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Abstract: The model-based gait analysis of kinematic characteristics of the human body has been used
to identify individuals. To extract gait features, spatiotemporal changes of anatomical landmarks
of the human body in 3D were preferable. Without special lab settings, 2D images were easily
acquired by monocular video cameras in real-world settings. The 2D and 3D locations of key joint
positions were estimated by the 2D and 3D pose estimators. Then, the 3D joint positions can be
estimated from the 2D image sequences in human gait. Yet, it has been challenging to have the
exact gait features of a person due to viewpoint variance and occlusion of body parts in the 2D
images. In the study, we conducted a comparative study of two different approaches: feature-based
and spatiotemporal-based viewpoint invariant person re-identification using gait patterns. The first
method is to use gait features extracted from time-series 3D joint positions to identify an individual.
The second method uses a neural network, a Siamese Long Short Term Memory (LSTM) network with
the 3D spatiotemporal changes of key joint positions in a gait cycle to classify an individual without
extracting gait features. To validate and compare these two methods, we conducted experiments
with two open datasets of the MARS and CASIA-A datasets. The results show that the Siamese
LSTM outperforms the gait feature-based approaches on the MARS dataset by 20% and 55% on the
CASIA-A dataset. The results show that feature-based gait analysis using 2D and 3D pose estimators
is premature. As a future study, we suggest developing large-scale human gait datasets and designing
accurate 2D and 3D joint position estimators specifically for gait patterns. We expect that the current
comparative study and the future work could contribute to rehabilitation study, forensic gait analysis
and early detection of neurological disorders.

Keywords: markerless; vision-based; machine learning; person re-identification; gait; gait analysis;
motion capture; siamese neural networks

1. Introduction

Human gait is a noninvasive biometric feature that can be perceived from a distance,
and contact with subjects is not required [1]. There have been mounting studies that show
that the individuality of a subject is embedded in their gait, comprising spatiotemporal
features of the ankle, knee, pelvis, and trunk [2–5]. Yet, extracting dynamic gait patterns
is challenging because spatiotemporal gait representations are not easily acquired in real-
world settings. In general, two main approaches were taken for gait-based identification,
namely model-free (appearance-based) and model-based methods [6]. Model-free ap-
proaches are to identify an individual using one’s silhouette, clothes, anthropometrics, etc.
Even with very high accuracy, using appearances has many disadvantages. Appearance-
based methods must assume a subject wears unique clothes from others and works only
in similar time frames when a subject does not change clothes. Using silhouettes or Gait
Energy Image (GEI) [7] can mitigate the aforementioned problem. However, GEI inherently
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depends on shape and movement. Thus, it suffers from viewpoint variance unless a system
provides all direction reference datasets. Model-based approaches consider the kinematic
characteristics of gaits. To acquire such characteristics, the identification of anatomical land-
marks is a prerequisite. Once the landmarks (key joint positions) are identified successfully,
model-based approaches do not suffer from appearance variance. Model-based approaches
can be further categorized as marker-based and markerless. Optoelectronic marker-based
systems such as Vicon Nexus are much more accurate and viewpoint invariant. Yet, they
require specially designed and carefully configured camera settings in a lab and markers
on a subject. These limitations prevent us from using the system in real-world settings such
as outdoor sports activities. Thus, there have been mounting efforts to develop markerless
systems [8]. Earlier works in this lineage were not very successful due to large errors of the
hip, knee, and ankle angles in their abduction/adduction/flexion/extension. As machine
learning-based computer vision technologies emerge, the accuracies of markerless systems
have been improved [8]. Also, much research has been done using RGB-depth camera such
as Microsoft Kinect and Intel RealSense to extract kinematic information [9–14]. Using
depth data in extracting kinematic information is beneficial to improving accuracy. But
RGB-depth cameras have a short ideal range (less than 5 m) for depth, so they are not
common in real-world environments. According to an in depth review of markerless
systems [8], most of the currently available ones are still laboratory-based or have some
limitations in capture environments. Thus, in real-world settings, both marker-based and
current markerless systems are not feasible options. Yang’s work on the kinematic research
of swim-start on a start block can be a good example [15].

To address the aforementioned problems, we propose a novel approach where neural
network-based machine learning technologies are used to infer 3D key joint positions in
2D video image sequences and extract gait cycles to re-identify a person.

The overall system is depicted in Figure 1. There are two subsections in the system.
First, 2D/3D joint estimators are to infer key joint positions in 3D from images to extract
kinematic information of a subject. Second, spatiotemporal 3D key joints are fed to two
different person re-identification methods: gait feature-based and spatiotemporal-based.
The gait feature-based approach is to extract all possible feature values representing a
person’s gait (see Section 3.5.3 for more details on gait feature sets). Then, the feature
values are used to train decision tree-based classifiers that identify a person based on the
gait features. The feature-free spatiotemporal method does not extract any gait features
but only uses spatiotemporal changes of 3D key joints over time. The spatiotemporal data
are used to train a recurrent neural network to classify a person’s gait.

The main objectives of the current study are threefold: (i) a design proposal of mark-
erless vision-based gait analyses, (ii) validations of the proposed gait analyses in person
re-identification, and (iii) a comparative study of classifiers in both feature-based gait
pattern and spatiotemporal joint position-based gait patterns.
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Figure 1. System Overview. The proposed system has two sub-sections: 3D pose estimator from
2D video input (top), gait feature extractor and classifier, and time-series-based Recurrent Neural
Network (RNN) classifier (bottom). (a) 2D input video, (b) 2D pose estimator, (c) extracted 2D joint
points with skeletal data of human pose, (d) 3D pose estimator, (e) 3D joint points, (f) processed
3D joint points, (g) gait feature extractor, (h) gait feature sets, (i) classifier based on gait features,
(j) classified individual, (k) RNN trainer using spatiotemporal joint data, (l) trained RN model,
(m) classifier using the RNN model, and (n) identified individual.

