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Abstract: This article proposes a novel decentralized two-layered and multi-sensorial based fusion
architecture for establishing a novel resilient pose estimation scheme. As it will be presented, the first
layer of the fusion architecture considers a set of distributed nodes. All the possible combinations of
pose information, appearing from different sensors, are integrated to acquire various possibilities
of estimated pose obtained by involving multiple extended Kalman filters. Based on the estimated
poses, obtained from the first layer, a Fault Resilient Optimal Information Fusion (FR-OIF) paradigm
is introduced in the second layer to provide a trusted pose estimation. The second layer incorporates
the output of each node (constructed in the first layer) in a weighted linear combination form,
while explicitly accounting for the maximum likelihood fusion criterion. Moreover, in the case of
inaccurate measurements, the proposed FR-OIF formulation enables a self resiliency by embedding a
built-in fault isolation mechanism. Additionally, the FR-OIF scheme is also able to address accurate
localization in the presence of sensor failures or erroneous measurements. To demonstrate the
effectiveness of the proposed fusion architecture, extensive experimental studies have been conducted
with a micro aerial vehicle, equipped with various onboard pose sensors, such as a 3D lidar, a
real-sense camera, an ultra wide band node, and an IMU. The efficiency of the proposed novel
framework is extensively evaluated through multiple experimental results, while its superiority is also
demonstrated through a comparison with the classical multi-sensorial centralized fusion approach.

Keywords: multi sensor fusion; decentralized fusion; linear minimum variance; maximum likelihood
function; optimal information filter; fault resilient optimal information fusion

1. Introduction

State estimation is a challenging problem in the field of robotics that has been signifi-
cantly explored in the recent years and in different scientific and technological oriented
communities, such as: robotics [1], aerospace [2], automatic control [3], artificial intelli-
gence [4], and computer vision [5]. In this framework, one of the most interesting problems
is the one that is related to the estimation of the pose of a robot, especially for the case that
multi-sensors are utilized for the pose determination problem, with related sensor fusion
schemes, in order to increase the overall accuracy of the estimation but also at the same
time introduce the proper resiliency.

Towards this direction, lately the research on sensor fusion has been evolving in a
rapid manner, since multi-sensor fusion has the ability to integrate or to combine data
streams from different sources and simultaneously to increase the quality of the mea-
surements, while decreasing the corrupting noise from the measurements. Thus, in the
multi-sensorial fusion architectures, such for example the case of the pose estimation, it is
very common to have multiple sensors that are providing, e.g., full pose state estimations
or partial pose estimations (translation or orientation) and to have an overall sensor fusion
scheme that is commonly realized in a centralized [6] or distributed approaches [6,7]. In
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centralized fusion architectures, a central node or a single node is utilized, where direct
measurement data or raw data from multiple sensors are used to fuse using several type
of Kalman filters, depending upon the system whether it is linear or nonlinear. In this
context, the Extended Kalman Filter (EKF) has taken considerable attention in numerous
research works involving the case of multi-sensor fusion, while utilizing real data from
sensors for localization of ground robots and Micro Aerial Vehicle (MAV) [8–11]. However,
the EKF based fusion algorithms involve local linearization of the system. In order to
explicitly account for the nonlinearities, involved in the dynamical model, few progressive
approaches consider the Unscented Kalman Filter (UKF) [12,13] and the Particle Filter
(PF) [14] based multi-sensor fusion for robotic localization. Even though the UKF and PF
are superior for addressing nonlinearities, the advantage comes with additional complexity
in the computational burden. Comparison studies reported in [15,16] demonstrated that for
robot localization, the performance of EKF is comparable in all practical purposes. Apart
from the conventional Kalman based approaches, various innovative numerical optimiza-
tion based multi-sensor fusion algorithms, such as moving horizon estimation [17,18], set
membership function [19], graph optimization [20], while MAV localization in GPS denied
environment have recently been investigated in [19,21]. The numerical optimization based
estimation framework has the capability to incorporate the non-linearity of the dynamical
model, as well as various physical constraints. However, it imposes additional computation
complexity and limitations due to the theoretical guarantee on convergence properties.

In general, a centralized structure with multi inputs and outputs works very well for
data fusion. Though it is not sufficient for all the cases, sometimes one of the sensor can
fail suddenly for a certain period of time in total operating duration, in such a situation,
the centralized approach follows the faulty sensor’s data, while having the disadvantage
that it can not detect or eliminate the fault occurred by the sensors. Although it is possible
to attain an almost optimal solution in the centralized fusion framework, in real and field
utilizations, processing all the sensors at a node or a point is most likely ineffective and
has the potential to lead into direct failures in case of a sensor defects or temporary perfor-
mance degradation. On the other hand, the distributed fusion [22] typically consists of at
least two layers, where in the first layer, the raw data are collected from different sensor
measurement units to create the local estimates and in the sequel are being forwarded
to the second layer for further fusion from the corresponding nodes. Typically, in the
first layer a Kalman filter is utilized to provide the local estimates from the sensors [23].
However, depending on the data assimilation procedures, in the second layer various
decentralized fusion methods have been investigated [24]. In this direction, an information
filter based decentralized fusion [22] is considered for the localization of mobile robots and
MAVs in [24,25]. However, these formulations do not explicitly incorporates the correlation
between local estimates. Contemplating the dependency of the local nodes, various covari-
ance intersection based decentralize fusion algorithms for collaborative localization have
been investigated in [26–30]. In this context, an innovative maximum likelihood criterion
for performing the decentralized fusion was presented in [31], where the information from
the local nodes were integrated as a weighted combination to provide the fused states.
The weighting matrices were judiciously determined based on the cross covariance of the
local estimates. However, these decentralized fusion approaches, have been implemented
based on the assumption that the measurements from sensors are only influenced by an
inherent unbiased Gaussian noise, while in reality, and for field robotic applications, the
related measurements are spurious [30] due to unexpected uncertainties, such as a temporal
inoperative surrounding (such as low illumination condition, presence of smoke/dust
etc.) fault, spike and sensor glitches. In such situations, the magnitude of inaccuracy in
the measurements is much larger when compared to the normal noise [32]. In order to
address this issue, various fault detection and isolation methods, in combination with the
decentralized fusion, are investigated in the related state of the art literature [28,33,34].

