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Abstract: A quad-element multiple-input-multiple-output (MIMO) antenna with ultra-wideband
(UWB) performance is presented in this paper. The MIMO antenna consists of four orthogonally
arranged microstrip line-fed hexagonal monopole radiators and a modified ground plane. In addition,
E-shaped and G-shaped stubs are added to the radiator to achieve additional resonances at 1.5 GHz
and 2.45 GHz. The reliability of the antenna in the automotive environment is investigated, with
housing effects taken into account. The housing effects show that the antenna performs consistently
even in the presence of a large metal object. The proposed MIMO antenna has potential for various
automotive applications, including vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-
to-everything (V2X), intelligent transport system (ITS), automatic vehicle identifier, and RFID-based
electronic toll collection.

Keywords: antenna; diversity; MIMO; monopole; vehicular communication

1. Introduction

The quest for high data rates has led to increased research into ultra-wideband (UWB)
and multiband antennas. UWB antennas are used for a variety of automotive applications,
including keyless entry, security, autonomous driving, vehicle-to-vehicle (V2V) commu-
nication, digital keys, and finding a vehicle in crowded parking lots. UWB technology
can also be used for vehicle tracking, localization, and parking guidance. The vehicular
antenna can be mounted in various locations, such as the back window, windshield, roof,
or side mirror. The antenna may be readily fitted with the help of a shark-fin casing and
chassis cavity.

Modern automobiles are becoming more intelligent, providing comfort and safety
to drivers by enabling automated driving assistance and infotainment systems. Vehicle-
to-everything (V2X) communication technology provides real-time traffic updates and
safer driving by communicating directly with other vehicles. The key technologies for V2X
communication in the unlicensed 5.9 GHz band are long-term evolution and wireless access
in vehicular environments (WAVE). The notable features of V2X communication include
automated driving with optimized fuel consumption, an integrated entertainment system,
and the ability to send breakdown prevention information to drivers. In the literature,
various antenna configurations have been proposed for automobile applications [1–5].
In [1], a square patch loaded with an inverted U-slot and a coupled C-slot was reported.
In [2], a wheel-shaped fractal antenna was designed on the transparent polyvinyl chloride
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material substrate. In [3], a compact-sized dual-band antenna was presented with left-
handed metamaterial. In [4], fractal geometry was used to design a microstrip patch
antenna with a small footprint. In [5], a wheel-like fractal antenna was proposed for
short-range communication, and the antenna was placed on a virtual car model to test its
on-vehicle performance.

Signals in the automotive environment are received from multiple paths, resulting
in multipath fading and interference. Diversity techniques such as spatial, pattern, and
polarization are used to encounter multipath interference. Therefore, a multiple-input-
multiple-output (MIMO)/diversity antenna could be advantageous for vehicular commu-
nications [6–9]. But, the main problem with MIMO antennas is high coupling between
resonating elements. For improving inter-element coupling in uniplanar wideband MIMO
antennas, electromagnetic band-gap (EBG) and other decoupling techniques were pro-
posed in [10–13]. In [14–17], dual-port MIMO/diversity antennas with split-ring resonators
(SRRs) were presented with improved isolation. In [18], a 3-D UWB MIMO configuration
was reported, with the antenna elements positioned orthogonally to each other to reduce
mutual coupling. An eight-element UWB MIMO antenna was designed [19], with the
antenna elements placed orthogonally to offer dual polarization. A rectangular-shaped
patch antenna was proposed in [20], with high inter-element isolation. A multiband
dual-polarized antenna was developed in [21], where the antenna elements were placed
orthogonally to increase isolation and achieve polarization diversity. An antenna working
at multiple frequencies was presented in [22], where the resonating elements were arranged
orthogonally to each other to reduce coupling between them. However, the antenna had a
larger footprint. A Minkowski MIMO antenna was proposed in [23], where the Minkowski
structure was obtained by cutting rectangular slots in the square patch, which helped
increase isolation. In [24], a quad-port multiband MIMO antenna with pattern diversity
and low inter-element coupling was reported. In [25], a quad-port antenna array was
designed for 2G/3G/4G applications with isolation greater than 16.5 dB. In [26], a slotted
microstrip antenna was proposed for WLAN applications, with a defected ground plane.
In [27], an orthogonal orientation of elements was used to increase isolation in a quad-port
triple-band antenna. In [28], a MIMO antenna was designed with meandering lines and
SRR for improved isolation. However, the above-mentioned antennas are relatively large,
have few resonating elements, and require more installation space.

