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Abstract: This paper presents a systematization and a comparison of the binary successive approx-
imation (SA) variants. Three different variants are distinguished and all of them are applied in
the analog-to-digital conversion. Regardless of an analog-to-digital converter circuit solution, the
adoption of the specific SA variant imposes a particular character of the conversion process and
related parameters. One of them is the ability to direct conversion of non-removeable physical
quantities such as time intervals. Referencing to this aspect a general systematization of the variants
and a name for each of them is proposed. In addition, the article raises the issues related to the
complexity of implementation and energy consumption for each of the discussed binary SA variants.

Keywords: successive-approximation; analog-to-digital conversion; time-to-digital conversion

1. Introduction

The successive approximation (SA) method is known at least from the 16th century [1].
One of its most common applications was conversion weight of an object to numbers,
which in fact is simple analog-to-digital conversion already.

The first implementation of the binary SA scheme in electronic analog-to-digital
conversion dates back to the 1950s. Developed for decades it has become fundamental and
one of the most successful analog-to-digital conversion techniques. Nowadays, it is usually
chosen as compromise between fast but expensive flash and precise but slow integrating
analog-to-digital conversion method [1–3].

From the very first SA analog-to-digital converter (ADC) all of the solutions based on
one of the three binary SA variants. However, in most cases the clear statement referencing
to applied SA variant is omitted. Moreover, in literature the SA method itself is often
incorrectly identified with only one SA variant. This is possibly caused by a lack of
systematization. Therefore, based on the most distinctive parameters of the binary SA
variants, a name for each of them is proposed.

Each of the three SA variants has specific properties and one of them is the ability to
direct conversion of some non-removable physical quantities such as time intervals. There
are cases, where it plays a crucial role and its lack can be an inconvenient obstacle or even
disqualifying limitation [4]. If only for this reason, the awareness of differences between
the SA variants is important, because it allows to choose the most appropriate one for a
specific application.

The following sections are focused especially on the systematization and naming
of the SA variants based on the above-mentioned ability to direct conversion of some
physical quantities. In addition, the issues of energy consumption and complexity of
implementation are discussed.
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2. The Binary Successive Approximation Variants

In general, the binary SA method approximates the measured input value XIN with
an appropriate subset of predefined, binary-scaled reference units. The unique character of
the SA is derived from a very well-known weighing method, which uses a pan balance and
a set of reference elements. This is one of the reasons why it is convenient to illustrate the
binary SA method as a weighing process. Such an approach is also used in the following
analysis in order to explain the differences between the presented algorithms. Both the pan
balance and the reference elements are shown in Figure 1.

The used model of the balance consists of the source pan S and the reference pan R
(Figure 1a). The binary-scaled reference elements Rn−1, . . . , R0 (Figure 1b) are placed on
the pans in order to accomplish appropriate binary SA algorithm. The measured input
value XIN is always placed on the pan S, but the placement of the reference elements Rn−1,
. . . , R0 depends on the applied SA variant.

The values of the reference elements Rn−1, . . . , R0 are defined as Rk = 2kR0, for k = 0,
1, . . . , n − 1. Obviously, there is an accurate relation between the reference elements Rn−1,
. . . , R0 and the parameters of the pan weighing. First of all, with n reference elements Rn−1,
. . . , R0 it is possible to represent the measured input value XIN as one of the 2n different
subsets of the reference elements Rn−1, . . . , R0. Moreover, the total weight of the subsets
can vary in range 〈0, R0, . . . , (2n − 1)R0〉. Secondly, because of the finite number of the
reference elements Rn−1, . . . , R0, the resolution of the conversion process is also finite.

Considering the above, the input weight XIN is always measured with determined
resolution R0. In addition, it has to be less than 2nR0 in order to be properly measured.
This limiting value can be termed as signal full range (SFR):

SFR = 2nR0. (1)
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Figure 1. The model of the binary SA conversion system: (a) the pan balance model; (b) the binary-
scaled reference elements.

2.1. Oscillating Successive Approximation

The first variant of the binary SA method requires one set of the reference elements
Rn−1, . . . , R0. Their placement is limited to the pan R only.

