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Abstract: Large-scale IoT applications with dozens of thousands of geo-distributed IoT devices
creating enormous volumes of data pose a big challenge for designing communication systems
that provide data delivery with low latency and high scalability. In this paper, we investigate a
hierarchical Edge-Cloud publish/subscribe brokers model using an efficient two-tier routing scheme
to alleviate these issues when transmitting event notifications in wide-scale IoT systems. In this
model, IoT devices take advantage of proximate edge brokers strategically deployed in edge networks
for data delivery services in order to reduce latency. To deliver data more efficiently, we propose a
proactive mechanism that applies collaborative filtering techniques to efficiently cluster edge brokers
with geographic proximity that publish and/or subscribe to similar topics. This allows brokers in
the same cluster to exchange data directly with each other to further reduce data delivery latency.
In addition, we devise a coordinative scheme to help brokers discover and bridge similar topic
channels in the whole system, informing other brokers for data delivery in an efficient manner.
Extensive simulation results prove that our model can adeptly support event notifications in terms of
low latency, small amounts of relay traffic, and high scalability for large-scale, delay-sensitive IoT
applications. Specifically, in comparison with other similar Edge-Cloud approaches, our proposal
achieves the best in terms of relay traffic among brokers, about 7.77% on average. In addition, our
model’s average delivery latency is approximately 66% of PubSubCoord-alike’s one.

Keywords: topic-based publish/subscribe; implicit collaborative filtering; topic similarity; topic
subscription prediction; distributed publish/subscribe systems; Internet of Things; broker overlays

1. Introduction

Along with 5G network advantages, Internet of Things (IoT) technologies connect
different sensors and devices on a large scale so communications, sharing, and vital actions
can take place when needed [1]. There are various applications in many domains, such
as agriculture, healthcare, transportation, industrial automation, and smart homes [2].
However, the IoT poses many challenges because future systems will be more complex,
with huge amounts of data and ever-increasing demands from applications. On the other
hand, sensors and devices create unprecedented amounts of data that need to be transferred,
stored, and analyzed in the proper places. One known solution is for data primarily
generated near the edge of the network to be processed by applications deployed in edge
networks to provide fast reaction times. Consequently, several supporting technologies,
such as cloud computing, fog computing, cloudlets, and information-centric networks,
have been utilized and deployed to bring computing and storage capabilities closer to the
end user [3,4].

Importantly, IoT applications require high usability and low processing system re-
source usage. For example, sensor data often need to be integrated with other data in
order to observe spatio-temporal dependencies to infer more complete knowledge for
the user [5]. In city environments, traffic data from sensors need to be processed in real
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time. Consequently, the abundance of sensors and their frequent sampling rates create
continuous data that can be voluminous [6]. In addition, in heterogeneous signed social
networks, people share many pieces of content on a daily basis. It also needs a method to
detect the user’s topics of interest, such as ComPath [7] based on their interests/disinterests
to measure the similarities. In this paper, we consider large-scale IoT applications as the
IoT systems involving thousands of IoT devices and spreading over large geographical
areas such as cities inside a country [8,9]. Therefore, the challenge is designing a dynamic
data delivery solution for large-scale IoT applications that can provide data dissemination
with low latency and high scalability.

The publish/subscribe (pub/sub) paradigm (PSP) is one known solution for dynamic
large-scale applications because it provides a scalable and suitable interaction scheme [10].
In this communication paradigm, publishers (producers) advertise and publish events via
publications; subscribers (consumers) express their interest in events via subscription, and
receive relevant notifications generated by publishers. Note that both publications and
subscriptions are sent to an event manager. Upon arrival, the event manager identifies all
matching subscriptions, notifying interested subscribers. In addition, participants in PSP
are decoupled in space (not knowing each other) and in time (not active at the same time)
and are not synchronized (publishers are not blocked during event production; subscribers
can be asynchronously notified) [10].

On the other hand, the PSP has proven to be a powerful communications protocol
for developing a wide range of distributed applications. In addition, this paradigm can
support useful and flexible features, such as anonymity, many-to-many communications,
and asynchronicity for distributed systems [10]. With these helpful characteristics, the
PSP has been used in many complex, large-scale information diffusion systems, such as
Spotify, Twitter, and Facebook [11]. Take Spotify [12] as an example; it utilizes the PSP to
provide various features for social interactions. Users can subscribe to topics under the
Friends, Playlists, and Artists pages. Whenever users subscribe to an artist’s page, they
receive notifications about that artist, such as new album releases. Unsurprisingly, the PSP
and especially topic-based pub/sub (TBPS) systems have been deployed mainly for data
dissemination in many extensive IoT systems [13–15]. Specifically, in an essential setup,
a lightweight messaging protocol such as MQTT [16] supports connectivity between IoT
devices and applications. In addition, a message broker/server is employed to facilitate
data exchange among IoT devices. Through this facility, IoT applications access the col-
lected data and control the devices via the server by using APIs. However, this method is
only suited to LAN environments and does not scale up when applied to wide-scale IoT
projects where a very large number of geo-distributed IoT devices and a large number of
brokers exist [17]. Another approach is centralized in the deployment of pub/sub brokers
in the cloud; however, this strategy will increase the propagation delay in distributed IoT
applications. Therefore, the geo-distributed deployment of Edge-Cloud pub/sub brokers
is a promising solution that can take advantage of low latency and extensive computing
or storage resources. Nevertheless, we need to cluster these edge brokers properly to
save network bandwidth and to reduce transmission latency. Consequently, there is an
evident desideratum to develop advanced coordination schemes to organize and scale
these brokers effectively.

To cope with these issues, we designed a hierarchical Edge-Cloud pub/sub brokers
model to support data delivery in large-scale IoT projects, offering low latency and high
scalability. In addition, we introduce a two-tier routing scheme so the brokers can efficiently
notify subscribers about events. The main contributions of this paper are summarized
as follows:

• We apply implicit collaborative filtering techniques to predict future topics for pub/sub
brokers in order to proactively cluster them into proper groupings.