This paper proposes a UWB MIMO antenna for automotive applications. The pro-
posed antenna element has a straightforward geometry that covers a wide range of fre-
quencies. Resonances at 1.5 GHz and 2.45 GHz are also achieved by incorporating stubs
in the patch of the antenna element. The antenna elements are arranged orthogonally to
develop the proposed MIMO antenna. The proposed quad-port MIMO antenna offers
polarization and spatial diversity. The MIMO antenna is compact in size, covers multiple
frequency bands, and offers good reliability in the automotive environment. It can be easily
integrated into a vehicle using the shark fin mounting available in the market. The diversity
parameters are also evaluated to understand the performance of the MIMO antenna, and
the results are satisfactory.

2. Antenna Design
2.1. Antenna Element

Figure 1 shows the layout of the proposed antenna element. The antenna is developed
on the FR-4 substrate with relative permittivity of 4.4 and a thickness of 1.6 mm. A simple
hexagonal monopole radiator is combined with a 50 Ω feeding line and a modified ground
plane to form the antenna element. The EM solver CST Microwave Studio® is used
to perform simulations of the proposed antenna. The size of the antenna element is
19 mm × 25 mm.
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Figure 1. Layout of the antenna element: (a) front view, (b) back view, (c) G-shaped stub, 2.4 GHz,
(d) E-shaped stub, 1.5 GHz.

The lower band-edge frequency (fl) of the UWB monopole antenna is calculated as [29]

fl =
7.2

(l + r + p)× k
(1)

where l and r are the height and width of the antenna, respectively, and p is the distance
between the ground plane and the radiator. The value of the empirical constant (k) is
evaluated as

k = 4
√

εe f f (2)

For the proposed antenna, Equation (1) is modified as

fl =
7.2

(0.295π[(a + b)] + p)× k
(3)

where 0.295π[(a + b)] corresponds to the term (1+r), and a and b represent the semi-length
and semi-width of the radiator, respectively.

Furthermore, resonant frequencies of 2.45 GHz and 1.5 GHz are obtained by adding G-
shaped and E-shaped strips of length λ0/2, respectively. The wavelengths of G-shaped and
E-shaped strips are calculated using the dimensions shown in Figure 1c,d. The dimensions
of the G-shaped and E-shaped stubs are given in Table 1.
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The development stages of the proposed antenna element are shown in Figure 2.
Figure 2a depicts a simple rectangular monopole antenna fed by a microstrip line of 50 Ω.
The reflection coefficient characteristics of the evolution stages are shown in Figure 3. The
rectangular monopole antenna exhibits poor impedance matching. In step 2, the edges of
the radiator are truncated, and a defect in the ground plane is introduced for impedance
matching. Step 3 involves etching the center metal of the radiator in order to reduce the
physical size of the antenna. In step 4, an E-shaped strip is added to obtain resonance at
1.5 GHz, and a G-shaped strip is added (in step 5) to achieve additional resonance in the
Bluetooth/Wi-Fi/RFID band (2.45 GHz). The addition of resonating stubs causes minor
changes in impedance matching, which can be compensated by loading a patch in the
ground plane, shown in step 6. Figure 4 shows the simulated and measured reflection
coefficients of the proposed antenna element.
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Figure 2. Evolution stages of the antenna element: (a) step 1, (b) step 2, (c) step 3, (d) step 4, (e) step 5,
(f) step 6.

Table 1. Dimensions of the G-shaped and E-shaped stubs.