The conversion process starts from placing the measured input element XIN on the pan
S. Simultaneously, the biggest reference element Rn−1 is placed on the pan R (Figure 2a).
At each next step, until the smallest reference element R0 is used, two operations are
performed. Firstly, the current state of the pan balance is analyzed. If the total weight of
the reference elements currently placed on the pan R is not greater than the weight of the
measured input value XIN (Figure 2a), the most recently placed reference element Rk is left
on the pan R. Otherwise, the most recently placed reference element Rk is removed from
the pan R (Figure 2b,c), which means a change of the previously made decision. Secondly,
in both cases, twice smaller reference element Rk−1 (k ≥ 1) is placed on the pan R.
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The last step of the conversion process is made after the placement of the smallest
reference element R0 on the pan R. It is limited only to decision if the reference element R0
should be removed from the pan R or not.

When the conversion process is completed the measured input value XIN is approxi-
mated by an appropriate subset of the reference elements which are left on the pan R. Thus,
the final result of the conversion process can be expressed as:

XIN ≈
n−1

∑
k=0

(Rk·Pk), (2)

where Pk indicates if the k-th reference element Rk has been left on the pan R (Pk = 1) or not
(Pk = 0).

Figure 3 presents the conversion process in the time domain. Performed operations of
adding and optional removing the reference elements Rn−1, . . . , R0 from the pan R cause
oscillations around the measured input value XIN. Therefore, the name oscillating successive
approximation (OSA) is proposed for this algorithm [5].
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The model of the OSA converter is shown in Figure 4. It consists of one comparator
W, one digital-to-analog converter DAC_R and a control logic block SAR (Successive
Approximation Register). The inputs of the comparator W, signed as S and R, refer
accordingly to the pans S and R. The digital-to-analog converter DAC_R in reference path
generates the reference signal R. The comparator W compares the signals S and R and
indicates to the control logic SAR the relation between them. Based on this information the
control logic decides if the reference signal R should be reduced or not.
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The equivalent of the measured input value XIN is represented by the n-bit digital
output word bn−1, . . . , b0. At the i-th step of the conversion process, for i = 2, 3, . . . , n + 1
(except the first step), one bit bi is evaluated, starting from the most significant bit bn−1. If
the reference signal R is not greater than the source signal S, the bit bn−i + 1 is set to logic
“1”. Otherwise, the bit bn−i + 1 is set to logic “0”.

One of the most distinctive features of the OSA variant is necessity of removing
specific reference element Rk (Figure 2c) in case of overestimation (Figure 2b). This sub-
traction means a change of the previously made decision. Obviously, such operation is
not always possible during the conversion process. Considering a specific case, when
the measured input value XIN is non-removable, non-decremental physical quantity, the
reference elements Rn−1, . . . , R0 are also non-decremental. An example of such measured
physical quantity XIN is time interval for which the reference elements Rn−1, . . . , R0 are
also non-decremental time units. In such case the time reference elements Rn−1, . . . , R0
cannot be directly removed during conversion, because it is impossible to turn back time.
Nevertheless, it should be noted that indirect conversion of non-removable values is still
possible using the OSA algorithm [6]. It requires an additional preconversion process to
replace non-removable value XIN by removable physical quantity (e.g., charge or voltage).

2.2. Full-Scale Monotonic Successive Approximation

The necessity of removal operation, which is associated with the OSA algorithm,
does not occur in the second SA variant. The problem is solved by an additional set of
binary-scaled reference elements An−1, . . . , A0 defined as Ak = 2kA0 (Figure 5—white
reference weights). Each additional reference element Ak from the set An−1, . . . , A0 is equal
to the appropriate reference element Rk (Ak = Rk) from the set Rn−1, . . . , R0 (Figure 5—gray
reference weights). Similarly to the OSA, the reference elements Rn−1, . . . , R0 can be placed
only on the pan R, but the additional reference elements An−1, . . . , A0 can be placed only
on the pan S.
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The conversion process starts when the measured input element XIN is placed on the
source pan S. Simultaneously, the biggest reference element Rn−1 is placed on the pan R
(Figure 5a). At each next step, until the smallest reference element R0 is used, two operations
are performed. Firstly, the current state of the pan balance is analyzed. If the total weight
of the reference elements currently placed on the pan R is not greater than the total weight
of the elements currently placed on the pan S (Figure 5a), no correction is needed at this
step. Otherwise, the most recently placed reference element Rk is compensated by the
appropriate additional reference element Ak placed on the pan S (Figure 5b,c). Secondly, in
both cases, subsequent reference element Rk−1 (k ≥ 1) is placed on the pan R.