• We design a two-tier routing scheme for the clusters, which includes intra-cluster and
inter-cluster procedures to enhance end-to-end data delivery to IoT devices.
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• We devise a coordinative scheme so pub/sub brokers can collaborate in linking all
topic channels in the system efficiently.

• Extensive simulation results indicate that our proposed model can support data
dissemination for large-scale IoT applications, offering low latency, small amounts of
relay traffic, and high scalability.

The remainder of the paper is structured as follows. Section 2 presents related works
on pub/sub systems that can support large-scale IoT projects. Section 3 outlines the system
model of our proposal; we also explain the topic recommendation procedure for pub/sub
brokers, and we describe the process model of hierarchical pub/sub brokers for data
delivery. In Section 4, we present in detail the coordination procedures to bridge joint
topics among broker clusters. We provide simulation results to validate our claims in
Section 5, and in Section 6, we conclude the paper.

2. Related Works

Publish/subscribe schemes can be classified into three main variants: topic-based,
content-based, and type-based [10]. Of these schemes, the topic-based pub/sub scheme,
which classifies events into topics, is suited for real-time IoT service scenarios because it
does not need too much run time overhead [18].

A merging of IoT and artificial intelligence was introduced in [19]—a three-level model
with different requirements: a smart city and IoT infrastructure, fog computing, and cloud
computing. Rathore et al. in [20] proposed an edge-based aggregation-and-processing
strategy for raw data by forwarding them through gateways to smart city applications using
the Internet. The authors in [21] discussed IoT data edge-processed aggregation, network
communication, and service deployments in terms of the potential benefits and impacts. In
addition, the authors in [22] presented a smart routing solution for crowdsourcing data
with mobile edge computing (MEC) in smart cities using reinforcement learning (RL) for
intelligent network communication resources. Moreover, in [23], the authors presented the
PSIoTRL framework, which includes an intelligent orchestrator for IoT management to
address the issue of transferring an enormous volume of IoT data through a network with
constrained communication resources.

Cross-platform messaging solutions, such as Firebase Cloud Messaging (FCM) [24]
and IoTivity [25], can play the role of development platforms for IoT applications. FCM
allows application developers to send notifications or data messages to users through
IoT applications that need to collect data and deliver low-latency content. For sending
and receiving messages, an implementation of FCM comprises two main components: a
trusted server environment that supports the FCM server protocols to build, target, and
send messages and client applications that receive messages. IoTivity is another famous
framework to support the ever-increasing demands of IoT systems. The ultimate goal of
this open source project is to create a new standard for connecting billions of wired and
wireless devices. In this framework, data are collected from IoT devices and finally stored
in the IoTivity Global Cloud using pub/sub brokers. However, this mechanism might
cause high latency in delay-sensitive IoT applications.

On the other hand, many works that design protocols and algorithms to build scalable
peer-to-peer TBPS systems support message delivery in wide-scale applications [11,26,27].
One hybrid TBPS overlay system [11] allows low-relay messages among peers, and scales
up well with a large number of peers and topics. Another TBPS system presented in [26]
exploits topic subscription correlations among peers while dynamically clustering them
on a skewed distributed hash table. Furthermore, a distributed protocol, SpiderCast [27],
dynamically organizes correlated workload peers into an overlay network to support TBPS
communication. However, it may be infeasible to apply such methods on IoT devices in
wide-scale IoT applications due to the nature of the limited resources in IoT devices.

Building scalable broker-based TBPS systems to handle message delivery in wide-
scale IoT systems is another promising approach. Dynamoth [28] is a scalable middleware
platform in which independent pub/sub servers are deployed in the cloud to handle data
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delivery for producers and consumers in latency-constrained environments. It provides
a scalable, load-balancing, topic-routing service among brokers inside the cloud for their
remote clients. Due to long delays when transferring data from clients to cloud brokers,
however, it cannot guarantee meeting the needs of delay-sensitive IoT applications. On
the other hand, edge pub/sub brokers are placed in isolated edge networks in PubSub-
Coord [29]. Therefore, messages exchanged among clients belonging to the same edge
network are routed through a common edge broker to reduce delays. In addition, routing
servers are deployed in the cloud to route messages among edge brokers. However, in this
system, how to exploit topic correlations among proximate edge brokers to further decrease
delays is not clearly addressed. Furthermore, with the development of edge computing,
the design of mechanisms for edge pub/sub brokers to dynamically communicate and
collaborate with each other to improve system performance is an open issue. Hence, in this
paper, we apply machine learning algorithms (collaborative filtering and density-based
clustering algorithms) to build a broker overlay network and to design an efficient coordi-
nation scheme for distributed pub/sub brokers to transmit event notifications in wide-scale
IoT systems.

3. The System Model

In this paper, we consider a pub/sub brokers model used in conjunction with an
essential edge-computing-based IoT architecture to enhance the data delivery capabilities
for large-scale IoT systems, as shown in Figure 1. IoT devices such as sensors, actuators, and
smart devices are positioned at the base layer. They periodically collect data, send them to
IoT gateways or pub/sub brokers, and act accordingly. With message delivery or pub/sub
client modules installed, the IoT devices are generally called IoT clients in our system; these
clients can be interconnected to exchange data among themselves or provide value-added
services to end users, usually via IoT gateways or pub/sub brokers with APIs provided.
The IoT gateways will gather and aggregate data from IoT devices, preprocess them, and
then send appropriate instructions so IoT devices can react accordingly. In addition, in a
general cloud-based IoT architecture, the gateways send complicated processing tasks and
forward the summarized/filtered data via pub/sub systems to cloud servers for further
analytics and long-term storage [30]; they also send the processed results back to the IoT
devices after receiving them from the cloud servers. By mainly relying on storage, message,
and process services from the cloud, however, this architecture may incur some problems,
such as high latency, excessive bandwidth consumption, and some privacy and security
concerns, etc. [30]. Therefore, the integration of the IoT and edge computing can alleviate
these issues by offering computation, message, and storage services in edge clouds [31].
In our model, pub/sub brokers are strategically deployed at the edge cloud tier, called
edge pub/sub brokers, to aggregate data from the IoT gateways for local data storage
and real-time data processing services. These brokers can also directly provide a message
delivery service for IoT clients in many IoT systems, as described in [15]. Furthermore,
we expand pub/sub brokers at the cloud tier, called cloud pub/sub brokers, to provide a
data relay service among edge broker clusters and far-end edge brokers, or to congregate
pre-processed/filtered data from edge brokers for long-term storage and deep analytics
in the cloud to extract further meaningful insights. In each cluster, the cluster head is the
only broker forwarding and receiving common topic data to/from a relay-cloud pub/sub
broker for other interested edge brokers. This method will help to save network bandwidth
consumption when transferring data among brokers and will reduce an edge broker’s node
degree (the number of connections to other edge brokers needed to exchange data). In our
proposed topic-based pub/sub system, each pub/sub broker maintains a control channel
with a coordinator to exchange topic channel information. In short, the coordination
component will keep track of information and topics that edge brokers publish or subscribe
to and will coordinate all brokers to link all topic channels in the system for data delivery.
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Figure 1. The system model.

