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Abstract: A network composed of unmanned aerial vehicles (UAVs), serving as base stations (UAV-
BS network), is emerging as a promising component in next-generation communication systems. In 
the UAV-BS network, the optimal positioning of a UAV-BS is an essential requirement to establish 
line-of-sight (LoS) links for ground users. A novel deep Q-network (DQN)-based learning model 
enabling the optimal deployment of a UAV-BS is proposed. Moreover, without re-learning of the 
model and the acquisition of the path information of ground users, the proposed model presents 
the optimal UAV-BS trajectory while ground users move. Specifically, the proposed model opti-
mizes the trajectory of a UAV-BS by maximizing the mean opinion score (MOS) for ground users 
who move to various paths. Furthermore, the proposed model is highly practical because, instead 
of the locations of individual mobile users, an average channel power gain is used as an input pa-
rameter. The accuracy of the proposed model is validated by comparing the results of the model 
with those of a mathematical optimization solver. 
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1. Introduction 
Due to the advantages of high mobility and easy deployment, unmanned aerial ve-

hicles (UAVs) are emerging as a major component in various applications such as a mobile 
access point for military operations, a remote structural safety diagnosis, a quick deploy-
ment of communication infrastructure for disaster relief, and agricultural monitoring, etc. 
Naturally, related research works are continually conducted for the efficient utilization of 
them. In a mobile network, UAV is considered to play important roles as an aerial user 
and an aerial base station (BS). As an aerial user, UAV is being adopted in various fields 
such as Structural Health Monitoring (SHM) [1], disaster relief networks [2], agricultural 
applications [3], search and rescue (SAR) [4], and aerial ad-hoc networks [5,6], etc. More-
over, a network with UAVs, which serve as aerial BSs (UAV-BSs), is becoming a key com-
ponent in next-generation mobile communication systems. With the ever-demanding re-
quest for high-speed mobile communication, next-generation mobile communication 
technologies are focusing on the efficient use of wide bandwidth. Accordingly, in addition 
to installing a larger number of BSs, it is necessary to increase the number of line-of-sight 
(LoS) links between BSs and mobile users. Since a UAV-BS can be located at a high alti-
tude, it has an advantage in supporting LoS links. Compared to a terrestrial BS, a UAV-
BS has few installation restrictions and a low installation cost. Furthermore, a UAV-BS 
can be readily moved to the vicinity of hotspot areas. Considering these features, a net-
work with UAV-BSs is a promising technology for the next-generation networks. 

When a UAV acts as a BS, locating the UAV to a proper position is a critical issue. 
The location of a UAV-BS in a network largely determines the energy consumption of the 
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UAV-BS, the number of users who can be serviced, and the quality-of-experience (QoE) 
of the users. Accordingly, a lot of research has been conducted to find the optimal position 
of a UAV-BS, and the main objective of this research is reducing the energy consumption 
of UAV-BS, improving service quality for users, and maximizing the coverage of UAV-
BS, etc. [7–16]. In [7–10], optimization algorithms and mathematical optimization solvers 
are adopted to obtain the optimal location of a UAV-BS. However, the approach of calcu-
lating the optimal position of a UAV-BS through an optimization solver has a considerable 
computational complexity, because whenever the topology of a network changes, it de-
mands re-calculation. On the other hand, reinforcement learning is very efficient in deriv-
ing the optimal UAV-BS location and provides a versatile model applicable to various 
user distributions [17]. A Q-learning algorithm [18] is one of the popular methods for re-
inforcement. However, Q-learning has a drawback in that the number of states increases 
explosively as the number of input variables increases, and its memory usage also in-
creases sharply since it should store all the state-action relations in a table. Accordingly, 
many related works [11–16] adopt Deep Q-Network (DQN) [19], which combines Q-learn-
ing with an artificial neural network [20]. 