When the smallest reference element R0 is used, the conversion is at its final step. The
last operation required to accomplish the conversion process is a decision whether to add
the additional reference element A0 on the pan S or not.

It clearly follows from the above that all of the reference elements Rn−1, . . . , R0 are
successively placed on the pan R and none of them is removed. On the other hand, the
additional reference elements An−1, . . . , A0 complement the measured input value XIN
with the assumption that the total weight on the source pan S has to be contained in range
〈SFR − R0, SFR). Thus, the measured input value XIN can be evaluated as the difference
between the subsets of the reference elements and the additional reference elements placed
on the pans:

XIN ≈
n−1

∑
k=0

Rk −
n−1

∑
k=0

(Ak·Pk), (3)

where Pk indicates if the k-th additional reference element Ak has been placed on the pan S
(Pk = 1) or not (Pk = 0). Moreover, at the end of the conversion process the total weight on
the pan R always equals (SFR − R0), so the Equation (3) can be rewritten as:

XIN ≈ SFR− R0 −
n−1

∑
k=0

(Ak·Pk) (4)

It should be noted that the subtraction in the Equations (3) and (4) is not necessary
in order to obtain the correct result. The equivalent of the measured input value XIN can
also be expressed as the additional reference elements from the set An−1, . . . , A0, which
remained unused (do not complement the input value XIN on the pan S) at the end of the
conversion process:

XIN ≈
n−1

∑
k=0

(
Ak·Pk

)
. (5)

The algorithm ensures that the total weight of each of the pans can only increase, so
the removal operation (change of the previously made decision) is unnecessary. The total
weight of the elements placed on the pan R will monotonically approach to (SFR − R0)
while the total weight of the elements placed on the pan S will be complemented in order
to be contained between (SFR− R0) and SFR (Figure 6). Relating to this specific, monotonic
character of the functions the name full-scale monotonic successive approximation (FSMSA) is
proposed for this algorithm.

The simplified model of the FSMSA algorithm consists of one comparator W, two
digital-to-analog converters—DAC_R and DAC_S—and a control logic block SAR (Figure 7).
Similar to the OSA, the digital-to-analog converter DAC_R represents the behavior of the
pan R. The additional digital-to-analog converter DAC_S generates the component of the
source signal S, which complement the measured input value XIN. The comparator W
indicates to the control logic SAR current relation between the source signal S and the
reference signal R. Based on this information, the control logic SAR decides whether the
value of the source signal S should be increased or not.
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In the FSMSA variant of the SA method, similarly to the OSA, the digital equivalent
of the measured input value XIN is represented by the n-bit digital output word bn−1, . . . ,
b0. During the conversion process, based on the output value WOUT of the comparator W,
the subsequent bits bn−1, . . . , b0 are evaluated. At the i-th step of the conversion process
(i = 2, 3, . . . , n + 1), if the reference signal R is not greater than the source signal S, the bit
bn−i + 1 is set to logic “1”. Otherwise, the bit bn−i + 1 is set to logic “0”.

As it has been shown, the FSMSA variant does not require removal operation. It
means that once made decision does not have to be changed in order to acquire the right
equivalent of the measured input value XIN. This feature was achieved, among others, by
using the additional set of the reference elements An−1, . . . , A0. When the measured input
value XIN is overestimated (S < R), the appropriate element from the additional reference
set An−1, . . . , A0 is used for compensation.

Lack of the removal operation allows for direct conversion of non-removable values
such as time intervals. In the FSMSA variant the measured time interval XIN need only
to be increased by the additional reference elements An−1, . . . , A0 defined in the time
domain. It allows to avoid the necessity of removal operation, which is impossible in case
of time measurement. Of course, the usage of the additional reference elements An−1, . . . ,
A0 by definition causes an increase in the hardware resources and energy consumption.
Nevertheless, the advantage over OSA in the direct conversion ability causes that there are
solutions based on the FSMSA variant [7].