3.1. The Topic Recommendation Procedure for Edge Pub/Sub Brokers

In this subsection, we describe procedures to apply machine learning techniques that
proactively predict with high probability future topics that edge brokers, on behalf of their
clients, may subscribe to. These recommended topics, then, will be included with the
brokers’ current topics to efficiently cluster the edge brokers into groups with similar topic
subscriptions and proximity coordinates.

Collaborative filtering (CF) methods have been widely applied in recommender sys-
tems (RSs) [32]. CF methods provide personalized recommendations to users based on
new user–item associations extracted from relationships between users and from interde-
pendencies among items, such as products, movies, etc. [33]. There are two primary CF
approaches: neighborhood models and latent factor models.

User-based neighborhood models deduce recommended items for users from a set of
frequently purchased/liked items of similarly like-minded individuals. This is based on the
assumption that users purchase/like items that are purchased/liked by other like-minded
users. In contrast, item-based neighborhood models focus on item similarities. From there,
the system suggests items that are similar to items in which the user has a high level of
interest [32].

Alternatively, latent factor models, such as those produced by Singular Value De-
composition (SVD) of the user–item interactions matrix, factorize the matrix into two or
more smaller matrices that represent the most useful information in a lower-dimensional
space. The idea behind this approach is that there exist latent features that describe the
relationships among items and users; by transforming both users and items to the same
latent space, the method can reveal latent factors that explain observed user–item inter-
actions [34]. Latent factor models offer improved prediction accuracy, flexibility, and
scalability for RSs [35]. In addition, to provide CF recommendations on implicit feedback
data, such as clickstreams, purchase histories, etc., that are abundant, easy to collect in
many systems, and that indirectly reflect user opinion about products/items, there exist
one-class CF algorithms [33,36]. With these advantages, we therefore apply collaborative
filtering methods to predict future topics that clients may subscribe to at each edge pub/sub
broker. Then, we add these recommended topics to edge brokers’ topic lists and perform
broker clustering based on topic similarities and geolocations.
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Assume that, in the system, we have a list of M pub/sub brokers and a list of N
topics. The subscription matrix is denoted by S ∈ RM×N , where element sbt denotes the
number of clients of broker b that subscribe to topic t, so sbt is zero if no client of broker
b subscribes to topic t. As with typical SVD models [37,38], we associate each broker b
with a broker-factors vector, xb ∈ RK, and we associate each topic t with a topic-factors
vector, yt ∈ RK. The goal here is to factorize matrix S into two matrices, BM×K and LN×K,
that yield the best approximation of S : S ≈ B · LT , and the approximate value of sbt is
calculated by an inner product, i.e., ŝbt = xT

b yt. When applying SVD methods for explicit
feedback datasets, we directly model only the registered subscriptions, and the model
would be:

min
x∗,y∗ ∑

sbt_is_known

(
sbt − xT

b yt

)2
+ λ

(
‖xb‖2 + ‖yt‖

2
)

. (1)

Here, λ is employed to regularize the model and avoid overfitting; parameters are
usually learned by gradient descent. However, in our system, it is impractical to collect
explicit feedback from clients about topic preferences. Instead, we just register which
brokers subscribe to which topics (i.e., represent for their clients), and we try to deal with
this implicit feedback to infer future topics that brokers may subscribe to with similar
likelihood. Furthermore, implicit feedback datasets have special characteristics (there
is no negative feedback, they are inherently noisy, etc.) that restrain us from directly
applying explicit feedback algorithms [33]. Therefore, we adapted the implicit feedback
CF techniques presented in [33] to solve our recommended topic problem by introducing
proper variables and modifying the problem formulation. Specifically, we bring in variable
pbt to indicate the likelihood of broker b subscribing to topic t. The pbt values are calculated
from the sbt values with confidence level cbt:

pbt =

{
1, sbt > 1
0, sbt = 0

cbt = 1 + αpbt

. (2)

Then, we transfer optimization problem (1), and the goal is to find factor vectors xb
and yt by minimizing the following loss function:

min
x∗,y∗∑

b,t
cbt

(
pbt − xT

b yt

)2
+ λ

(
∑
b
‖xb‖2 + ∑

t
‖yt‖

2

)
. (3)

With the Alternate Least Squares (ALS) approach, we fix the broker factors to optimize
the topic factors, and vice versa, to solve optimization problem (3). When fixing the
topic factor vectors and taking a derivative of (3), we obtain the following equation for
minimizing the loss function of our brokers:

xb =
(

YTCbY + λI
)−1

YTCbp(b). (4)

Here, Y is an N × K matrix that gathers all topic factors where values are randomly
initialized and are alternately updated. Cb is defined as the diagonal N × N matrix for
broker b, where Cb

tt = cbt, and vector p(b) ∈ RN stores all the preferences by broker b.
To make the matrix multiplications much less intensive, we use the fact that YTCbY =
YTY + YT(Cb − I)Y; therefore, we have the final broker factors vector as this equation:

xb =
(

YTY + YT(Cb − I)Y + λI
)−1

YTCbp(b). (5)