Dimension Value (mm) Dimension Value (mm)

L1 1.7 S4 6.9

L2 2.75 S5 1.7

L3 10.6 S6 5.5

L4 8.05 S7 1.7

L5 22.3 S8 5.5

L6 1.9 S9 1.85
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Table 1. Cont.

Dimension Value (mm) Dimension Value (mm)

L7 6.7 S10 4.8

L8 6.5 S11 2.35

L9 4.3 S12 4.8

S1 12.3 S13 2.1

S2 8.15 S14 5.4

S3 24.5 S15 14.75
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Figure 4. Reflection coefficients of the proposed antenna element.

The antenna element offers an impedance bandwidth of 3.1 to 10.6 GHz and can be
used for UWB automotive applications. The additional resonances (1.5 GHz and 2.45 GHz)
can be employed for GPS and RFID/Bluetooth/Wi-Fi applications, respectively.

2.2. Equivalent Circuit

The antenna mechanism is studied physically by means of an equivalent circuit [30].
The equivalent circuit is derived from the impedance characteristics of the antenna. These
resonances can be represented by the R, L, and C components. Two peak impedance points
(5.124 GHz and 8.625 GHz) are chosen from Figure 4 (measured) and a corresponding
circuit is derived.
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The impedance characteristics determine the type of resonant circuit. When the
impedance moves from low (negative) to high (positive), a series resonance circuit is
drawn, and when the impedance moves from high (positive) to low (negative), a parallel
resonance circuit is drawn [31]. The real and imaginary curves (shown in Figure 5) can
be used to draw the RLC equivalent of the antenna. The equivalent circuit of the antenna
element and the corresponding result is shown in Figure 6, and the corresponding RLC
parameters are given in Table 2. The 1.5 GHz and 2.45 GHz frequencies are contributed by
two parallel resonant circuits, and the UWB is supported by two series resonant circuits.
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Table 2. RLC parameters of the equivalent circuit.

Frequency (GHz) R (Ω) C (pF) L (nH)

1.53 38.93 23.55 0.459

2.43 55.11 13.38 0.321

4.504 50.6 0.44 2.837

8.656 50.39 0.0739 4.571

2.3. MIMO Antenna

Multiple antennas are required in automobile applications to receive signals from all
directions. The antenna elements in the proposed MIMO antenna are arranged orthogonally
to one another to improve isolation, without the use of any decoupling structures. The
orthogonal placement also provides polarization diversity.

The inter-element spacing between the radiators is kept as 0.06λ0, and the MIMO an-
tenna dimensions are 56 mm× 56 mm. Figures 7 and 8 show the proposed MIMO/diversity
antenna and its S-parameters without a connected ground plane, respectively. The MIMO
antenna with a common ground plane [32] is shown in Figure 9. The reflection coefficients
and mutual coupling of the MIMO antenna with a connected ground plane are presented
in Figure 10a–c, respectively. There are no significant differences in the performance of
the antenna with or without connected ground. The photograph of the proposed MIMO
antenna prototype is shown in Figure 11.
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Figure 8. S-parameters of the MIMO antenna with unconnected ground planes: (a) reflection
coefficients, (b) mutual coupling with respect to port 1 and port 2, (c) mutual coupling with respect
to port 3 and port 4.
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3. Radiation and Diversity Characteristics

The radiation patterns of the antenna in the E-plane and H-plane are displayed in
Figure 12. Figure 13 depicts the gain and efficiency of the proposed antenna. The maximum
gain is found to be 2.14 dBi, and the maximum efficiency is 87%.
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Figure 13. Measured gain and efficiency of the designed antenna.

The diversity characteristics of the MIMO antenna are examined for its use in auto-
mobile applications. Envelope correlation coefficient (ECC) can be calculated with the
S-parameter (Equation (1)) and the far-field (Equation (2)) [33], and the calculated ECC is
less than 0.4, as shown in Figure 14.