2.3. Monotonic Successive Approximation

The third successive approximation algorithm requires, as in case of the OSA, only
one set of the reference elements Rn−1, . . . , R0 to approximate the measured input value
XIN. However, similarly to the FSMSA, the reference elements Rn−1, . . . , R0 can be placed
on both pans: S and R. The practical consequence of having just one set of the reference
elements Rn−1, . . . , R0 in combination with the fact that they can be distributed on both
pans (S and R) is that a given weight Rk can be used for both estimation (pan R) and
compensation of overestimation (pan S).
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The conversion process starts when the measured input element XIN is placed on
the source pan S. Simultaneously, the biggest reference element Rn−1 is placed on the
reference pan R (Figure 8a). At each next step, the subsequent reference element Rk
(k < n − 1) is placed on the pan (S or R), on which currently accumulated elements weigh
less (Figure 8b,c).
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The last step of the conversion process is performed once the last reference element R0
is placed on one of the pans. It is limited only to determining the final deflection of the pan
balance. This information is used to determine the final result of the conversion process.

Despite the fact that only one set of the reference elements is used in the conversion
process, the removal operation (change of the previously made decision) is unnecessary.
The reference elements Rn−1, . . . , R0 are only added, so the total weight of each pan
can only increase. Moreover, during the conversion process, the total weight of each
pan approaches to each other monotonically (Figure 9). That is why the name monotonic
successive approximation (MSA) is proposed for this algorithm.
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The conversion character of the FSMSA and the MSA variants in some cases may be
similar (Figures 6 and 9). Nevertheless, the essential difference of using only one set of the
reference elements Rn−1, . . . , R0 in the MSA causes that the total weight accumulated on
each of the pans at the end of the conversion process is always contained between SFR/2
and SFR. The range is relatively wide in comparison to the FSMSA. In that algorithm the
total weight accumulated on the pan S at the end of the conversion process varies between
(SFR − R0) and SFR, while the total weight on the pan R is equal to (SFR − R0).

At the end of the conversion process the MSA algorithm provides balance between
the pans (S and R) with assumed resolution R0. Including the information about the
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final deflection of the pan balance, the equivalent of the measured input value XIN can be
evaluated as:

XIN ≈
(

n−1

∑
k=0

(Rk·Pk)

)
−
(

n−1

∑
k=0

(
Rk·Pk

))
− R0·Q, (6)

where Pk indicates if the k-th reference element has been placed on the pan R (Pk = 1) or not
(Pk = 0). The final deflection of the pan balance is included in the Equation (6) with Q. If
the total weight of the reference elements placed on the pan R is not greater than the total
weight of the elements placed on the pan S, Q equals 0. Otherwise, Q equals 1. It should be
noted that as in previous binary SA algorithms the digital representation of the measured
input value XIN can be successfully obtained without this subtraction [8], which may be
suggested by the Equation (6).

The simplified model of the MSA is presented in Figure 10. It consists of: one compara-
tor W, one digital-to-analog converter DAC_SR with two outputs and a control logic block
SAR. Similarly to the previous SA algorithms, the inputs S and R of the comparator W refer
accordingly to the pans S and R. The digital-to-analog converter DAC_SR generates the
values for both the source signal S and the reference signal R. Based on the output value of
the comparator W, the control logic SAR decides which signal: S or R should be increased
in the next step.
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Similarly to the models of the previously presented SA algorithms, the bits in the digi-
tal output word bn−1, . . . , b0 are evaluated successively, starting from the most significant
bit bn−1. At the i-th step of the conversion process (i = 2, 3, . . . , n + 1), if the reference signal
R is not greater than the source signal S the bit bn−i + 1 is set to logic “1”. Otherwise, the bit
bn−i + 1 is set to logic “0”.

The MSA algorithm neither requires removal operation (change of the previously
made decision) nor the additional set of the reference elements (compensation of the
previously made decision). This specific feature is achieved by relatively more complex
structure of the circuit (Figure 10). Unnecessity of the removal operation allows for direct
conversion of non-removable physical quantities. Therefore, this binary SA algorithm is
often used in Time-to-Digital Converters [5,9].

3. Comparison of the Binary Successive Approximation Variants

In the previous sections the description of the binary SA algorithms focused mainly on
the ability to direct conversion of non-removable physical quantities. Without a doubt it is a
very important aspect of the analog-to-digital conversion, especially from the perspective of
time measurement. However, presented models permit the distinction of more differences
between presented binary SA algorithms, which also strongly affect the conversion process.