Alternately, by fixing the broker factor vectors, taking a derivative of (3), and using
the same technique used with the broker factors, we obtain the following equation for
minimizing the loss function of our topics:
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yt =
(

XTX + XT(Ct − I)X + λI
)−1

XTCtp(t). (6)

In Formula (6), X is an M× K matrix that gathers all broker factors where values are
also randomly initialized and are alternately updated. Ct is defined as the diagonal M×M
matrix for topic t, where Ct

bb = cbt, and vector p(t) ∈ RM stores all the preferences for topic
t. In our experiments, we set α = 15 and λ = 0.1, these are common parameter settings
in CF algorithms according to [32]. By repeating the process of alternately computing
Equations (5) and (6) until we reach the expected matrix approximation of S, we obtain
one broker factor matrix and one topic factor matrix, called B and L, respectively. These
matrices give us topic-prediction scores for each broker b and the topic list:

topic_prediction_scores = Bb · LT . (7)

With topic-prediction scores provided for edge brokers, we recommend to each broker
a list of topics with the highest predicted scores (the number of recommended topics is,
say, 10% of the broker’s topic number). Then, we perform edge broker clustering based
on the updated topic lists, including recommended ones, as well as their coordinates, as
described in the next subsection.

3.2. The Hierarchical Pub/Sub Brokers Process for Data Delivery

In this subsection, we describe the data delivery process of the hierarchical pub/sub
brokers, and we reveal how Edge-Cloud pub/sub brokers are coordinated to fulfill the task
of transferring end-to-end event notifications for distributed IoT clients.

Assume that at time T the system needs to perform edge pub/sub broker clustering for
data delivery enhancement. As shown in Figure 2, the coordination module of the system
makes topic recommendations to edge brokers, as described in Section 3.1, and clusters
these brokers with the HDBSCAN algorithm [39] into different groups based on their topic
similarities. HDBSCAN is a density-based clustering algorithm that provides a clustering
hierarchy from which a simplified tree of outstanding clusters can be constructed [39]. We
apply this algorithm to cluster our edge brokers using cosine similarity for the pairwise
distance metric between brokers, with the minimum cluster size set to five. As a result, we
receive a collection of significant broker clusters and some noise, called sporadic brokers,
that does not belong to any cluster. Then, these clusters are refined in another clustering
round to gather only edge brokers with location proximity into a common cluster based on
their coordinates. After all that, we obtain a list of clusters where edge brokers with similar
topic subscriptions and that are located close to each other are put into the same cluster. In
each cluster, we choose as the cluster head an edge broker where the coordinates are nearest
the center of the cluster. These cluster heads will connect with their relay cloud pub/sub
brokers for data delivery among clusters in the system. Likewise, sporadic brokers will
exchange data on topics of common interest to other sporadic brokers or broker clusters
via their relay cloud brokers.

After clustering edge brokers, coordination servers provide the edge brokers with
cluster information, such as the cluster head locator (IP address and port number), cluster
members’ locator, lists of joint topics, etc. This information will help edge brokers to set
up connections among themselves in each cluster for direct data exchange on topics of
common interest. In order to link topics that have publishers and subscribers belonging
to different clusters, we select the most suitable cloud pub/sub broker for each cluster
head to relay messages for that cluster, called the relay cloud broker. The best-fit cloud
broker selection for each cluster head is based on subscribe utility scores between cluster
head hi (heading up cluster i), and each cloud broker, cj, in the group of cloud pub/sub
brokers, C, as shown in Formula (8), which is inherited from a similar formula in previous
work [40,41]:
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subcribe_Utility(hi, cj, C) =

∣∣∣subs(hi) ∩ subs(cj)
∣∣∣

|subs(hi)|
− β ∗

∣∣∣subs(cj)
∣∣∣

|subs(C)| . (8)

Here, subs(hi) denotes the topic subscription list of cluster i, for which hi is the cluster
head, subs(cj) denotes the topic subscription list of cloud broker cj, and subs(C) denotes all

the subscribed topics of the cloud pub/sub brokers. In addition, |subs(hi)∩subs(cj)|
|subs(hi)|

represents
the topic subscription similarity between cluster i and cloud broker cj. The more similar
the subscribed topics they share, the better the topic routing efficiency in the system. The

expression |subs(cj)|
|subs(C)| is added to consider the workload of cloud broker cj in correlation to

other cloud brokers. This helps to balance the load among cloud pub/sub brokers while
relaying event notifications among clusters in the whole system.

Topic Recommendations
for Edge Pub/Sub Brokers

Clustering Edge
Pub/Sub Brokers

Coordinator

Routing messages
among clusters

Edge Pub/Sub Broker

[sporadic][clustered]

Routing messages
inside a cluster

Cloud Pub/Sub Broker

Relay messages
among clusters

Update routing
information

Bridging topic
channels

Inform brokers
about channels

Figure 2. The process for hierarchical data delivery.

With the cluster information provided, edge brokers in each cluster directly deliver
data on intra-cluster topics, and they forward event notifications about inter-cluster topics
to their cluster heads. In turn, the cluster heads forward the events to the assigned cloud
pub/sub brokers for relay to clusters that subscribe to the topics of interest. To do that, the
relay cloud broker needs to consult the coordination server for routing information. Then,
the coordinator will find joint topic channels, inform the involved relay cloud brokers
about the common channels bridging the topics, and will update routing information in
the database.