In [21–23], the authors derive the optimal trajectory and path of a UAV-BS using Q-
learning. The objectives are to maximize the sum-rate [21], to maximize the QoE of users 
[22], and to maximize the number and fairness of users served [23]. In these papers, the 
altitude of a UAV-BS is fixed, and the results are 2-D trajectories of the UAV-BS. By con-
trast, in this paper, a DQN model producing 3-D trajectories is proposed where the alti-
tude of a UAV-BS is adjusted according to the density of ground users (GUs). In [11–13], 
the optimal UAV-BS deployment algorithms through DQN are proposed. In [11], a net-
work utility and a tolerable convergence speed are maximized. In [12,13], the number of 
served aerial nodes and an average user throughput is considered. However, these re-
search works do not take the mobility of users into account. Meanwhile, in [14–16], the 
mobility of users is considered in the optimal trajectory design of a UAV-BS. In [14], an 
uplink sum-rate is maximized by taking both aerial users and GUs into account. In [15], 
the QoE of aerial users is maximized. However, in [14,15] the location information of all 
the users and the UAV-BS is required as input parameters for the proposed DQN learning 
models, and the results do not contain explicit UAV-BS trajectories following mobile us-
ers. In [16], an uplink sum-rate is maximized using signal strength as an input parameter 
for a DQN, and the trajectory of a UAV-BS is presented. However, a simple user mobility 
model is considered, where GUs move to a specific position only once, and trajectory re-
sults for various paths are insufficient. By contrast, the output trajectory of the proposed 
DQN model in this paper dynamically follows mobile GUs, which move various courses. 
Moreover, the results of these papers do not show a clear 3-D trajectory of the UAV ac-
cording to various movement paths of GUs. 

In this paper, a UAV-BS trajectory design algorithm, which maximizes QoE consid-
ering mobile GUs, is proposed. The contribution of this work is summarized as follows: 
 The proposed DQN model exploits an average channel power gain information ra-

ther than individual GU position information, which greatly reduces the size of input 
parameter and computational complexity.  

 Reflecting the density of GUs, the adjustment of UAV-BS altitude is enabled. This 
leads to 3-D trajectory design according to diverse moving patterns of GUs.  

 The proposed DQN model learns from a static GUs distribution, then the derived 
model can be applied to mobile GU scenarios in which the proposed model requires 
neither the user mobility information nor re-learning for the moving GUs.  

 The accuracy of the proposed model is validated by comparing the result of the pro-
posed model with a mathematical optimization solver [24]. 
Note that applying the proposed DQN model, which is trained in a static GUs distri-

bution, to mobile GU scenarios itself is a great advantage. Because a training a DQN model 
in a static GU distribution is much easier than training in a mobile GU distribution. In the 
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training of a DQN model with a mobile GUs distribution, the moving pattern of the GUs 
can be very diverse and the optimal UAV-BS position should be updated in a real-time 
reflecting the moving GUs. 

2. System Model 
A single UAV-BS denoted as 𝐾𝐾 and a number of 𝑁𝑁 GUs are considered. It is as-

sumed that the UAV-BS communicates with the GUs using time slots of equal length. It is 
also assumed that the locations of the UAV-BS and the GUs do not change during the time 
slot duration. Accordingly, 3-D coordinates of the UAV-BS 𝐾𝐾  at time 𝑡𝑡  is 
�𝑥𝑥𝐾𝐾(𝑡𝑡),𝑦𝑦𝐾𝐾(𝑡𝑡),ℎ𝐾𝐾(𝑡𝑡)�, and the GUs are assumed to be on the ground with zero height. The 
coordinates of the GUs are (𝑥𝑥𝑖𝑖(𝑡𝑡),𝑦𝑦𝑖𝑖(𝑡𝑡), 0), 𝑖𝑖 = 1,⋯ ,𝑁𝑁. The distance between the UAV-BS 
and GU 𝑖𝑖  at time 𝑡𝑡  is expressed as 𝑑𝑑𝑖𝑖(t) =

��𝑥𝑥𝐾𝐾(𝑡𝑡) − 𝑥𝑥𝑖𝑖(𝑡𝑡)�
2 + �𝑦𝑦𝐾𝐾(𝑡𝑡) − 𝑦𝑦𝑖𝑖(𝑡𝑡)�

2 + ℎ𝐾𝐾2 (𝑡𝑡), 𝑖𝑖 = 1,⋯ ,𝑁𝑁 . For the sake of clarity, the nota-
tions and the associated descriptions are provided in Table 1. 

Table 1. Mathematical notations and descriptions. 