In reference to the previous sections, one of the most evident parameters concerns
the number of steps required to determine the equivalent of the measured input value
XIN. Obviously, it is directly related to the number of the reference elements Rn−1, . . . ,
R0. In all presented binary SA algorithms the number of steps equals (n + 1) for n used
reference elements Rn−1, . . . , R0. Nevertheless, each of the SA algorithms performs
different operations within a single step and it must be taken into consideration in order to
compare the algorithms reliably.
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First of all, the binary SA algorithms use different types of mathematical operations.
The OSA uses two types: necessary addition and optional subtraction. For non-removable
physical quantities, the optional subtraction, used in case of overestimation (S < R), limits
this SA algorithm to indirect conversion only. Of course, possibility of overestimation of
the measured input value XIN is an inherent factor of the binary SA and the subtraction
is the simplest way to overcome the problem. However, in order to convert directly non-
removable values such as time intervals, the subtraction operation cannot occur directly in
the SA algorithm.

Eliminating of subtraction results in addition operation (“(−1) (−1) = (+1)”), so in the
FSMSA algorithm, instead of optional subtraction, additional operation of addition is used.
In result, the FSMSA uses only addition operations during the conversion process, which
allows for direct conversion of non-removable values.

Two addition operations can be replaced by one addition operation (“(+1) (+1) = (+1)”).
This is applied in the MSA, which uses only one necessary addition operation, but at a cost
of a more complicated physical structure (Figures 4, 7 and 10).

The general principle of conversion in the FSMSA and the MSA may seem very
similar, because both of the variants compensate the overestimation (R > S) by increasing
the source signal S (Sk < Sk + 1) rather than decreasing the reference signal R (OSA variant).
However, from the practical point of view, the FSMSA by definition is more expensive. The
additional reference elements entail the consequence of using more hardware resources
and consuming more energy. On the other hand, controlling one complex digital-to-analog
converter (Figure 10) rather than two simple ones (Figure 7) may be more complicated and
bring additional problems. Despite the fact the FSMSA is more expensive than the MSA,
there are Time-to-Digital Converters solutions based on the variant [7].

The next difference consists in the relation between the measured input value XIN
and the characteristics of the reference signal R and the source signal S. In the OSA
algorithm, during the conversion process, the measured input value XIN directly affects
the value of the reference signal R at each step, while the source signal S is constant and
equal to the measured input value XIN. In the FSMSA the reference signal R is totally
independent of the measured input value XIN. Its monotonic characteristic is identical in
every conversion process. Possible overestimation (S < R) is compensated by the additional
reference elements An−1, . . . , A0, so in this algorithm the source signal S is dependent on
the measured input value XIN. In the MSA variant the characteristics of both signals S
and R are related to the measured input value XIN as the algorithm uses only necessary
addition operation, which can be applied to both signals S and R.

Another parameter, which is differed by the presented models is the last step of the
conversion process. For all of the algorithms it is used to evaluate the least significant bit
b0 in the digital output word bn−1, . . . , b0. Even though it is a simple comparison of the
source signal S and the reference signal R, it is proceeded within a different operation. The
OSA variant compares the signals in order to decide if the reference signal R should be
reduced or not. The FSMSA, on the contrary, decides whether the source signal S should
be increased. Thus, both of the algorithms check if any last change of the current state
is needed. Finally, the MSA does not allow for any additional correction (reduction of
reference signal R or increment of the source signal S). The last step of this binary SA
variant is reduced to the final comparison of the signals, which determines the value of the
least significant bit b0.

Determining the equivalent of the measured input value XIN is also different, which is
clearly visible using the pan balance model. In the OSA it is represented by a subset of the
reference elements left on the pan R (Equation (2)). There is no necessity of performing any
additional mathematical operations. In the FSMSA it can be evaluated as the difference
between the total weights of the reference elements accumulated on the pans (Equation (3)).
However, at the end of every conversion process the value of the elements accumulated
on the pan R is always the same and equal to the sum ∑n−1

k=0 (Rk), so the equation can be
simplified to (4). Finally, the MSA not only perform a mathematical operation, but also
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includes the final deflection of the pan balance (Equation (6)), so in this SA algorithm the
evaluation equation is the most complicated. Of course, the above-mentioned expressions
just make a comment to the presented pan balance model and in practical implementations
of the ADCs there is no need for any further mathematical operations at the end of the
conversion. The bits in the output digital word bn−1, . . . , b0 can be successively evaluated
at each step of the conversion process [6,7,10,11].