4. Coordination Procedures to Bridge Joint Topics among Broker Clusters

With the establishment of the hierarchical structure of Edge-Cloud pub/sub brokers
described in Section 3, our pub/sub system can efficiently provide data delivery services
to geographically distributed IoT clients. Data delivery among IoT clients is performed
as follows. (1) Data are organized as a collection of topics in the system. (2) In each
topic channel, IoT publishers will periodically collect/sense data and send them to the
responsible pub/sub brokers. (3) IoT subscribers or applications will subscribe to topic
channels of interest to receive relevant event notifications via their responsible brokers.
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(4) Each Edge-Cloud pub/sub broker has a coordination module to communicate with
a responsible coordinator in the cloud to exchange control information. (5) In turn, the
coordinators will help link all topic channels from distributed pub/sub brokers in the
whole system. In order to fulfill coordination tasks, the coordinators need to conduct
primary interactions with pub/sub brokers as follows:

• As a new topic is published or subscribed to by IoT clients, the responsible pub/sub
broker instantly informs the coordinator about the event.

• The coordination module performs the functions of clustering edge brokers, sending
information about clusters to the related brokers. This information is also stored in a
coordination database shared among coordination servers and is updated immediately
when there are changes in the system.

• The coordination servers maintain cluster information, such as broker members,
cluster heads, joint topic channels, which clusters publish and/or subscribe to which
topics, and information about the clusters’ relay cloud brokers. In addition, they also
maintain routing information to and from relay cloud brokers to trigger inter-cluster
topic bridging when necessary.

• If a pub/sub broker receives a Publish message on a new topic, it promptly notifies
the responsible coordinator to bridge with other publish brokers, if available. If
publishers already exist for the topic in the same cluster as the new publishing broker,
the coordinator will inform all publish brokers in the cluster about the new broker to
advise them to subscribe to each other for future event notifications. If the publishing
topic is new to the cluster the broker belongs to, and the topic’s publishers exist in
other clusters, the coordinator will instruct all relevant relay cloud brokers to link the
topic in the related clusters.

• If a pub/sub broker receives a Subscribe message on a new topic, it needs to receive
all relevant event notifications on the topic from the whole system. Therefore, the
broker notifies its coordinator responsible for subscription information. If the topic’s
publishers are in the same cluster as the new subscribing broker, the coordinator will
provide all intra-cluster publish brokers’ locators to the new broker to subscribe to
the topic channel. If the subscribe topic is new to the cluster that the broker belongs
to, and that topic’s publishers exist in other clusters, the coordinator will instruct the
cluster’s relay cloud broker to subscribe to all related publishing clusters’ relay cloud
brokers in order to receive and forward all topic event notifications.

4.1. Bridging Joint Publish Topic Channels among Broker Clusters

In our hierarchical Edge-Cloud pub/sub brokers system in Figure 1, all distributed
IoT clients playing data producer or publisher for each topic channel need to be linked as
a single domain to deliver event notifications on the topic in the system. Therefore, new
topic publication information is provided and processed at the corresponding pub/sub
broker, the cluster head, and the relay cloud broker under instructions from the coordinator.
Figure 3 shows the sequence diagram for coordinative processing of a new Publish topic
message when the responsible broker receives notice from its client. In addition, the
coordinator implements Algorithm 1 to handle the bridging process. Table 1 lists the
main variables used in Algorithms 1 and 2 and their brief descriptions; the core of the
coordinative procedure is as follows:

• When a pub/sub broker receives a Publish message on a new topic, A, from its client,
the broker adds the sender to its Publisher list and promptly informs the coordinator
to bridge the topic channel if necessary.

• If topic A is new to the system (i.e., being the first broker to publish the topic), the
responsible coordinator adds the new publish broker to the Publisher_Table and sends
instructions to interested brokers in the Pending_Table, if available, to subscribe to
the topic.

• If topic A already has publishers in the system, the coordinator needs to find out the
cluster the new publish broker belongs to in order to determine whether the topic
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is new in that cluster or not and to retrieve the cluster’s information, such as the
cluster head locator, the relay cloud broker identification, etc. If publishers of the
topic already exist in the cluster, the coordinator asks the previous publish brokers to
subscribe to the topic channel of the new broker, and vice versa. The coordinator adds
the new member to the Publisher_Table in the coordination database. Otherwise, the
informing broker’s cluster has the first publisher of topic A, but some other clusters
may already have publishers of that topic. The coordinator needs these relevant
clusters to join the new topic A channel. In order to do that, the coordinator looks
for all clusters publishing topic A and navigates to their relay cloud brokers. After
that, the coordinator instructs the new publish cluster to bridge to existing publish
channels of topic A. The cluster head subscribes to topic A from the new broker to
forward related messages to the relay cloud broker. The involved relay brokers, in
turn, subscribe to topic A to receive and forward the topic’s event notifications.

Table 1. Variables used in Algorithms 1 and 2 and their brief descriptions.

Variable Name Description

tp_Id Topic identification
brk_Id Broker identification
pls_Tb Publisher_Table, stores information on topics’ publish brokers
scr_Tb Subscriber_Table, stores information on topics’ subscribe brokers
pd_Tb Pending_Table, stores information on topics’ pending brokers
cls_Tb Cluster_Table, stores a cluster’s information: cluster head, cluster members,

publish/subscribe topics, cluster relay broker
cls_Id Cluster identification
rlCB_Id Relay cloud broker identification
clsH_Id Cluster head identification
pd_Scr Saves information on pending subscribers to a topic
p_Brk Peer brokers, saves intra-brokers of a topic
rl_Brk Relay brokers, saves topics’ relay brokers

Algorithm 1 Bridging joint Publish event notifications among broker clusters.

Function: coordinateJointPublishTopic(tp_Id, brk_Id, pls_Tb, pd_Tb, cls_Tb):
1: if (! tp_Id is in pls_Tb ) then
2: addPublisher(tp_Id, brk_Id, pls_Tb);
3: if (tp_Id is in pd_Tb ) then
4: pd_Scr = findPendingSubscribers(tp_Id, pd_Tb);
5: inform_to_subscribe(tp_Id, pd_Scr);
6: end if
7: else
8: cls_Id, clsH_Id, rlCB_Id = findClusterInfo(tp_Id, brk_Id, pls_Tb, cls_Tb);
9: if ( tp_Id is in cls_Id’s pls_Tb ) then

10: addPublisher(tp_Id, brk_Id, pls_Tb);
11: p_Brk = findIntraBrokers(tp_Id, cls_Id, pls_Tb);
12: inform_Bridging(tp_Id, p_Brk, p_Brk);
13: else
14: addPublisher(tp_Id, brk_Id, clsH_Id, pls_Tb);
15: rl_Brk = findInterBrokers(tp_Id, pls_Tb, cls_Tb);
16: inform_Bridging(tp_Id, brk_Id, clsH_Id);
17: inform_Bridging(tp_Id, clsH_Id, rlCB_Id);
18: inform_Bridging(tp_Id, rlCB_Id, rl_Brk);
19: end if
20: end if
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Algorithm 2 Bridging joint Subscribe topic channels among broker clusters.