Notations  Description 

𝜃𝜃𝑖𝑖 
Elevation angle between the unmanned aerial vehicles base station 

(UAV-BS) and ground user (GU) 𝑖𝑖 
𝑎𝑎, 𝑏𝑏 Environmental parameters 
𝐵𝐵, 𝐵𝐵𝑖𝑖 Total Bandwidth/Allocated to GU 𝑖𝑖 
𝑃𝑃, 𝑝𝑝𝑖𝑖 Total transmission power/Allocated to GU 𝑖𝑖 
𝛤𝛤𝑖𝑖(𝑡𝑡) Received signal to noise ratio (SNR) of GU 𝑖𝑖 at time slot 𝑡𝑡 
𝑇𝑇𝑖𝑖(𝑡𝑡) Transmission rate of GU 𝑖𝑖 at time slot 𝑡𝑡 
𝑁𝑁0 Noise power spectral 
𝑔𝑔𝑖𝑖(𝑡𝑡) Channel gain between the UAV-BS and GU 𝑖𝑖 
α Path loss exponent 

𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿,𝜇𝜇𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿 Attenuation factors for line of sight (LoS) and non-LoS (NLoS) 
MOS𝑖𝑖(𝑡𝑡) MOS of GU 𝑖𝑖 at time slot 𝑡𝑡 
𝑑𝑑�𝑇𝑇𝑖𝑖(𝑡𝑡)� Delay related to the transmission rate for GU 𝑖𝑖 
𝑇𝑇𝑇𝑇 Traffic load 

2.1. Air to Ground Model 
The air to ground model considers both LoS and non-LoS (NLoS) characteristics, and 

the probabilities of connecting LoS and NLoS links are as follows: 

𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿(𝜃𝜃𝑖𝑖) =
1

1 + 𝑎𝑎 𝑒𝑒𝑥𝑥𝑝𝑝(−𝑏𝑏[𝜃𝜃𝑖𝑖 − 𝑎𝑎]) (1) 

𝑃𝑃𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿(𝜃𝜃𝑖𝑖) = 1 − 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿(𝜃𝜃𝑖𝑖), (2) 

where 𝜃𝜃𝑖𝑖 is an elevation angle between the UAV-BS and GU 𝑖𝑖, and 𝑎𝑎 and 𝑏𝑏 are con-
stants to be determined according to the surrounding environment (urban, sub-urban, ru-
ral, …). It is assumed that the bandwidth and the transmission power of the UAV-BS are 
equally allocated to all the GUs. Hence, the bandwidth 𝐵𝐵𝑖𝑖 = 𝐵𝐵/𝑁𝑁 and the transmission 
power 𝑝𝑝𝑖𝑖 = 𝑃𝑃/𝑁𝑁 are allocated to GU 𝑖𝑖, where 𝐵𝐵 and 𝑃𝑃 denote the total bandwidth and 
the total transmission power, respectively. Then, the received SNR 𝛤𝛤𝑖𝑖(𝑡𝑡) and the trans-
mission rate 𝑇𝑇𝑖𝑖(𝑡𝑡) of the GU 𝑖𝑖 at time 𝑡𝑡 are expressed as follows: 

𝛤𝛤𝑖𝑖(𝑡𝑡) =
𝑝𝑝𝑖𝑖𝑔𝑔𝑖𝑖(𝑡𝑡)
𝐵𝐵𝑖𝑖𝑁𝑁0

, (3) 

𝑇𝑇𝑖𝑖(𝑡𝑡) = 𝐵𝐵𝑖𝑖 log2�1 + 𝛤𝛤𝑖𝑖(𝑡𝑡)�, (4) 
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where 𝑁𝑁0 is the noise power spectral density and 𝑔𝑔𝑖𝑖(𝑡𝑡) is the channel gain between the 
UAV-BS and GU 𝑖𝑖, which is given by [15]: 

𝑔𝑔𝑖𝑖(𝑡𝑡) = 𝐾𝐾0−1𝑑𝑑𝑖𝑖−𝛼𝛼(𝑡𝑡)[𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑃𝑃𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿𝜇𝜇𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿]−1,  (5) 

where 𝐾𝐾0 = �4π𝑓𝑓𝑐𝑐
𝑐𝑐
�
2
, α is a path loss exponent, and 𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿 and 𝜇𝜇𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿 are attenuation fac-

tors for LoS and NLoS, respectively.  
The UAV-BS receives feedback information of the channel power gain from each GU. 