The application models also differ significantly. From the presented circuits, the OSA
model (Figure 4) is the simplest one as the algorithm itself uses relatively simple technique
to approximate the measured input value XIN. In the FSMSA algorithm the model is
expanded by the additional digital-to-analog converter DAC_S (Figure 7). Such modifi-
cation increases the capability of the ADCs using this SA algorithm, but at a cost of more
demanding implementation. The additional element DAC_S can increase the occupied area
of the ADC. In addition, controlling two digital-to-analog converters separately requires
more expanded control logic SAR. Finally, the model of the MSA (Figure 10), similarly
to the OSA, uses only one digital-to-analog converter DAC_SR, but this element is much
more complex, which obviously also directly affects the implementation.

The specific character of each SA method defines the energy required to accomplish
the conversion process [12]. In reference to the pan balance model, the consumed energy
can be presented in such a way that the energy required to place the reference element
Rk or Ak (in case of the FSMSA variant) on the pan balance equals Ek. On the above
assumption, the total energy ET required to convert the measured input value XIN using
the OSA algorithm equals:

ET = (2n − 1)·E0, (7)

because all of the reference elements Rn−1, . . . , R0 have to be placed on the pan R regardless
of the measured input value XIN. However, as some of the reference elements are placed
and in the next step removed, such elements can be used to lift the subsequent reference
element (Figure 11). It means that part of the energy can be recovered, so to some extent
the OSA can be implemented as an energy-recoverable ADC. A specific implementation of
this idea is presented in [13–15]. For relatively small measured input value XIN (XIN < R0)
the overestimation (S < R) occurs at each step of the conversion process. In such case,
the total consumed energy is limited only to the placement of the biggest reference ele-
ment Rn−1 on the pan R. The energy required to lift each subsequent reference element
Rk (k = n − 2, n − 3, . . . , 0) can be compensated by the previous one Rk+1 (Figure 11b). As
a result, the total consumed energy EOSA in the optimized OSA algorithm varies in range:(

2n−1
)
·E0≤ EOSA ≤ (2n − 1)·E0

ET + E0

2
≤ EOSA ≤ ET

(8)
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The FSMSA uses two sets of the reference elements and one of them is always fully
used (on the reference pan R). The expend of the other subset (used on the source pan S)
depends on the measured input value XIN. When it is smaller than the reference element
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R0 all of the additional reference elements An−1, . . . , A0 are placed on the pan S at the end
of the conversion process. In contrary, if the measured input value XIN is relatively high
(XIN ≥ (SFR − R0)), none of the additional reference elements An−1, . . . , A0 is used. In
result, the total consumed energy EFSMSA in the FSMSA algorithm varies in range:

(2n − 1)·E0≤ EFSMSA ≤ 2·(2n − 1)·E0

ET≤ EFSMSA ≤ 2·ET .
(9)

The MSA, as the OSA, uses only one set of the reference elements Rn−1, . . . , R0.
However, as in the FSMSA, none of the reference elements Rn−1, . . . , R0 is removed during
conversion process. In result, regardless of the measured input value XIN, the amount of
consumed energy EMSA in the MSA variant always equals:

EMSA = (2n − 1)·E0 = ET . (10)

The above Equations (8)–(10) show that the maximum of the energy EOSA consumed by
the optimized OSA is equal to the minimum of the energy EFSMSA consumed by the FSMSA
variant. It stems from the fact that the FSMSA uses the additional set of the reference
elements An−1, . . . , A0. The MSA consumes always the same amount of energy, which
is exactly equal to the maximum of EOSA and the minimum of EFSMSA. Furthermore, the
value of EMSA is the only one, which EOSA and EFSMSA have in common. It is a consequence
of including selected OSA and FSMSA properties in the MSA algorithm.

The above conclusions are summarized in the table below (Table 1):

Table 1. Comparison of the binary SA algorithms.