In summary, distributed fusion is a robust framework to failures and can indicate the
proper resiliency for critical applications, while eliminating the risk of single failures. Specif-
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ically in robotic applications, the approach of perception, in the direction of decentralized
fusion, can handle the fundamental problem addressed in numerous implementations like
multi-robot tracking, cooperative localization [35] and navigation [35], multi-robot Simul-
taneous Localization and Mapping (SLAM) [36], distributed multi-view 3D reconstruction
and mapping, and multi-robot monitoring [37]. The map merging, data association, and
robot localization can potentially be efficient only if the robots are enough capable to
perceive autonomously the world. Therefore, centralized and decentralized fusion or in
other words fusion in general, plays an important role in all robotic applications.

In this article, a unique decentralized multi-sensor fusion approach is proposed that
introduces a novel flexible fault resilient structure, by isolating the information from the
faulty sensor, while enabling the information provided by the other sensor measurements in
an optimal information fusion framework. Furthermore, the classical optimal information
fusion (OIF) presented in [31] has a provision to incorporate a sensor level fault isolation,
which operates as a separate unit. However, an increasing number of sensors/local nodes,
along with the presence of temporal sporadic (spikes, temporary failure) measurements,
demands a more flexible fusion architecture to account for fault resiliency in real time.
In the present work, an innovative fault isolation mechanism is embedded with the OIF
architecture by representing the isolation operation, as a constraint optimization problem.
Thus, the novelty of this article stems from the novel application of an optimal information
two-layered sensor fusion method, which has been modified ideally for handling sensor
breakdown during operation, as it will be described in the sequel.

The main focus of this article is to develop a two-layered, multi-sensor fusion with
self resiliency with the assistance of a unique optimal isolation algorithm. The technique
works in several stages. In the first step, information from multiple asynchronous sensors
is exhaustively exploited in an orderly sequence by introducing the concept of nodes. Each
node individually fuses position and orientation information from independent sensors
separately. In a way, the nodal architecture introduces the feasibility of distinguishing
partially defective measurements and thereby broaden out the possibility of fusing all the
acceptable information. For instance, if a sensor provides accurate position and defective
orientation measurement for a short duration, utilization of the position measurement
would be beneficial in lieu of discarding the entire sensor information. Next, in the
second layer, the information from each node is blended in a weighted combination by
employing an maximum likelihood estimator to obtain the most accurate pose collectively.
Moreover, the proposed fault resilient optimal information fusion architecture incorporates
an inbuilt fault isolation mechanism to discard disputed outcome from sensors. Once the
disputed outcomes are observed, the weighing parameters of the optimal information
filter are adjusted to accommodate the fault isolation. The second contribution stems
from the effectiveness evaluation of the second layer fusion architecture when a sensor
is not working correctly for a certain period or when the system receives inaccurate
measurements from the sensors. In this case, an optimal information filter with fault
handling capability is proposed and incorporated to get more robust and accurate responses
from the corrupted outcomes. In this case, a modified co-variance weight scheme is
introduced for combining all possible nodes in the second layer that is utilized to resolve
the effect of erroneous measurements. The final contribution of the article is towards the
performance comparison of the existing centralized and decentralized fusion techniques
with the proposed novel decentralized fusion approach. Both existing methods methods
perform well when measured sensor data are faultless, otherwise, the proposed fault
resilient decentralized fusion scheme works far better than the existing centralized and
decentralized filter estimation. The comparison of these different fusion architectures ha
been carried out by using experimentally collected data sets.

2. Problem Formulation

Aiming towards a real-time, resilient and accurate navigation for autonomous explo-
ration, through an unknown environment, aerial robotic vehicles equipped with multiple
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asynchronous real senors, as the one depicted in Figure 1 will be considered as the base
line of this novel work, without a loss of generality, since the overall framework has the
merit to be platform agnostic. In this case, the considered sensor suite of the MAV contains
a Velodyne Puck LITE, the Intel realsense camera T265, the IMU of a Pixhawk 4 flight
controller, and a single UWB node. The collected point-cloud from the 3D-lidar is pro-
cessed online to provide odometry based on [38]. Essentially, the 3D-lidar odometry and
the real sense camera T265 are capable of providing the real time 3D pose of the MAV
independently, whereas, the IMU provides the measurements of angular velocity, as well
as the acceleration of the MAV. In addition, a network of 5 UWB nodes is set strategically
around the utilized flying arena, for estimating the position of the MAV based on the
mounted UWB node. The overall objective is to provide a novel decentralized multi-sensor
fusion architecture that can blend the information from various real sensor measurements
to obtain the most accurate pose of the MAV in real-time. A schematic representation of
the MAV pose is depicted in Figure 2.