Function: coordinateJointSubscribeTopic(tp_Id, brk_Id, scr_Tb, pls_Tb, pd_Tb, cls_Tb):
1: if (! tp_Id is in pls_Tb ) then
2: addSubscriber(tp_Id, brk_Id, pd_Tb);
3: else
4: cls_Id, clsH_Id, rlCB_Id = findClusterInfo(tp_Id, brk_Id, scr_Tb, cls_Tb);
5: if ( tp_Id is in cls_Id’s scr_Tb ) then
6: addSubscriber(tp_Id, brk_Id, scr_Tb);
7: p_Brk = findIntraBrokers(tp_Id, cls_Id, pls_Tb);
8: inform_Bridging(tp_Id, brk_Id, p_Brk);
9: else

10: addSubscriber(tp_Id, brk_Id, clsH_Id, scr_Tb);
11: rl_Brk = findInterBrokers(tp_Id, scr_Tb, cls_Tb);
12: inform_Bridging(tp_Id, rlCB_Id, rl_Brk);
13: inform_Bridging(tp_Id, clsH_Id, rlCB_Id);
14: inform_Bridging(tp_Id, brk_Id, clsH_ID);
15: end if
16: end if

alt

alt

Publish message on 
 a new topic 'A'

Coordinator

[else]

[topic 'A' exists in the cluster]

Edge Pub/Sub
Broker

add the sender to the publisher list

Cloud Pub/Sub
Broker

Cluster Head
Broker

ask to bridge to topic 'A'

[topic 'A' is new in the system]

[else]

update Publisher_Table

ask pending brokers to subscribe topic 'A'

locate the broker's cluster

update Publisher_Table

ask the related brokers in the cluster to bridge to topic 'A'

bridge to topic 'A'
ask to bridge topic 'A'

bridge to topic 'A'
ask to bridge to topic 'A'

bridge to topic 'A'

find all clusters publishing topic 'A'

inform related clusters  
to bridge to topic 'A'

send information on new publish broker for topic 'A'

Figure 3. Sequence diagram for bridging joint Publish topic channels.

4.2. Bridging Joint Subscribe Topic Channels among Broker Clusters

In this subsection, we describe how to link joint Subscribe topic channels among dis-
tributed brokers in our hierarchical pub/sub system. Similar to Publish, when receiving a
new Subscribe message on a new topic from its clients, the responsible broker is compelled
to receive all event notifications from all of the topic’s data producers that may belong to
different clusters in the system to forward the germane data to interested clients. Therefore, it
is necessary to coordinate all related brokers to fulfill this task under instructions from the
coordinator. Figure 4 shows the sequence diagram for this coordinative procedure, and the
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coordinator implements Algorithm 2 to handle the Subscribe bridging process. The main
interactions between involved brokers and coordination servers are described as follows:

• When a pub/sub client subscribes to new topic B, its broker needs to promptly inform
the coordinative server to trigger joining the Subscribe topic channel process.

• The coordinator checks for any publishers of the topic in the system. If there are no
publishers for the topic, the coordinator puts the requesting broker on a waiting list,
called Pending_Table, and the broker will be notified later when a new publisher of
the topic exists.

• If topic B already has publishers in the system, the coordinator needs to determine
the cluster the new subscribe broker belongs to and must ascertain whether the
topic’s publishers exist in that cluster or not to retrieve the cluster’s information, such
as the cluster head locator, the relay cloud broker identification, etc. If the topic’s
publishers already exist in the cluster, the new subscribe broker just needs to subscribe
to the topic channel from all intra-cluster publish brokers with the coordinative
information received from the coordinator. The coordinator adds the new member to
the Subscriber_Table in the coordination database. Otherwise, the informing broker’s
cluster has the first subscriber to topic B, but some other clusters might already
have that topic’s publishers, so the coordinator asks the new subscribe cluster to join
the topic B subscribe channel. This is obtained by retrieving from the coordination
database all clusters publishing topic B and navigating to their corresponding relay
cloud brokers. Then, the coordinator asks the new subscribe cluster to bridge to the
existing channels of topic B. The relay cloud broker subscribes to the topic from other
relay publishing brokers. The cluster head subscribes to topic B from the relay broker
in order to forward related messages to the new broker. In turn, the new subscribe
broker needs to subscribe to topic B from its cluster head to receive all relevant event
notifications afterward.

alt

alt

Subscribe message on 
 a new topic 'B'

Coordinator

[topic 'B' exists in the cluster]

[else]

Edge Pub/Sub
Broker

add the sender to the subscriber list

Cloud Pub/Sub
Broker

Cluster Head
Broker

ask to bridge to topic 'B'

[topic 'B' is new in the system]

[else]

ask to bridge to topic 'B' from publisher brokers in the cluster

ask to bridge to topic 'B'
bridge to topic 'B'

ask to bridge to topic 'B' 
 from related clusters

bridge to topic 'B'  
from the related clusters

send information on new subscribe broker for topic 'B'

locate the broker's cluster

add the broker to Pending_Table

update Subscriber_Table

find all clusters publishing topic 'B'

                                                                              bridge to topic 'B'

bridge to topic 'B' from  
the publisher brokers in the cluster

Figure 4. Sequence diagram for bridging joint Subscribe topic channels.
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5. Performance Evaluations and Discussion

