concentrated and VSNet
being second. The least effective is the rule-based energy management strategy. Due to
an improper power distribution ratio, the motor sometimes undertakes too much power.
Some motor operating points have been distributed to the area of low efficient.

5. Conclusion and Future Outlook

In this paper, an architecture for the deep learning-based neural network called VSNet
is constructed. VSNet is able to predict future vehicle speed just by self-historical data. A
fake image consisting of 15 vehicle signals for the past 15 s is input into VSNet to predict
the vehicle speed for the next 5 s. Representative methods from stochastic prediction,
machine learning and deep learning are selected for comparison with VSNet. We employ
all methods for prediction for a driving cycle that is not involved in any model training.
From the prediction results, it can be concluded that RMSE, MAE, ME and R2 of VSNet are
better than the other methods. An MPC energy management strategy based on the speed
prediction method is also constructed for simulation and analysis. The simulation results
can be summarized that the power optimization effect of MPC is positively correlated with
the speed prediction accuracy. With the increase of prediction accuracy of vehicle speed,
the difference of MPC compared with DP can be reduced from 7.77% to 4.03%, and the
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simulation results are closer to the results of DP in terms of fuel consumption, electrical
consumption and power distribution.

In this paper, we design a vehicle speed prediction method with high accuracy for
power distribution of multi-power system. In the future, we will build an energy manage-
ment strategy for complex driving condition based on fused multi-sensor information.
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