Figure 1. The aerial robot considered with the heterogeneous and asynchronous sensors for estab-
lishing the multi-layer sensor fusion architecture.

The pose is described using two reference frames, namely the world frame (W = {XW ,
YW , ZW}) and the body-fixed frame (B = {XB, YB, ZB}). The body-fixed frame is attached
to the MAV’s centre of mass, while the inertial frame is assumed to be attached at a point on
the ground with its X, Y and Z axis directed along the East, North and Up (ENU) directions,
respectively. The sensors are mounted in the body fixed frame B of the MAV, and provide
the information regarding its pose. The position of the MAV (essentially the origin of the
body-fixed frame) is defined as −→p , which is described with respect to the world frame
W as shown in Figure 2. The orientation of MAV with respect to the world frame can be
visualized using the Euler angle representation {φ, θ, ψ}, denoting the roll, pitch and yaw
rotations, respectively. In order to avoid the singularity associated with Euler angle, the
orientation of the MAV is considered to be represented by quaternions [39] denoted with q.
The position of the MAV, p and its orientation, q together designate the pose of the vehicle.

2.1. Asynchronous Sensors Associated with the Present Study

The under consideration MAV, equipped with various sensors, is presented in Figure 1.
The sensors that are considered in the present context are: (a) the IMU of a Pixhawk 4 flight
controller that provides the acceleration am, the angular velocity ωm and the orientation
qIMU of the MAV, (b) the Velodyne Puck LITE radar assisted with Lidar Odometry (LIO) [38]
to provide a 3D pose of the MAV denoted by pLIO, qLIO, (c) the Intel Real-sense T265 visual
sensor integrated with visual odometry (VIO) that provides a position and orientation
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denoted with pVIO, qVIO, and (d) the Ultra-Wideband (UWB) transceivers that provide the
position of the MAV, denoted with pUWB.

Figure 2. Co-ordinate frames: subscript W denotes the global frame and subscript B denotes the
body frame.

2.2. The MAV’s Utilized Kinematic Model

The decentralized sensor fusion architecture at its core utilizes the model based
estimation framework, where the nonlinear kinematic model of the MAV is considered
as [40]:

ṗ = vt (1a)

v̇t = at (1b)

q̇ =
1
2

q⊗ωt (1c)

where, p ∈ R3×1 denotes the position, vt ∈ R3×1 represents the velocity, q ∈ R4×1 stands
for the orientation of the MAV in the form of quaternions representation. Here, at ∈ R3×1

represents the total acceleration of the vehicle expressed in the inertial frame of references,
where as ωt ∈ R3×1 denotes the body rate experienced by the vehicle. Physically, these
parameters (acceleration and body rates) are characterized as an input to the system, which
are typically measured using an IMU denoted as am and ωm. In general, the measurements
from sensors are noisy, which includes sensor bias as well. In order to establish this fact,
the measurement signals are represented as:

am = RT
t (at − gt) + abt + an (2a)

ωm = ωt + ωbt + ωn (2b)

where, abt ∈ R3×1 denotes the accelerometer bias and ωbt ∈ R3×1 represents the gyroscopic
bias terms, an and ωn signify the additive noise for acceleration and angular rate, respec-
tively, Rt , R(q) ∈ SO(3) denotes the transformation matrix, from the body to the world
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frame, and gt ∈ R3×1 denotes the gravity bias. Moreover, it has also been accounted that
the bias factors abt , ωbt are driven by a process noise dynamically represented as:

ȧbt = aω (3a)

ω̇bt = ωω (3b)

ġt = 03×1 (3c)

where, aω ∈ R3×1 and ωω ∈ R3×1 are the accelerometer and gyroscopic process noise,
respectively. Rearranging Equation (4a,b), the total acceleration can be expressed as:

at = Rt(am − abt − an) + gt (4a)

ωt = ωm −ωbt −ωn (4b)

Substituting, Equations (4a,b) and (1b,c), respectively, yields:

v̇t = Rt
(
am − abt − an

)
+ gt (5a)

q̇ =
1
2

q⊗ (ωm −ωbt −ωn) (5b)

The above equation of motion of MAV is expressed in a compact mathematical notation
given as:

Ẋt = ft(Xt, um, w) (6a)

yt = [I7×7 | 07×12]Xt (6b)

where, the state vector is denoted as Xt = [pt, vt, q, abt, ωbt, gt]T ∈ R19×1, the noisy mea-
sured input based on IMU reading is denoted as um ∈ R6×1 and the random process noise
w ∈ R6×1 is defined as:

um =

[
am − an

ωm −ωn

]
, w =

[
aw
ωw

]
3. Decentralized Sensor Fusion Architecture

In order to make use of all the available information from the sensor measurements in
the best possible way, a two-layered fusion architecture is considered here. A schematic
overview of the proposed fusion architecture is presented in Figure 3. Since the primary
focus here is to determine the MAV pose, the sensors involved in this process are capable
of measuring either the position and/or orientation, while the IMU is the only exception,
which provides the acceleration and body rates of the vehicle. In the First layer, information
from multiple asynchronous sensors is exhaustively exploited in an orderly sequence by
introducing the concept of nodes. Potentially, each node provides the pose of the MAV,
which is obtained by involving its position from one sensor and orientation from another.
In the second layer, the information from each node is used in a weighted combination
to collectively obtain the most accurate pose of the MAV in a maximum likelihood hood
manner. A complete overview of the fusion architecture in detail is presented in the sequel.
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Figure 3. The Fault resilient optimal information filter with a two-layered fusion arrangement. An
emphasized description of the first layer fusion is given in Figure 4.