ECC(ρe) =
|S∗iiSij + S∗jiSjj|2

(1− |Sii|2 − |Sij|2)(1− |Sji|2 − |Sii|2)
(4)

ECC(ρe) =
|
s
[
→
F1(θ, ϕ).

→
F2(θ, ϕ)]dΩ|2

s
|
→
F1 (θ, ϕ)|2dΩ

s
|
→
F2(θ, ϕ)|2dΩ

(5)
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Figure 14. ECC of the MIMO antenna.

Diversity gain (DG) is defined as an increase in signal-to-interference ratio without
compromising quality [34]. It also demonstrates how much transmission power can be
saved by employing a diversity scheme. It is measured in decibel or power ratio. DG can
be calculated with the S-parameter and the far-field, and the DG of the antenna is shown in
Figure 15.

DG = 10
√

1− |ECC|2 (6)
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Figure 15. DG of the proposed antenna (a) using far-field, (b) using S-parameters.

The total active reflection coefficient (TARC) is the square root of the summation of
outgoing powers divided by the summation of incident powers at any port of an N-port
antenna [35]. TARC is estimated using the Equation (7), where ai is the incident signal
and bi is the received signal. TARC of the proposed antenna is less than −10 dB, shown in
Figure 16.

TARC =

√
∑N

i=1|bi|2√
∑N

i=1|ai|2
(7)
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Figure 16. TARC of the proposed antenna (a) with respect to port 1 and port 2, (b) with respect to
port 3 and port 4.

In high data rate transmission, the transmission loss is calculated using channel
capacity loss (CCL) [36]. The CCL of the proposed antenna is shown in Figure 17, and it is
less than the practical limit of 0.4 bits/s/Hz.
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4. Housing Effect

The reliability of the antenna in the automotive environment is investigated, taking
into account the housing effects [37]. The roof of the car is represented by a metal plate. The
antenna is placed in the xz-plane and yz-plane, and the reflection coefficient characteristics
in the presence of a conductor are investigated. The dimensions of the metal plate are kept
as 40 cm × 40 cm and 1 m × 1 m (shown in Figure 18), and the gap between the antenna
and the metal plate is marked as 10 mm. The results demonstrated (shown in Figure 19)
that the performance of the antenna is not much affected by the metal conductor.
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5. On-Car Scenario

The various locations in a vehicle where the proposed antenna can be installed are
depicted in Figure 20. The antenna can be mounted on the bumper, roof, rear window, or
side mirrors. The distance between the antenna and the ground should be larger to avoid
ground losses. Therefore, the roof of the vehicle is the best place for antenna mounting.
The antenna can be mounted on the roof using a shark-fin mounting system or in the
chassis cavity.



Sensors 2021, 21, 8238 16 of 20Sensors 2021, 21, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 20. Different antenna mounting locations in a car. 

Furthermore, the antenna is imported into an open-source CAD model to evaluate 

its directivity for on-vehicle conditions. Additionally, the far-field performance of the 

proposed antenna is investigated for an on-car scenario. The results showed that the an-

tenna has omnidirectional characteristics over the desired frequencies. The proposed 

antenna has directivity greater than 7 dBi, as shown in Figure 21. 

 

(a) 

 

(b) 

 

(c) 

Figure 21. On-car performance of the proposed antenna: (a) 1.5 GHz, (b) 2.45 GHz, (c) 5 GHz. 

Figure 20. Different antenna mounting locations in a car.

Furthermore, the antenna is imported into an open-source CAD model to evaluate
its directivity for on-vehicle conditions. Additionally, the far-field performance of the
proposed antenna is investigated for an on-car scenario. The results showed that the
antenna has omnidirectional characteristics over the desired frequencies. The proposed
antenna has directivity greater than 7 dBi, as shown in Figure 21.
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A comparison of the proposed antenna to previously reported antennas is shown in
Table 3. The salient features of the proposed antenna are as follows:

1. The proposed antenna covers multiple bands, including UWB, whereas other antennas
reported in the literature [38–53] operate on a single wideband frequency.