Parameter

Oscillating
Successive

Approximation
(OSA)

Full-Scale
Monotonic
Successive

Approximation
(FSMSA)

Monotonic
Successive

Approximation
(MSA)

Ability for direct
conversion of

non-removable
physical quantities

No Yes Yes

Number of
conversion steps (n + 1) (n + 1) (n + 1)

Varied pattern
(character) of the
reference signal R

Yes No Yes

Varied pattern
(character) of the
source signal S

No Yes Yes

Operation at the
last step

Optional reduction of
the reference signal R

Optional increase of
the source signal S

Determining the
deflection of the

pan balance

Equivalent of the
measured input value

XIN

Reference elements
on the pan R

(Equation (2))

Difference between
the reference

elements on the pan R
and the additional

elements on the pan S
(Equation (3))

Difference between
the reference

elements on the pan R
and the reference

elements on the pan S
(Equation (6))

Complexity of
implementation

1 comparator,
1 simple DAC,
1 simple SAR.

1 comparator,
2 simple DACs,
1 complex SAR.

1 comparator
1 complex DAC,
1 complex SAR.

Energy consumption 〈 ET+E0
2 , ET〉 〈ET , 2·ET〉 ET

Examples of
implementation [16–18] [7] [19–23]
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4. Conclusions

In this paper three algorithms of the binary successive approximation method have
been distinguished. The following names, relating to their properties, have been proposed:
oscillating successive approximation (OSA), full-scale monotonic successive approximation
(FSMSA) and monotonic successive approximation (MSA). The distinction was introduced
in order to indicate the main differences between the algorithms, which directly affect the
final application.

Undoubtedly the most common successive approximation algorithm is the OSA
variant. In addition, it is often incorrectly considered to be the only one. The most
important difference between the SA algorithms consists in the ability to direct conversion
of non-removable physical quantities such as time intervals. Both the FSMSA and the MSA
variants are capable of performing such operation, while in case of the OSA it is impossible.
Nevertheless, as mentioned above, conversion of the non-removable values applied as
the OSA variant is still possible using indirect conversion. Unfortunately, this entails the
necessity of extending the whole conversion procedure by prior preconversion process,
which is inherently associated with additional measurement error (uncertainty).

Another important issue raised in this paper is the energy demand, which is imposed
by the unique character of conversion in each SA variant. It was shown that its general
tendency can be successfully estimated using only such simple models.

Presented systematization of the binary SA algorithms, the specific differences be-
tween them, and finally the energy consumption allow for correct identification of the ap-
plied SA algorithm and its selected properties, which can be essential in some applications.
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6. Kościelnik, D.; Miśkowicz, M. Time-to-digital converters based on event-driven successive charge redistribution: A theoretical
approach. Measurement 2012, 45, 2511–2528. [CrossRef]

7. Chung, H.; Ishikuro, H.; Kuroda, T. A 10-Bit 80-MS/s Decision-Select Successive Approximation TDC in 65-nm CMOS. IEEE J.
Solid-State Circuits 2012, 47, 1232–1241. [CrossRef]

8. Abas, M.A.; Russell, G.; Kinniment, D.J. Built-in time measurement circuits—A comparative design study. IET Comput. Digit.
Tech. 2007, 1, 87–97. [CrossRef]

9. Liu, C.-C.; Chang, S.-J.; Huang, G.-Y.; Lin, Y.-Z. A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure.
IEEE J. Solid-State Circuits 2010, 45, 731–740. [CrossRef]

10. Abas, M.A.; Russell, G.; Kinniment, D.J. Design of Sub-10-Picoseconds On-Chip Time Measurement Circuit. In Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition, Paris, France, 16–20 February 2004; pp. 804–809. [CrossRef]