3.1. First Layered Decentralized Fusion Architecture

In the first layer, we have introduced the concept of the decentralized nodes. In the
context of the multi-sensor framework, the position and orientation of the MAV is obtained
by two distinct sensors that are arbitrarily selected to construct a node. Incorporating
all of such possible combinations of sensor measurements collectively, a total number of
seven nodes are constructed in the present setup and alphabetically denoted as node-l,
where l ∈ {A, B, . . . , G}. The position and orientation information accounted for the
individual nodes are described in Table 1. In the process of constructing the node, each
decentralized node is associated with an Extended Kalman Filters (EKF) [41], which blends
the measurements from various sensors in all possible combinations. However, each
node receives the IMU information, as measured actuation/control input to the kinematic
model associated with the Kalman filter. Moreover, position and orientation from two
distinct sensors are utilized as the measurement information. In the context of the present
setup under consideration, Figure 4 describes all the possible decentralized nodes and the
associated measurements [42].

Figure 4. Combination of position and orientation information flow from various sensors in consti-
tuting different nodes of the first layer.
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Table 1. Combination of sensor information used to construct the nodes of the proposed first layer

Pose A B C D E F G

Position
Real
sense

Camera

3D
LiDar UWB UWB 3D

LiDar

Real
sense

Camera
UWB

Orientation IMU
Real
sense

Camera
IMU 3D

LiDar IMU 3D-
LiDar

Real
sense

Camera

Previously, in the Section 2.2, the kinematic model of a MAV in continuous time form
is presented in Equation (6a). In order to describe the decentralized nodes, associated with
the first layer, in a compact mathematical form (in correlations with EKF), an equivalent of
Equation (6b) in discrete time representation (using Euler [43] discretization) is provided by:

xk = fk−1(xk−1, uk−1, ωk−1) (7a)

yk = hk(xk, vk) = [I7×7 | 07×12]xk + vk (7b)

where, k denotes the discrete time instants. It should be noted that in order to account for
model inaccuracy, we have considered a process noise ωk ∈ R19. Moreover, an additional
measurement noise vector vk ∈ R7 is introduced in Equation (7b) to encapsulate a realistic
output model, under the influence of noisy measurement appearing from real sensors. The
process and measurement noise are assumed to follow the Gaussian distribution as:

ωk ∼ N (0, Qk), vk ∼ N (0, Rk) (8)

where Qk and Rk represents the process noise co-variance matrix and the measurement
noise co-variance matrix, respectively. The mathematical operator E denotes the expectation
and the superscript T indicates the transpose. Starting with an initial guess of a posteriori
estimate x̂+l0 = E(xl0) and P+

l0
= E[(xl − x̂+l0 )(xl − x̂+l0 )

T ], along with the assumption

in Equation (8), the lth node is described as a local EKF with the following prediction-
correction formalism:

Prediction Steps:

x̂+l0 = E(xl0), P+
l0

= E[(xl − x̂+l0 )(xl − x̂+l0 )
T ] (9a)

x̂−lk = flk−1
(x̂+lk−1

, uk−1, 0) (9b)

Klk = P−lk HT
lk
(Hlk P−lk HT

lk
+ RT

kl
)−1 (9c)

P−lk = Flk P+
lk

FT
lk
+ Llk Qlk Llk (9d)

where the ‘+’ symbol is used to denote an a priori estimate, the ‘−’ symbol is designated
to a posteriori estimate, the subscript l indicates the corresponding variable of the lth node,
where l ∈ {A, B, . . . , G}. The Jacobian matrices are defined as:

Flk =
∂ flk−1

∂xlk
, Llk =

∂ flk
∂uk

, Hlk =
∂hlk
∂xlk

(10)

while the inputs excitation uk (linear acceleration and angular velocity), used in the predic-
tion process, are essentially obtained from the IMU measurements.

Correction Steps:

x̂+lk = x̂−lk + Klk [ylk − hlk (x−lk , 0)] (11a)

P+
lk

= (I − Klk Hlk )P−lk (11b)
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Note that, in the process of constructing the nodes, the associated EKF cleans out the
noisy measurements appearing from the actual sensor unit. It is apparent that, individually
each node is potentially capable of proving the information regarding the pose of the MAV.
However, the accuracy of pose information, obtained from each decentralized node, varies
depending on the accuracy of the sensors that are involved to constitute the node. Hence, to
obtain a best possible pose estimate, a second layer architecture is presented in the sequel.