These received gains are averaged to an average received channel power gain. Therefore, 
it is possible to simplify the model by reducing the dimension of the input parameter. 

2.2. QoE Model 
QoE is the quality of service experienced by GUs, and mean opinion score (MOS) is 

a representative metric for QoE. We adopt the MOS model applicable in the TCP protocol 
proposed in [25]. The simplified MOS model for GU 𝑖𝑖 is as follows [15]: 

MOS𝑖𝑖(𝑡𝑡) =   − 𝐶𝐶1 ln�𝑑𝑑�𝑇𝑇𝑖𝑖(𝑡𝑡)�� + 𝐶𝐶2 (6) 

where 𝐶𝐶1,  𝐶𝐶2  are given constants, 𝑑𝑑�𝑇𝑇𝑖𝑖(𝑡𝑡)� is a delay related to the transmission rate for 
GU 𝑖𝑖, which is expressed as [26]  

𝑑𝑑�𝑇𝑇𝑖𝑖(𝑡𝑡)� = 𝑇𝑇𝑇𝑇/�𝑇𝑇𝑖𝑖(𝑡𝑡)� (7) 

where 𝑇𝑇𝑇𝑇 is traffic load.  

2.3. User Mobility Model 
It is assumed that the GUs move randomly within a certain radius around a moving 

center point while this moving center point moves along a predefined path. The radius 
may vary over time, and the change of the radius results in the variation of the density of 
the GUs. The GUs are uniform randomly distributed within the radius. Figure 1 shows 
the user mobility model schematically. 

 
Figure 1. User mobility model with varying user density and random movement around moving 
center point. 

  

Group movement

Moving center point

Ground -users
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3. Proposed Algorithm 
The proposed trajectory design model optimizes not only the horizontal coordinates 

of the UAV-BS but the altitude of it as well. The model is learned through a DQN by 
maximizing the MOS of the GUs. 

3.1. Problem Formulation 
In this paper, the goal of the algorithm is to maximize QoE by considering mobile 

GUs. Hence, the problem formulation maximizes the MOS and can be expressed as:  

max
𝑥𝑥𝐾𝐾(𝑡𝑡),𝑦𝑦𝐾𝐾(𝑡𝑡),ℎ𝐾𝐾(𝑡𝑡)

∑ MOS𝑖𝑖(𝑡𝑡)𝑁𝑁
𝑖𝑖=1   (8) 

𝑥𝑥min ≤ 𝑥𝑥𝐾𝐾(𝑡𝑡) ≤ 𝑥𝑥max, (8a) 

𝑦𝑦min ≤ 𝑦𝑦𝐾𝐾(𝑡𝑡) ≤ 𝑦𝑦max, (8b) 

ℎmin ≤ ℎ𝐾𝐾(𝑡𝑡) ≤ ℎmax, (8c) 

where the minimum and maximum values of 𝑥𝑥,𝑦𝑦, and ℎ are grid sizes, indicating the 
area in which the UAV can fly. We solve this problem using our proposed DQN model 
and the optimization solver using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) [24] al-
gorithm, and then we compare the results of the two methods. 

3.2. MDP 
Action: a set of actions includes the 3-D movements of the UAV-BS. Accordingly, the 

UAV-BS has horizontal actions forward (F), backward (B), right (R), left (L), and vertical 
actions up (U), down (D), and finally staying in place (S). This action set considers a total 
seven actions, which are expressed as 𝒜𝒜 = {𝐹𝐹,𝐵𝐵,𝑅𝑅, 𝑇𝑇,𝑈𝑈,𝐷𝐷, 𝑆𝑆}. 

When each action is selected, the UAV-BS moves along the selected direction by a 
predefined distance 𝛿𝛿𝑚𝑚. However, when the received average channel power gain of the 
GUs is lower than a threshold τ, which means the UAV-BS is far from the optimal posi-
tion, the UAV-BS moves with a larger step size 𝛥𝛥𝑚𝑚(> 𝛿𝛿𝑚𝑚). This mechanism allows the 
UAV-BS to move to the optimal position quickly when the UAV-BS is initially located far 
away from the optimal position. In addition, after moving to the optimal position, the 
staying action prevents the UAV-BS from unnecessary maneuvering. 