In this section, we describe simulation scenarios and present experiment results
to verify the correctness of the proposed model and algorithms. We implemented our
hierarchical pub/sub system using Python and SimPy [42], a process-based discrete-event
simulation framework. We modeled pub/sub clients and brokers as processes in SimPy,
which are defined by Python generator functions. These pub/sub components interact
with each other according to the coordinative protocols presented in Section 4. In our
experiments, we used approximately 3350 Starbucks store locations (latitude and longitude)
belonging to different cities in the United States of America as a coordinate pool for pub/sub
brokers [43]. We assume the round-trip time (RTT) delay between any two brokers is a
random variable with the mean is proportional to their geographical distance. Furthermore,
we assume that RTTs between two cloud brokers are uniformly distributed with U[1,2]
milliseconds (ms). We also assume the RTTs between IoT devices and their responsible
edge brokers are uniformly distributed with an average delay of 4 ms. In all our simulation
scenarios, each pub/sub broker is responsible for forwarding a list of topics, in which
80% of the topics are initialized in the bootstrap period, and the other 20% are chosen
at run time. We instantiated one publisher and 10 subscribers per topic for each broker.
Each publisher produced a 64-byte message in every simulation time unit (TU), and each
simulation run time lasted 15 time units, in which we reserved five TUs at the beginning
for topic selection and bootstrap procedures, and counted messages for the last 10 TUs.
Here, we define three essential metrics to evaluate our proposal in different scenarios and
to compare it with other related approaches.

• Average Delivery Latency (ADL): This value is calculated based on end-to-end mes-
sage delivery delay from publishers/producers to subscribers/consumers on all tested
topic channels in each scenario:

• Average Forwarding Traffic (AFT): To link joint topic channels, pub/sub brokers need
to forward data packets of the channels to each other. The AFT value is defined as
the ratio of total number of data packets forwarded among brokers to all data packets
sent by brokers. This value helps in assessing the efficiency of bridging topics among
brokers in the system.

• Node Degree (ND): A broker’s node degree is the number of connections to other
brokers needed to exchange data on joint topic channels. This value reflects the
resources brokers use to maintain topic overlays for data delivery.

5.1. Evaluation of Scaling the Topic Subscriptions

In this simulation scenario, we varied the number of topics for processing/forwarding
by each pub/sub broker in order to observe the performance through the essential metrics
mentioned above (ADL, AFT, and ND). We deployed 100 brokers with coordinates ran-
domly selected from the location pool; we also created a pool comprising 1000 topics. Each
broker handled 100, 150, and 200 topics for each simulation run time. These topics, selected
from the 1000-topic pool in a distribution following Zipf’s law, were sent to each broker.

Figure 5 shows the impact on the overall delivery latency and relay traffic of the
system from varying the number of topics per pub/sub broker. When we increased the
topic workload per broker from 100 to 150 to 200 topics, the ADL slightly rose from about
48.56 ms to 49.36 ms to 53.42 ms, respectively. Similarly, AFT experienced a small increase
from about 6.32% up to 7.03% of the forwarding traffic of all brokers. The numbers for ADL
and AFT prove that brokers in our proposed pub/sub system can maintain low delivery
latency and small amounts of relay traffic while scaling up the workloads of the brokers.

We also counted the brokers’ node degree (ND) in the experiment to assess how
well the system worked in terms of scalable node degrees. Figure 6 shows the histogram
and probability density of broker node degrees while scaling up the workloads of the
pub/sub brokers. As clearly shown in the figure, our proposal maintains low node degrees
quite well, even though the topic workload was expeditiously raised from 100 to 150 to
200 topics per broker. Specifically, a large percentage of brokers had a node degree of 10
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or less, but most brokers had a node degree under 25, and just a small number of brokers
experienced a node degree above 30. Therefore, together with low delivery latency and
small amounts of relay traffic among brokers, we affirmed that our clustering strategy can
provide scalable node degrees when increasing brokers’ workloads. This is very useful for
deploying pub/sub systems to support large-scale IoT applications.
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Figure 5. Data delivery latency and relay traffic from varying the number of topic subscriptions.
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5.2. Evaluation of a Multi-Modal Topic Subscription Model

To evaluate the effect of topic correlations among brokers on the event notification
performance of the pub/sub system, we implemented a multi-modal topic subscription
model inspired by Wong et al. [44]. In this experiment, we instantiated 100 brokers with
their locations randomly selected from the coordinate pool. We also created a 1000-topic
pool to set 100 topics per broker as their topic workloads for this scenario. We varied topic
correlations generated by the multi-modal model among the brokers to observe their data
delivery performance as follows:

• The topic space was divided into n categories, or modes.
• Each broker uniformly chose p modes out of n at random.
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• The ratios for p/n were fixed at 0.1 and 0.2; we varied p and n to change topic
correlation levels. Specifically, with p = 1, n = [10, 5] and with p = 5, n = [50, 25].

• One hundred topics were selected from these p categories, distributed following Zipf’s
law (distribution parameter a = 1.2), for each broker.

As seen in Figure 7, both ADL and AFT decreased when topic correlations between
brokers increased in the simulation. Note that in this multi-modal model setup, the most
correlated case was when p = 1 and n = 10, and the least correlated case was when p = 5
and n = 25. Specifically, in the best case, ADL was 42.9 ms and AFT was about 3.81%.
With these low delivery-latency and small relay-traffic values, we can justify saying our
clustering scheme can take advantage of topic similarities and proximity locations among
brokers to efficiently cluster them for data dissemination. However, we need to assess
the brokers’ node degrees to confirm that the proposed system can function well without
overloading pub/sub brokers.
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Figure 7. Delivery latency and relay traffic in the multi-modal model experiment.

Figure 8 shows the probability density of the brokers’ node degrees in the multi-modal
model setup. In Figure 8, a majority of brokers had a node degree less than 10 in all of the
multi-modal topic subscription modes. In addition, it is clear from the figure that only a
handful of brokers had a node degree more than 15 and less than 20. We therefore assert
that our pub/sub system can support low delays and provide little relay traffic, along with
scalable brokers’ node degrees in the experiment settings.