3.2. Second Layer Decentralized Fusion Architecture

The estimated states x̂l , l ∈ {A, B, . . . , G} from each node are placed together in
a weighted combination to jointly obtain an accurate estimate of the MAV pose, while
using an Optimal Information Filter (OIF) by maximum likelihood estimation. Thus, the
FR-OIF is used in the second layer, which incorporates the capability of choosing optimal
weights based on the co-variances that is obtained from the first layer fusion. Moreover,
the proposed formulation embeds a fault isolation mechanism with the OIF architecture.
The collective estimate of the fused state vector, as the output of the second layer, is
expressed as:

x̂k = ∑
l∈{A,...,G}

Ālk x̂lk (12)

where, Ālk , l ∈ {A, B, . . . , G} represents the arbitrary weight associated with the corre-
sponding node. Here x̂k and x̂lk denote the outcome of the second layered fusion and
estimated states of the lth node from the first layer, respectively. These weigh parameters
are optimally determined based on a minimum variance (maximum likelihood) criterion.

Assuming that both the FR-OIF, as well as the EKF act as an unbiased estimator, i.e.,
E(x̂k) = E(xk), E(x̂lk ) = E(xk), and taking the expectation of both sides of Equation (12)
it yields:

ĀAk + ĀBk + ...... + ĀGk = I (13)

where xk represents the actual state of the MAV. The estimation error for FR-OIF, i.e., xk− x̂k
is expressed as:

x̃k = xk −∑
l∈{Ak ,...,G}

Ālk x̂lk (14)

Using the constraint relation from Equation (13), the estimation error in Equation (14)
is rewritten as:

x̃k = ∑
l∈{A,...,G}

Ālk (xk − x̂lk ) = ∑
l∈{A,...,G}

Āl x̃lk = Wk x̃L (15)

where Wk = [ĀAk , ĀBk , . . . ĀGk ]
T and x̃L = [x̃Ak , x̃Bk , . . . , x̃Gk ]. Hence, the error co-variance

matrix of the second layer of the FR-OIF is expressed as:

Pk = E(x̃k x̃T
k ) = WT

k ΣkWk (16)

where Σk = E(x̃L x̃T
L ) = P(l,m)k

, ∀l = m = {A, B, . . . , G} represents the cross co-variance
matrix [31] between lth and mth node, expressed as:

P−
(l,m)k

=
[
I − Kmk Hmk

]
×
[

Flk P+
(l,m)k

FT
lk
+ Qk

]
×
[
I − Kmk Hmk

]T (17)

At this point, it is possible to obtain the weight parameter matrix W by solving the
following static optimization, as described in [31]:

min
AAk

,...,AGk

Jk =
1
2

tr(Pk) =
1
2

tr(WT
k ΣkWT

k ) (18)

subjected to
(

ĀAk + ĀBk + ....... + ĀGk

)
= I

However, the solution of Equation (18), obtained from the classical OIF in [31], is un-
able to provide a sufficient resiliency in the presence of inaccurate measurements obtained
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from one or a group of sensors. However, such problems of corrupted sensor measurements
for a short duration of the operation period are often encountered in reality. For example,
in the absence of sufficient visual features for some part of the surrounding environment,
the real-sense camera fails to determine the MAV’s position, or in the presence of a bright
moving object in the lidar’s field of view, it fails to provide an accurate pose.

In order to overcome such shortcomings, a separate fault isolation technique is pro-
posed as an enhancement to the proposed decentralized estimation scheme, where the
classical OIF formulation is modified to incorporate an inbuilt fault isolation mechanism
with the OIF structure. For a time interval, if a group of sensors is identified to be corrupted,
based on a fault detection method, the corresponding nodes associated with the faulty
sensor need to be eliminated from the second layer architecture during the defective period
of operation. In this article and without a loss of generality, the mechanisms for identifying
the fault occurrence will not be considered and it will be assumed that the time of the
fault and the faulty node can be identified. However, a straightforward nullifying of the
weight matrices linked with the corrupted nodes, without altering other weights, leads
to violation of the constraint in Equation (13). Hence, it is required to reformulate the
optimization problem to bring in the flexibility of enabling/disabling a group of nodes
online, while the MAV is operating in real-life applications. Let us consider the ith node,
where i ∈ Ak, Bk, . . . , Gk, is found to be corrupted for a short time interval. This brings an
additional constraint collectively presented as:

∑
l∈{A,...,G}

Ālk = I, ∑
i∈{A,...,G}

Āik = 0, i 6∈ l (19)

The above constraints are combined and with a compact mathematical notation and
can be represented as:

∑
l∈{A,...,G}

δlk Ālk = I (20)

where, δlk ∈ {0, 1} is a scalar multiplying factor. We will impose that δlk = 0, if the lth
node is found to be corrupted, otherwise δlk = 1. The modified optimization problem is
presented as:

min
AA ,...,AG

Jk =
1
2

tr(Pk) =
1
2

tr(WT
k ΣkWT

k ) (21)

subjected to
(

WT
k eδk − I

)
= 0

where, eδk =
[
δAk I, δBk I, . . . , δGk I

]T . Following the solution approach of the optimization
problem with an equality constraint using the Lagrange multiplayer method [44], the
augmented cost function is presented as:

J̄k =
1
2

tr(WT
k ΣkWk) + tr

[
Λk

(
WT

k eδk − I
)]

(22)

where, Λk ∈ R19×19 represents the Lagrange multiplayer. Evaluating the necessary condi-
tions of optimality, i.e., ∂ J̄k

∂Wk
= 0 and ∂ J̄k

∂Λk
= 0, yields:[

Σk eδk
eδk

T 0

][
Wk
Λk

]
=

[
0
I

]
(23)

From the solution of Equation (23), the optimal weight matrix Wk is obtained as:

Wk = Σ−1
k eδk (eδk

TΣ−1
k eδk )

−1 (24)

Using the optimal weight matrix Wk into Equation (12), one can obtain the estimated
state from the second layer fusion architecture. The revised Wk, as a function of eδk ,
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enables the modified OIF to be resilient in presence of a faulty measurement from a group
of sensors.