State: from the above action set, three flying directions, i.e., F-B, R-L, and U-D, can be 
considered. In describing a state in the proposed model, three parameters constitute a 
state. Specifically, the differences of the average received channel power gain in F-B, R-L, 
and U-D directions constitute a state vector. For instance, if F action is selected and the 
UAV-BS moves to a new position, the new average channel power gain is subtracted by 
the previous value, and F-B direction element of the state vector is updated to this value. 
The state vector at time 𝑡𝑡 is expressed as 𝑠𝑠𝑡𝑡  = [𝛥𝛥𝐹𝐹𝐹𝐹,𝛥𝛥𝑅𝑅𝐿𝐿,𝛥𝛥𝑈𝑈𝑈𝑈], where 𝛥𝛥𝐹𝐹𝐹𝐹,  𝛥𝛥𝑅𝑅𝐿𝐿, and 𝛥𝛥𝑈𝑈𝑈𝑈 
are the difference in received channel power gain in the F-B, R-L, and U-D directions, 
respectively. For instance, let a UAV-BS move in order of R, F, R, and B from 𝑡𝑡 − 4 to 𝑡𝑡 
and the average received channel power gains be 𝑎𝑎,  𝑏𝑏,  𝑐𝑐,  𝑑𝑑, and 𝑒𝑒, as shown in Figure 2. 
In this case, the state vector at each time step is given in Table 2.  
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Figure 2. Example of unmanned aerial vehicles serving as base stations (UAV-BS) movement. 
𝑎𝑎,  𝑏𝑏,  𝑐𝑐,  𝑑𝑑, and 𝑒𝑒 mean the average received channel power gains from 𝑡𝑡 − 4 to 𝑡𝑡. 

Table 2. Input vector over time and state. 

Time 
State 

𝒔𝒔𝒕𝒕 = [𝚫𝚫𝑭𝑭𝑭𝑭,  𝚫𝚫𝑹𝑹𝑹𝑹,  𝚫𝚫𝑼𝑼𝑼𝑼] 

𝑡𝑡 − 4 [0,  0,  0] 
𝑡𝑡 − 3 [0,  𝑏𝑏 − 𝑎𝑎,  0] 
𝑡𝑡 − 2 [𝑐𝑐 − 𝑏𝑏,  𝑏𝑏 − 𝑎𝑎,  0] 
𝑡𝑡 − 1 [𝑐𝑐 − 𝑏𝑏,  𝑑𝑑 − 𝑐𝑐,  0] 
𝑡𝑡 [𝑒𝑒 − 𝑑𝑑,  𝑑𝑑 − 𝑐𝑐, 0] 

Reward: The reward at time slot 𝑡𝑡 is expressed as 𝑟𝑟𝑡𝑡. The optimal UAV-BS position 
maximizes the sum of the GUs’ MOS. Accordingly, it is quite a natural and general ap-
proach to allocate a positive reward α to an action of increasing MOS and to allocate a 
negative reward −𝛼𝛼 to an action of decreasing MOS. Moreover, to prevent the oscillation 
of the UAV-BS position, a small positive reward 𝛽𝛽 is allocated to an action of retaining 
current MOS. In the experimental results section, Figure 3 of training process confirms 
that the reward function operates successfully. 

 
Figure 3. Training process of the deep Q-network (DQN) model. 

3.3. Deep Q-Network (DQN) Algorithm 
An 𝜖𝜖 − greedy approach is adopted because exploration for learning is necessary. At 

the start of the algorithm, the probability of exploration is increased by setting 𝜖𝜖 to 1. 
Subsequently, the probability 𝜖𝜖 is reduced by multiplying 𝜖𝜖decay at every time step. The 
UAV-BS moves by 𝛿𝛿𝑚𝑚 in the selected direction of 𝑎𝑎𝑡𝑡. If the randomly chosen action by 
the 𝜖𝜖-probability goes out of the area grid, the UAV-BS randomly takes another action. 

𝑡𝑡 − 4

𝒂

𝑡𝑡 − 3

𝒃

𝑡𝑡

𝒆

𝑡𝑡 − 2

𝒄

𝑡𝑡 − 1

𝒅
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The DQN algorithm for the UAV-BS trajectory model learning is shown in the following 
Algorithm 1. 