2. The proposed antenna requires less space than the antenna configurations reported
in [39–42,44–55].

3. The multiband operation is achieved in the proposed prototype without any need
for reconfigurability.

4. The orthogonal configuration of the antenna provides additional polarization and
covers signals from all directions.

5. The MIMO antenna diversity performance is investigated using parameters such as
ECC, DG, TARC, and CCL, and the calculated values are found in the acceptable limits.

6. The proposed antenna is tested in an automotive environment, and the results show
that the performance of the proposed antenna is stable.

Table 3. Comparison of the proposed antenna to previously reported antenna configurations.

Ref. Bandwidth
(GHz)

Dimensions
(λ0 × λ0) Substrate Peak Gain

(dBi)
Efficiency

(%) DG (dB) ECC Polarization

[38] 2–11 0.22 × 0.22 FR-4 3 75 10 <0.5 Dual

[39] 3.1–10.6 0.39 × 0.39 FR-4 5 — 10 <0.02 Dual

[40] 25.5–29.6 2.5 × 2.97 Rogers
RO4350B 8.3 82 >9.96 <0.01 Dual

[41] 3.1–11 0.46 × 0.46 FR-4 5.5 — >9.9 <0.015 Vertical

[42] 3.2–11 0.38 × 0.38 FR-4 4 >70 >9 (ADG) <0.5 Dual

[43] 2.2–12.3 0.19 × 0.19 FR-4 5.82 87 >8 (ADG),
>7.5 (EDG) <0.3 Vertical

[44] 3.1–10.6 0.82 × 0.82 FR-4 3.38 >85.7 — <0.001 Dual

[45] 3.1–11.9 0.37 × 0.37 FR-4 6 >78 >9.96 <0.03 Dual

[46] 3–11 0.39 × 0.3 Rogers
5880 5.8 - >9.8 <0.02 Vertical

[47] 5.1–5.8 0.85 × 0.85 FR-4 2.9 >70 >9.9 <0.0006 Dual

[48] 2.35–9.04 0.51 × 0.27 FR-4 3 - 8 <0.5 Vertical

[49] 3–16 0.58 × 0.58 FR-4 7 - - <0.07 Dual

[50] 3.14–12.24 0.524 ×
0.524

Rogers
3003 5.1 >81 >9.6 <0.004 Dual

[51] 3.8–6.5 0.57 × 0.57 FR-4 6.8 >60 - <0.04 Circular

[52] 3–13.5 0.4 × 0.4 TMM4
laminate 3.5 >89 >9.95 <0.4 Dual

[53] 2.1–11.4 0.24 × 0.32 FR-4 1.2 >75 >9.9 <0.04 Dual

[54]
5.5–9.2,

13.2–17.9,
11.5–14.6

0.733 ×
0.733 FR-4 7.57 dB >70 >9.9 <0.05 Dual

[55] 2.15–20 0.308 ×
0.308 FR-4 6.7 >60 >9.96 <0.01 Dual

This work
1.41–1.62,
2.4–2.462,
3.1–12.8

0.2 × 0.2 FR-4 2.14 87 >9 <0.4 Dual
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The proposed antenna has the potential for automotive applications such as V2V,
vehicle-to-infrastructure (V2I), V2X, intelligent transport system, automatic vehicle identi-
fier, and RFID-based electronic toll collection.

6. Conclusions

A MIMO/diversity antenna for automotive communications is designed and devel-
oped in this paper. Stubs are integrated into the UWB monopole antenna element to achieve
resonance at 1.5 GHz and 2.45 GHz. The automotive antenna must receive signals from all
directions; therefore, the antenna elements are arranged orthogonally to each other. The
orthogonal arrangement of the antenna elements also improves inter-element isolation.
The antenna is fabricated and tested for diversity performance, and the obtained results
show that the ECC is less than 0.4, DG is greater than 9 dB, TARC is greater than −10 dB,
and CCL is less than 0.4 bits/s/Hz. The proposed MIMO antenna could be helpful for
GPS, RFID/Bluetooth/Wi-Fi, and V2V communications.
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