Fault Detection

In the presented methodology, the corruption or the fault of a sensor is diagnosed by
the first layer fusion, while the Kalman filter innovation from Equation (25) is utilized to
detect the fault or locate the sensor failure at the corresponding time frame. The innovation
can be written as ID,l = [yvk − hk(x̂k, 0)]. In this way, the innovation vector ID,l depends on
the estimated poses from the individual nodes with the pose obtained from a Vicon motion
capturing system. In this case the sub-scripted letter D denotes the detected fault, while
the sub-scripted letter v indicates the pose obtained from a Vicon. Furthermore, Vicon
provides the most accurate pose, which can be considered as a ground truth. Once the
innovation for all the nodes is computed, it is compared with a threshold value. The logical
rule is given as: { ∣∣ID,l

∣∣ > ∆ : δl = 0, lth node is faulty
0 ≤

∣∣ID,l
∣∣ < ∆ : δl = 1, lth node is legitimate

(25)

The fault fl occurs. |.| is denoted for absolute value operator and ∆ is the threshold
that can be chosen arbitrary.

4. Experimental Framework Evaluation

For the experimental evaluation of the proposed scheme, collected data from a MAV
under a manual flight is utilized. The platform and its components have been depicted in
Figure 1. In this case, the sensor suite of the MAV consists of the Velodyne Puck LITE based
Lidar odometry, the intel real-sense camera T265 for visual odometry, the IMU of a Pixhawk
4 flight controller, and a single UWB node. The detail about the sensor suit is described in
Section 2. The MAV is manually flown in an approximate rectangular trajectory. During the
experiment, information from the multiple sensors are recorded, which is used to evaluate
the efficacy of the proposed FR-OIF framework. Apart form the on-board sensor suit, a
Vicon motion capture system is used to provide the most accurate pose of MAV, which is
considered as the ground truth in the present context.

The fusion method works in three different stages when sensor outcomes are faulty.
In the first step, various nodes generate their equivalent estimated states and associated
innovation (as presented in Equation (25)). The actuation input (Angular velocity ωm
and linear acceleration am) for all the nodes are obtained from IMU, which is shared
among all the nodes. In the second step, innovation terms for various nodes are com-
pared with a constant threshold. The process essentially identifies the defective node.
Eventually, in the last effort, the resilient fault isolation mechanism of FR-OIF architec-
ture eliminates the faulty measurements. The corresponding numerical values for the
various systems and design parameters that are considered in the present article are: ini-
tial guess for error co-variance Pl0 = I19×19, initial state Xl0 = [01×6, 1, 01×10, 9.81]T∀l ∈
(A, . . . , G), process noise co-variance Qlk = 1000× I19×19, measurement noise co-variance
Rlk = 10× I18×18, threshold tolerance for innovation ∆ = 0.4. The experimental results,
along with a comparison study based on the centralized EKF approach will be presented
in the sequel.

The estimated trajectory of the MAV is presented in Figure 5. From the obtained
results, it is evident that the FR-OIF provides a pose estimate that is approximately close to
the ground truth trajectory obtained from the Vicon system. The variation of the estimated
MAV position along X, Y, Z are presented in Figure 6. It can be observed in Figure 5
that, in the absence of faulty measurement, the estimated trajectory obtained from the
Centralized fusion (CF) as well as the decentralized Optimal information fusion (OIF)
are approximately equivalent. However, during the operating region, where a faulty
measurement is encountered, both the estimated trajectories obtained based on CF and OIF
significantly deviated from the ground truth. The variation of the MAV’s orientation in
Euler angle representation is shown in Figure 7. The estimated orientation, obtained from
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the FR-OIF, is approximately close to the Vicon based ground truth. However, during the
experiment, when the aerial robot was roaming around the rectangular path of trajectory, it
was manoeuvring with small-angle variation along with the roll, pitch and yaw. Hence,
the noticeable performance improvement for FR-OIF is prominent in transnational motion
compared to that of the rotations.

Figure 5. Variation of estimated MAV trajectory obtained from Centralized Fusion (CF), decentralized
Optimal Information Fusion (OIF), Fault Resilient (FR)-OIF, and ground truth (position from vicon
camera). FR-OIF provides the estimated position of the MAV approximately close with the ground
truth obtained from the Vicon motion capture system.

Figure 6. Estimated positions along ‘X-Y-Z’ components obtained from intermediate nodes (A, . . . , G)
and FR-OIF, compared with CF, OIF and the ground truth. The evaluation is carried out in presence
of temporal fault appearing from LIO (Case-1). Except the fused position obtained from FR-OIF all
the estimated positions deviated during 20–30 s.
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Figure 7. Variation of orientation represented using Euler angles obtained from intermediate nodes
(A, . . . , G), CF, OIF, FR-OIF and the ground truth. During the experiment, the transnational motion
is dominant over the rotational motion. As a result, the significant impact of FR-OIF is difficult to
be visualized.