Algorithm 1. DQN algorithm for UAV-BS trajectory 

• Initialize the replay memory D 
• Initialize action-value function Q with random weights 
• Initialize target-value function Q’ with random weights 
• Initialize the position of N GUs with R radius. 
• Set probability 𝜖𝜖 = 1, 𝜖𝜖min  = 0.1, 𝜖𝜖decay = 0.99997 
1: for episode = 1,   ⋯ ,  𝑀𝑀 do 
2:     Initialize the position of the UAV-BS 
3:     for 𝑡𝑡 = 1,   ⋯ ,  𝑇𝑇 do 
4:        if 𝜖𝜖 > 𝜖𝜖min 
5:             𝜖𝜖 =  𝜖𝜖 × 𝜖𝜖decay  
6:        end if 
7:        Select a random action 𝑎𝑎𝑡𝑡 with probability  
8:        while the UAV-BS position goes out of the grid 
9:            Select other action except 𝑎𝑎𝑡𝑡 
10:      end while 
11:      otherwise select 𝑎𝑎𝑡𝑡 = arg max𝑎𝑎𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎) 
12:      Execute action 𝑎𝑎𝑡𝑡 and observe reward 𝑟𝑟𝑡𝑡 and state 𝑆𝑆𝑡𝑡+1 
13:      Store transition (St,𝑎𝑎𝑡𝑡 , 𝑟𝑟𝑡𝑡 , 𝑆𝑆𝑡𝑡+1) in D  
14:      Sample random mini-batch of transitions from D 
15:      Perform a gradient descent to update action-value function Q 
16:      Every episode update target-value function Q’ 
17:    end for 
18: end for 

3.4. Algorithm Complexity 
The complexity of approximating Q function of DQN is affected by the number of 

states and can be expressed as 𝑂𝑂(|𝑆𝑆|2|𝐴𝐴|) [11]. |𝑆𝑆| and |𝐴𝐴| represent the numbers of 
states and actions, respectively. In the proposed model, the number of components in the 
state vector is fixed to three regardless of the number of the GUs because the average 
channel power gain is adopted as an input parameter. Therefore, even if the number of 
GUs increases, the proposed model has an advantage in terms of computational complex-
ity. 

4. Experimental Results 
For the performance analysis, 25 GUs are considered in an area where the grid size 

is 300 m  ×  300 m, and the maximum altitude of the UAV-BS is 50 m. The parameter set-
tings for the DQN learning and the experiment parameters are summarized in Tables 3 
and 4, respectively. In determining predefined movement distance 𝛿𝛿𝑚𝑚, the average UAV-
BS altitude 30 m and the average GUs movement per a time slot 1 m are considered, and 
even when 𝛿𝛿𝑚𝑚 is reduced to 1 m, MOS gain is not observed, hence, 𝛿𝛿𝑚𝑚 = 5 is determined. 
Initially, the model learns in an environment where the GUs are fixed, and then this 
learned model is applied to the moving GUs. Note that the model can be trained in both 
the environments where the GUs are fixed or the GUs move. Since the performance dif-
ference is negligible, the model trained with the fixed GUs is preferred in this paper. In 
the learning stage, 25 GUs are located around the center of an area with 50 m group radius, 
and it takes 300 episodes with a random UAV-BS initial position in training this model, 
which has five layers and a rectified linear unit (ReLU) activation function. At the early 
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part of the learning, MOS is about 30, and after the learning, MOS reaches above 50 as 
shown in Figure 3. In the execution stage, it is assumed that the GUs move between epi-
sodes, i.e., no movement within a single episode. At the beginning of the experiment, the 
position of the UAV-BS is randomly chosen. The position of the UAV-BS and the MOS of 
GUs are measured by varying the group radius and the path of GUs. In addition, the ex-
perimental results are compared with those obtained through the solver of the Python 
scipy package implemented based on the BFGS algorithm. The solver needs the exact po-
sitions of the UAV-BS and all the GUs, and it finds the position of the UAV-BS by locally 
maximizing the MOS of the GUs. Hence, in order to confirm the optimality of the results 
of the solver, more than four different initial points are fed to the solver, resulting in the 
same output of the solver.  

Table 3. DQN learning parameter settings. 

Parameter Value 
Batch size 64 

Learning rate 0.001 
Size of replay memory 5000 

Number of hidden layers  2 
Number of neurons in each hidden layer 48 

Type of activation function Rectified linear unit (ReLU) 

Table 4. Experiment parameter settings. 