11. Kinniment, D.J.; Maevsky, O.V.; Bystrov, A.; Russell, G.; Yakovlev, A.V. On-chip structures for timing measurement and test. In
Proceedings of the Eighth International Symposium on Asynchronous Circuits and Systems, Manchester, UK, 8–11 April 2002;
pp. 190–197. [CrossRef]

http://doi.org/10.1016/B978-0-7506-7841-4.X5000-3
http://doi.org/10.3390/s20082430
http://www.ncbi.nlm.nih.gov/pubmed/32344711
http://doi.org/10.3390/s21144768
http://www.ncbi.nlm.nih.gov/pubmed/34300508
http://doi.org/10.3390/s19051109
http://www.ncbi.nlm.nih.gov/pubmed/30841543
http://doi.org/10.1109/NoMeTDC.2013.6658239
http://doi.org/10.1016/j.measurement.2012.03.009
http://doi.org/10.1109/JSSC.2012.2184640
http://doi.org/10.1049/iet-cdt:20060111
http://doi.org/10.1109/JSSC.2010.2042254
http://doi.org/10.1109/DATE.2004.1268980
http://doi.org/10.1109/ASYNC.2002.1000309


Sensors 2021, 21, 8267 13 of 13

12. Saberi, M.; Lotfi, R.; Mafinezhad, K.; Serdijn, W.A. Analysis of Power Consumption and Linearity in Capacitive Digital-to-Analog
Converters Used in Successive Approximation ADCs. IEEE Trans. Circuits Syst. I Regul. Pap. 2011, 58, 1736–1748. [CrossRef]

13. Ginsburg, P.; Chandrakasan, A.P. An energy-efficient charge recycling approach for a SAR converter with capacitive DAC. In
Proceedings of the 2005 IEEE International Symposium on Circuits and Systems, Kobe, Japan, 23–26 May 2005; pp. 184–187.
[CrossRef]

14. Lee, J.-S.; Park, I.-C. Capacitor array structure and switch control for energy-efficient SAR analog-to-digital converters. In
Proceedings of the 2008 IEEE International Symposium on Circuits and Systems, Seattle, WA, USA, 18–21 May 2008; pp. 236–239.
[CrossRef]

15. Stankovic, D.B.; Stojcev, M.K.; Djordjevic, G.L. Power Reduction Technique for Successive-Approximation Analog-to-Digital
Converters. In Proceedings of the 2007 8th International Conference on Telecommunications in Modern Satellite, Cable and
Broadcasting Services, Nis, Serbia and Montenegro, 26–28 September 2007; pp. 355–358. [CrossRef]

16. El-Halwagy, W.; Mousavi, P.; Hossain, M. A 79dB SNDR, 10MHz BW, 675MS/s open-loop time-based ADC employing a 1.15ps
SAR-TDC. In Proceedings of the 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC), Toyama, Japan, 7–9 November 2016;
pp. 321–324. [CrossRef]

17. Jiang, R.; Li, C.; Yang, M.; Kobayashi, H.; Ozawa, Y.; Tsukiji, N.; Hirano, M.; Shiota, R.; Hatayama, K. Successive approximation
time-to-digital converter with vernier-level resolution. In Proceedings of the 2016 IEEE 21st International Mixed-Signal Testing
Workshop (IMSTW), Sant Feliu de Guixols, Spain, 4–6 July 2016; pp. 1–6. [CrossRef]
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23. Szyduczyński, J.; Kościelnik, D.; Miśkowicz, M. Dynamic equalization of logic delays in feedback-based successive approximation
TDCs. In Proceedings of the 2017 3rd International Conference on Event-Based Control, Communication and Signal Processing
(EBCCSP), Funchal, Portugal, 24–26 May 2017; pp. 1–6. [CrossRef]

http://doi.org/10.1109/TCSI.2011.2107214
http://doi.org/10.1109/ISCAS.2005.1464555
http://doi.org/10.1109/ISCAS.2008.4541398
http://doi.org/10.1109/TELSKS.2007.4376012
http://doi.org/10.1109/ASSCC.2016.7844200
http://doi.org/10.1109/IMS3TW.2016.7524226
http://doi.org/10.1109/EEEI.2010.5662167
http://doi.org/10.1109/IMTC.2011.5944238
http://doi.org/10.1109/JSSC.2009.2032260
http://doi.org/10.1109/ISCAS45731.2020.9180949
http://doi.org/10.1109/MWSCAS47672.2021.9531866
http://doi.org/10.1109/EBCCSP.2017.8022824

	Introduction 
	The Binary Successive Approximation Variants 
	Oscillating Successive Approximation 
	Full-Scale Monotonic Successive Approximation 
	Monotonic Successive Approximation 

	Comparison of the Binary Successive Approximation Variants 
	Conclusions 
	References