In order to demonstrate the effectiveness of the proposed fault resilient framework,
momentary faults are synthetically introduced into the measured sensor data obtained
during the experiment. The evaluation is carried out in multiple scenarios depicting
presence of spurious measurement from multiple sensors, as follows:

• Case-1: Temporal fault only in LIO measurement in between (20–30) s, while mea-
surement from all other sensors are unaltered.

• Case-2: Temporal fault only in VIO measurement in between (50–60) s, while mea-
surement from all other sensors are unaltered.

• Case-3: Temporal fault in both LIO and UWB measurements are itroduced in differ-
ent operating points. The UWB measurement is faulty during (20–30) s, whereas for
LIO reports faulty data during (35–45) s. Hence, this case evaluates multiple faults
from different sensors in separate operating point.

• Case-4: Simultaneous temporal failure of LIO and UWB appeared during (20–30) s.

Note that the sensor selected for reporting faulty operation and the corresponding time
duration are arbitrarily selected without loss of generality. The variation of the estimated
positions for all the possible cases under consideration is depicted in Figures 8–11. It is
evident from the results that the proposed FR-OIF is successfully capable of determining
the MAV position in the presence of various possible failure conditions and temporal
faulty sensor measurements. More significantly, from Figure 11 one can visualize that the
FR-OIF demonstrated its efficacy for a simultaneous failure of multiple sensors at a time,
as described in case-4.

The variation of estimated position, obtained from the different nodes A . . . G are also
depicted in Figures 8–11, corresponding to the various cases under consideration. Each of
the node, individually employing an EKF, indeed eventually removes the measurement
noise from the estimated pose. However, the accuracy of the corresponding node depends
on the measurement of sensor associated with it. For example, if we consider the situation
as described in the Case-1, the faulty measurement is associated with the LIO. Hence, the
estimated position from the node B and E, which are using the position information based on
LIO, (refer to Table 1) are inaccurate, as shown in Figure 6. Similarly, one can observe here that
the estimated orientation, obtained from the nodes D and F, are erroneous during (20–30) s
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the period of the faulty operation of LIO, since these nodes are using the LIO based orientation
as a measurements. The equivalent analysis also holds for the remaining case studies.

Figure 8. Case-1: Comparison of estimated position obtained from CF, OIF, FR-OIF and Vicon based
ground truth, visualization in an emphasized mode of Figure 5 is presented. In the presence of a fault
in the LIO for the duration of operation between (20–30) s, the centralized and classical OIF approach
is unable to recover the failure in the estimated states, while the proposed FR-OIF successfully
recovered from the faulty measurements and it is able to provide a close approximation of position
estimate comparable with ground truth.

Figure 9. Case-2: Estimated positions along ‘X-Y-Z’ components obtained from intermediate nodes
(A, . . . , G) and FR-OIF, compared with CF, OIF and the ground truth. The evaluation is carried out in
presence of temporal fault appearing from VIO. Except the fused position obtained from FR-OIF all
the estimated positions deviated during 50–60 s.
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Figure 10. Case-3: Estimated positions along ‘X-Y-Z’ components obtained from intermediate nodes
(A, . . . , G) and FR-OIF, compared with CF, OIF and the ground truth. The evaluation is carried out in
presence of temporal fault appearing from UWB (20–30) s and LIO (35–45) s. Except the fused position
obtained from FR-OIF all the estimated positions deviated in presence of faulty measurements.

Figure 11. Case-4: Estimated positions along ‘X-Y-Z’ components obtained from intermediate nodes
(A, . . . , G) and FR-OIF, compared with CF, OIF and the ground truth. The evaluation is carried out
in presence of simultaneous temporal fault appearing from UWB and LIO during (20–30) s. Except
the fused position obtained from FR-OIF all the estimated positions deviated in presence of faulty
measurements.
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4.1. Comparison of FR-OIF with Centralized and Distributed Fusion Approaches

In order to demonstrate the efficiency of the proposed FR-OIF, comparative study with
the EKF based centralized multi-sensor fusion as well as decentralized optimal information
fusion is presented here. For the sake of completeness, a brief description of the EKF
based centralized fusion architecture is described in the sequel. The centralized EKF
follows exactly the same steps of the prediction and correction approach, as described
in Equations (9)–(11), with the only exception that the measured pose from the multiple
sensors are collectively taken into account. Hence, the output equation is described as:

yk ∈ R21×1 = [pLIO , qLIO , pVIO , qVIO , pUWB , qIMU ]
T (26)

The dimension of the measurement noise co-variance matrix Rk, Kalman gain Kk and
output gradient Hk are redefined accordingly.