Time Parameter Value 
Number of users 𝑁𝑁 25 

Group radius 𝑅𝑅 10–50 m 
Carrier frequency 𝑓𝑓 2 GHz 

Transmit power 20 dBm 
Bandwidth 𝐵𝐵 1 MHz 

𝑇𝑇𝑇𝑇 8,000,000 bits 
𝑎𝑎, 𝑏𝑏 9.61, 0.16 
𝐶𝐶1,  𝐶𝐶2 1.120, 4.6746 

Path loss exponent 𝛼𝛼 2 
𝜇𝜇𝑇𝑇𝜇𝜇𝑆𝑆 3 dB 
𝜇𝜇𝑁𝑁𝑇𝑇𝜇𝜇𝑆𝑆 23 dB 

Movement distance 𝛿𝛿𝑚𝑚 ,  𝛥𝛥𝑚𝑚 5, 10 m 
Channel power gain of threshold 𝜏𝜏 −100 dBm 

𝛼𝛼,  𝛽𝛽 10, 1 

Table 5 is a comparison between the proposed algorithm and BFGS. The time com-
plexity of DQN is 𝑂𝑂(|𝑆𝑆|2|𝐴𝐴|), and the algorithm proposed in this paper has a fixed number 
of inputs (states). Also, this is the time complexity calculated during the training process. 
When a trained model is applied in UVA-BS network for execution the time complexity is 
low 𝑂𝑂(|𝐴𝐴|). On the other hand, in the case of BFGS, the time complexity 𝑂𝑂(𝑛𝑛2) increases 
with the number of GUs because the location information of all GUs should be received 
and processed. Moreover, BFGS requires the exact position of each GU as input data, 
while the proposed model requires the average received channel power gain. The input 
data requirement for BFGS is quire impractical because it assumes that all the GUs are 
equipped with GPS and all the GUs’ position are reported to the UAV-BS in a real time. 
Considering the time complexities of the two methods, the execution time of BFGS is ex-
pected to increase sharply as the number of GUs increases, while the proposed algorithm 
will maintain its execution time even with increasing number of GUs. Moreover, the out-
put of BFGS is the optimal position of the UAV-BS, while the output of the proposed 
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algorithm is the optimal direction to reach the optimal position. Hence, the proposed al-
gorithm requires some iteration before the accumulated optimal directions guide the 
UAV-BS to the optimal position. This intuition is very well matched with the measured 
execution time shown in Figure 4. When the number of GUs is small the execution time 
of BFGS smaller than the proposed algorithm because the proposed algorithm requires 
some iteration; however, as the number of GUs increases, the execution time of BFGS in-
creases sharply, while the proposed algorithm maintains its execution time regardless of 
the number of GUs. 

Table 5. Comparison between the proposed algorithm and Broyden–Fletcher–Goldfarb–Shanno 
(BFGS). 

 BFGS Proposed Algorithm 

Time complexity High (𝑂𝑂(𝑛𝑛2)) Training: High (𝑂𝑂(|𝑆𝑆|2|𝐴𝐴|)) 
Prediction: 𝑂𝑂(|𝐴𝐴|) 

Input 
Exact positions of the UAV-BS 

and all the GUs 
Differences of the average re-

ceived channel power gain 
Output Optimal position(coordinate) Optimal action(direction) 

 
Figure 4. Execution times of two methods with increasing GUs. 

Figures 5–7 show the optimal deployment of the UAV-BS and the measured MOS 
over a single episode. Figure 5 shows the results of an experiment in which group radius 
is fixed at 50 m. In this figure, even though randomly selected initial points are adopted, 
the final positions of the learning model result in the nearly same position. Moreover, 
these final positions have little error compared to the positions obtained by the solver. 
Moreover, compared with Scipy-BFGS, the MOS gaps between the two methods are neg-
ligible. It shows that the proposed model with the predefined moving distance, discrete 
action setting, and different initial points reaches the same optimal result in terms of both 
position and performance. Figure 5b shows the LoS probability calculated through Equa-
tion (1) at randomly selected initial positions and final positions. When the position of the 
UAV-BS changes, the elevation angle between the UAV-BS and the GUs changes, so the 
LoS probability changes. Figure 5b shows the advantage of moving the UAV-BS to the 
optimal position. As shown in this figure, the probabilities of establishing LoS links with 
GUs are very low with initial points like 0.05, 0.1, 0.2, 0.5; however, at the final points, 
these probabilities become higher than 0.9, which results in the improved channel quality 
between the UAV-BS and the GUs. 
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(a) UAV-BS movement with different starting points (b) Line-of-sight (LoS) probability 

Figure 5. UAV-BS movement and line-of-sight (LoS) probability from random starting positions to the optimal position 
without considering GU mobility. 