5.3. Scalability Evaluation

This subsection presents the scalability results of our pub/sub scheme and compares
them with other schemes sharing approaches akin to it. The scalability experiment consisted
of multiple simulation run times, where the number of brokers increased from 100 to 500
in increments of 100. The coordinates of these brokers were randomly selected from the
coordinate pool mentioned previously. Each broker was responsible for 100 topic channels,
in which clients selected 70% of the topics locally and chose the other 30% from outside
publishing brokers in a distribution following Zipf’s law. By doing it this way, we observed
the capability of the pub/sub systems in dealing with many-to-many communications
among the publishers and subscribers belonging to distributed brokers. We collected
approximately 290 million end-to-end messages to measure performance metrics, i.e.,
delivery latency (ADL), relay traffic (AFT), and brokers’ node degrees (ND).



Sensors 2021, 21, 8232 16 of 21

0 5 10 15 20
Node Degrees

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity

Categories of p/n
ND_p1_n10
ND_p1_n5
ND_p5_n50
ND_p5_n25

Figure 8. Density of brokers’ node degrees with multi-modal topic subscriptions.

For comparison with other similar approaches, we implemented an Edge-Cloud
pub/sub scheme motivated by An et al. [29] known as PubSubCoord-alike. In this scheme,
edge brokers deployed in isolated networks handle data delivery for adjacent pub/sub
clients, and a group of cloud brokers manages the routing service so edge brokers can link
to all topic channels of the system. We assumed that the RTTs between edge brokers and
cloud brokers are uniformly distributed, where the mean delay is the average delay among
edge brokers calculated from the coordinate pool. In addition, we compared the new
proposal with our previous Edge-Cloud pub/sub overlay work [41] called EC-Overlays.
In EC-Overlays, there is an overlay network for each topic, which includes many publish
broker clusters forwarding topics’ published events, and the cluster heads connect to each
other to link to the topic as a single domain for data delivery. Figures 9–11 show the
experiment results.
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As shown in Figure 9, our proposal has ADLs much better than the PubSubCoord-alike
scheme in all test cases. Specifically, our proposal’s ADL, on average, is approximately 66%
of PubSubCoord-alike’s ADL. In the test case with 500 brokers, for example, our ADL value
is 49.49 ms while that of PubSubCoord-alike is 73.38 ms. Our proposal achieves superior
ADL results because the clustering procedures can take advantage of topic similarities and
geolocation proximity among edge brokers to congregate them into fitting clusters. As a
result, edge brokers can directly exchange joint topic data inside a cluster to reduce latency.
Conversely, in the PubSubCoord-alike approach, data exchanged among edge brokers is
usually sent and received through a cloud broker. Therefore, it causes sizeable delays for
end-to-end data delivery. Furthermore, as clearly shown in Figure 9, although we increased
the number of brokers from 100 to 500 by 100 each time, our proposal’s ADL experienced
just a trivial rise, from 44.05 ms to 49.49 ms.

Although our method attained great results in terms of ADL, the EC-Overlays method
achieved even better results. In addition, EC-Overlays prevailed over the other approaches
in all test cases. In particular, the EC-Overlays’ ADL was merely 36.05 ms and 39.31 ms
for test cases with 100 and 500 brokers, respectively. The reason for this excellent result
is that the EC-Overlays approach takes advantage of many direct connections between
edge brokers to serve up data transmissions. Consequently, the pub/sub brokers in EC-
Overlays may consume much of the resources in order to maintain topic overlay networks,
which can cause scalability problems for the system. Therefore, we counted ND in the
experiment to evaluate this issue. Figure 10 plots the broker node degrees in our proposal
and EC-Overlays when varying the number of brokers. From the graph, it is clear that
EC-Overlays had very high broker node degrees in all test cases. That means brokers in EC-
Overlays need to consume a lot of resources to maintain the topic overlay networks for data
delivery. Take the case of 500 brokers, for example—most of the brokers in EC-Overlays
experienced node degrees of more than 150, whereas our proposal’s broker NDs were less
than 100. In short, our proposal strikes a good balance between data delivery latency and
system scalability. This is an extremely important feature for IoT systems functioning on a
large scale.

The relay traffic performance of the three approaches when varying the number of
brokers is shown in Figure 11. We observe that our proposal performed the best in terms
of AFT in all cases considered, about 7.77% on average. By contrast, PubSubCoord-alike
scored the worst in all the cases examined. For example, with 300 brokers, our proposal’s
AFT was 8.08% while PubSubCoord-alike’s was 9.54%.

6. Conclusions

This paper presented a hierarchical Edge-Cloud pub/sub brokers model to support
data delivery with low latency and high scalability for wide-scale IoT systems. In our
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model, we apply implicit collaborative filtering techniques to predict future topics of
brokers in order to proactively cluster brokers based on topic similarities and proximity.
Then, topic channel routing is conducted via a two-layer routing scheme, i.e., intra-cluster
and inter-cluster procedures. Inside a cluster, pub/sub brokers directly exchange data with
each other. For joint topics among broker clusters, cluster heads route event notifications to
their relay cloud brokers for data delivery among the clusters involved.

Simulation results prove that our proposed model can provide data delivery with low
latency and small amounts of relay traffic while maintaining scalable broker node degrees
under a variety of simulation settings, such as varying the number of topic subscriptions
and dealing with multi-modal topic subscriptions. In comparison with other similar
approaches, our proposal outperformed PubSubCoord-alike in terms of both latency and
relay traffic. In addition, our solution achieved balance among ADL, AFT, and ND, which
is critical for system scalability when applied to wide-scale IoT applications.

Although our simulation-based experiments verify and validate the correctness of
the proposed model and algorithms, additional cost metrics need to be considered, such
as computing, storage, and networking costs. Along with these metrics’ consideration,
we will develop the hierarchical brokers model on an emulated Edge-Cloud testbed and
provide an efficient solution of the best-fit cost-performance trade-off for wide-scale IoT
application deployments in our future work.
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