Apart from the EKF based centralized approach, a comparison study has been carried
out with the existing decentralized OIF [31] method. The formulation presented in [31]
considers a weighted sum of the individual node in the second layer fusion, as described in
Equation (18). Both the CF and OIF are evaluated for all the scenarios presented in the Case
1–4 with faulty sensor measurements from multiple sensors. The variations of the estimated
pose for CF, OIF and FR-OIF are presented in Figures 5–8. The comparison study reveals
that in the absence of sporadic measurements, the performance of all the methods (CF, OIF
and FR-OIF) under consideration are approximately equivalent. However, in the presence
of faulty measurements (Case 1–4), it can be observed that the estimated trajectory, obtained
from the CF and OIF approach, deviates from the ground truth. Moreover, the presented
experimental study brings out another interesting fact where the performance of the OIF
closely resembles with the CF. This is highlighted in Figure 8, which is an emphasized
version of Figure 6 for a time duration of operation under the faulty measurements (and
the fact is also evident in other figures as well). In contrast, FR-OIF is capable of providing
an accurate pose estimation even in the presence of fault from multiple sensors.

4.2. Accuracy in Terms of the Root Mean Square Error

In this section, the accuracy of the fusion algorithms are evaluated in terms of Root
Mean Square Error (RMSE). In this case, a comparison is made in two steps. Firstly, the
estimated poses are compared using a sliding window RMSE where the corresponding
plots are depicted in Figures 12 and 13 in a logarithmic scale. Secondly, to compare the
performance of the estimated pose, obtained based on various nodes and fusion approaches,
the single value RMSE is computed and illustrated in Tables 2 and 3.

Note that the RMSE errors are computed by considering the Vicon based ground
truth as reference. The RMSE comparison table proves that the second layered FR-OIF
method is superior when the sensor measurements are erroneous. In order to visualize the
variation of RMSE error along the trajectory, a sliding-window logarithmic RMSE (RMSLE)
is considered with a window size of 100 samples. Since, the RMSLE provides the error in
a logarithmic scale, the smaller the magnitude is (more negative) the more signifies for a
higher accuracy. From the variation of RMSLE, as presented in Figures 12 and 13. Even
though the root mean square error for orientations has slightly varied with the efficiency of
the estimators.

Hence, transnational motion during the experiment was made significant changes in
the RMSE Table 2, as well as Figure 12, however it is not significantly visible in Table 3 and
Figure 13.
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Figure 12. Variation of Semi-logarithmic root mean square error for position along X-Y-Z obtained
from different fusion (CF, OIF, FR-OIF).

Table 2. RMSE comparison for the estimation of the positions in meters.

Axis A B C D E F G CF OIF FR-OIF

X 0.1114 0.5740 0.2509 0.2509 0.5740 0.1114 0.2509 0.2503 0.2340 0.1394

Y 0.0806 2.1856 0.0793 0.0793 2.1856 0.0806 0.0793 0.7564 0.6452 0.0650

Z 0.0502 0.4616 0.1122 0.1122 0.4616 0.0502 0.1122 0.1751 0.1557 0.0499
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Figure 13. Semi-logarithmic root mean square error for orientation represented in Euler angles,
obtained from different fusion (CF, OIF, FR-OIF).
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Table 3. RMSE comparison for the estimation of the orientation in Euler angles.

Angles A B C D E F G CF OIF FR-OIF

ψ 0.4667 0.7522 0.4667 0.7473 0.4667 0.7473 0.0168 0.5343 0.5154 0.5340

θ 2.0663 2.1664 2.0663 1.9324 2.0663 1.9324 0.0188 1.9618 1.9618 1.9505

φ 1.9387 1.9246 1.9387 1.9357 1.9387 1.9357 0.0066 1.8365 1.8456 1.8341

The proposed FR-OIF provides excellent performance in terms of RMSE, compared
to the centralized fusion approach. Moreover, based on the experimental results it can
concluded that the proposed multi-sensor fusion is capable to provide a resilient pose
estimation in the presence of faulty measurements and it has a great potential for various
practical applications, involving multiple sensors and with a sufficient redundancy.

In the present context, the evaluation of the proposed fault resilient fusion is carried
out with the experimental data, where temporal sensor fault are synthetically injected for
the purpose of validation. However, part of the future work will consider evaluating the
proposed FR-OIF sensor fusion framework in a field robotic experiment, where a momen-
tary sensor failure is unavoidable in presence of dusty/smokey and dark environment.
Additionally it is to be noted that, In the presented approach, and as in the case of most of
the fault detection approaches in the related literature, the ∆ has been ad hoc selected to a
constant number and without loosing generality, while part of future work is also related
to the adaptive determination of this value.

5. Conclusions

In this article, a novel decentralized multi-sensor fusion framework for resilient pose
estimation of MAV is presented. The proposed multi-sensor fusion considered a two
layered architecture. In the first layer, by combining the information from different sensors
and by using an EKF a set of nodes are constructed. Each node provides an estimate
of the MAV pose, which are collectively integrated by using OIF to provide an optimal
estimate of it. Moreover, an unique fault isolation is embedded with the classical OIF
formulation to incorporate the resiliency in presence of faulty measurements. Based on
the experimental study an interesting fact has been established that, without an external
fault isolation mechanism, the performance of the classical OIF closely resembles with the
centralized EKF based multi-sensor fusion approach. Hence, these two methods are not
sufficient to eliminate the fault accurately. In contrast, the proposed fault resilient optimal
isolation technique is adequately capable to overcome such shortcomings. Even though
the proposed FR-OIF is presented in this article is considered pose estimation of MAV, the
formulation is quite generic and it can be applied in various autonomous navigation and
with different robotic platforms and involving multiple sensors.
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