 
Figure 6. The change of UAV-BS position by varying group radius. 

 
Figure 7. Mean opinion score (MOS) and UAV-BS altitude with varying group radius. 
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Figures 6 and 7 show the optimal UAV-BS altitude and MOS with varying group 
radius, respectively. The initial group radius is 10 m and increases by 10 m in each epi-
sode. As the group radius increases, the NLoS probability for the GUs located near the 
boundary of group increases. This leads to an increment of the average of NLOS proba-
bility. Hence, the UAV-BS starts to decrease the NLoS probability by increasing its alti-
tude. Accordingly, as shown in Figure 6, the altitude of the UAV-BS is linearly propor-
tional to the group radius, approximately 6 m (altitude) per 10 m (radius). However, too 
high an altitude reduces the MOS of the GUs. Therefore, it is important to find the proper 
altitude of the UAV-BS. 

There are very small discrepancies between the UAV-BS positions out of the pro-
posed model and those of the mathematical solver. Moreover, the difference in terms of 
MOS is negligible, as shown in Figure 7. This means that the position difference has a very 
slight effect to the QoE of the GUs. In Figure 7, MOS decreases as the group radius in-
creases. As mentioned above, the wide group radius leads to the high altitude of the UAV-
BS, and it results in the decreased received channel power gain and the decreased MOS. 

The results shown in Figure 8 is very promising and validate the effectiveness of the 
proposed model. This figure shows the optimal trajectories and the associated MOS 
curves of the proposed model applied to various paths of the mobile GUs. Note that the 
model learns in a static environment where the GUs are fixed, then, without the acquisi-
tion of the path information and re-learning, this model is applied to the mobile environ-
ments where the GUs move randomly around the moving center point. As the GUs move 
episode by episode, the radius of moving GUs is randomly changed from 25 m to 50 m. 
In (a) of Figure 8, the GUs move in one direction, and in cases of (c) and (e), the GUs show 
more dynamic moving patterns. To confirm that the results are not accidental, the exper-
iments are repeated over 50 times, then averaged. In each repetition, the movement of 
individual GU is randomized with a new random seed. As we can see in Figure 8, even 
though the situation is so adverse that the GUs’ position information is unavailable and 
the GUs move with varying group radius, the proposed model successfully locates the 
UAV-BS at the optimal position. In addition, if the model learns in a dynamic environment 
where the GUs move randomly episode by episode, the output trajectories are nearly 
same with those shown in Figure 8. Considering that the proposed DQN model are 
learned with simplified parameters, and optimal actions selected by the UAV-BS are pre-
defined distance values consisting of seven discrete directions, the proposed algorithm 
and the optimal position derived by BFGS are very close, as shown in the resulting graph. 
Moreover, in terms of MOS, the outputs of the proposed model very well matched with 
those of the solver.  
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(a) UAV-BS trajectory on path 1. (b) MOS on path 1. 

 

 

(c) UAV-BS trajectory on path 2. (d) MOS on path 2. 

 

 

(e) UAV-BS trajectory on path 3. (f) MOS on path 3. 

Figure 8. UAV-BS trajectory and MOS with GUs moving in various paths. 

5. Conclusions 
In this paper, a novel DQN model for an optimal deployment and trajectory design 

of a UAV-BS is proposed. This model uses only the average channel power gain without 
accurate location information of GUs. It is confirmed that the proposed model locates 
UAV-BS where MOS is maximized. Experimental results show that the altitude of UAV-
BS increases as the group radius increases. In addition, they demonstrate that 3D trajec-
tory design of UAV-BS is possible using the DQN-model where the model learns in a static 
environment, and then this model is applied to mobile environments without re-learning. 
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