2. Related Work

In this section, we explore gait analyses, person re-identification, and vision-based
key joint estimation.

2.1. Gait Analysis

To identify an individual by analyzing gait patterns, two main categories of research
have been conducted: model-free and model-based approaches. One of the commonly
used methods in model-free approaches is to extract human silhouettes from videos over
one gait cycle and superimpose them, which is known as GEI. However, due to the body
shape dependency, the approach is vulnerable to appearance changes [16]. In this category,
to achieve viewpoint invariance, Das Choudhry and Tjahjadi [17] proposed to use a two-
phase method based on GEI. In the first phase, candidates are filtered out using entropy.
They then performed shape analysis afterward to ensure robustness to clothing variations.
Zend and Wang [18] used periodic deformation of binarized silhouette models to achieve
viewpoint-invariance. Yet, the gait dynamics of an individual observed in several different
views must be available, which is not feasible in real-world settings.

The model-based approaches use the kinematic characteristics of the human body.
Bouchrika and Nixon proposed to parameterize the motion of human joints using the
elliptic Fourier descriptors [19]. The experimental results were from only the sagittal
view of human walking patterns. Thus, this method will suffer from viewpoint changes.
To achieve viewpoint invariance in model-based approaches, researchers used RGB-D
cameras to capture 3D joint positions. Andersson and Araújo extracted anthropometry and
gait features from the data acquired via Microsoft Kinect [10]. Sinha et al. used skeleton
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information using Kinect to identify a person and a neural network in feature selection
and classification [11]. Ahmed et al. proposed a 3D gait recognition system utilizing
Kinect skeleton data and reported that the fusion of joint relative distance and angle
showed promising results [12]. Another 3D gait recognition method was proposed by [20]
where dynamic time warping (DTW) was utilized to achieve the identification. Jiang et al.
also used DTW with Kinect skeleton features but used the nearest neighbor classifier to
maximize accuracy in real-time [13]. Sun et al. proposed a view-invariant gait recognition
scheme where Kinect skeleton data were investigated in terms of static and dynamic
features [14]. Despite recent active research in model-based gait analysis using RGB-D
sensors, using such special cameras is not feasible in real-world applications since most
available video clips are taken by a single RGB camera. Even if RGB-D sensors were
available and captured human gait patterns, the reliable distance of depth data from such
sensors is less than 5 m, which cannot be used in capturing depth data of human body
joints in the distance.

Compared to previous model-free and model-based approaches, our model-based
gait analysis approach can achieve viewpoint invariance. Gait features will be extracted
from 3D joint positions and changes in time. Therefore, person re-identification using gait
patterns can be reliably conducted with spatiotemporal changes of human body joints.
Appearance changes cannot be a problem as well in our proposed method since we only
use anatomical landmarks of the human body.

2.2. Person Re-Identification

Person re-identification can be seen as multi-camera tracking. Given a person’s image,
the re-identification aims to find the same person who appears over a network of cameras.
Due to the changes in the lighting condition, view-angle, size of the person, and possibly
different outfits, person re-identification is not a trivial problem. Figure 2 shows examples
of pedestrians where each column has the same person, but colors look different in other
lighting conditions. We cannot rely on GEI-based model-free approaches since the silhou-
ettes of the same person are different, and taking the silhouettes out from the background
is also challenging in real-world environments.

Appearances such as colors and styles of the outfits can be a strong cue to re-identify a
person, as shown in Figure 2. However, colors can look different in different lighting condi-
tions as in the second and last columns in Figure 2. The appearance-based re-identification
only works with assumptions where a person shown in a camera appears in another camera
in a short period of time with similar lighting conditions.

Several modalities such as multi-camera tracking, image-based, video-based, and end-
to-end image-based have been proposed [21]. In the present study, we took a video-based
re-identification with a deep learning method with a recurrent neural network. We assume
that a short video clip is available where a subject walks. Our proposed work does not
rely on a particular view angle, but video clips must be long enough to have multiple gait
cycles. For details about gait cycles, refer to the Method section.
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Figure 2. Pedestrian examples from Viewpoint Invariant Pedestrian Recognition (VIPeR) dataset.
Adapted from [22]. Each column shows the same person but colors look different in other lighting
conditions as in the second and last columns. The appearance-based re-identification only works
with assumptions where a person shown in a camera appears in another camera in a short period of
time with similar lighting conditions.

2.3. 2D and 3D Key Joints Estimation

Pose estimation in 2D from RGB input is challenging but, due to a variety of the
practical applications, has been widely studied [23–28]. A common approach in 2D key joint
estimation is to detect a person in an image and predict key joint positions. Convolutional
Neural Networks (CNNs) are a popular choice to partition and label body parts that are
then grouped together to build skeletonic figures in anthropometrically plausible manners.
In the present study, our design choice for the proposed framework is Open Pose [24],
which is for real-time multi-person 2D pose estimation. Part Affinity Fields (PAFs) were
used to associate body parts with individuals in an image showing substantial enhancement
in runtime performance and accuracy.

3D pose estimation can be categorized into single-person and multi-person estimation.
Many methods in single-person pose estimation regress 3D poses by training a predictor
and work well only in specific environments such as limited background and indoor
setups [29]. To mitigate the problem, some took two steps instead of using direct regression
of 3D poses: they estimate 2D key joint positions first and regress 3D joint positions
from the 2D joints. By doing so the regression can be done more easily since the work is
simplified from estimating 3D poses directly to lifting up 2D joint positions that are already
found [30–32]. Multi-person 3D pose estimation from a single image is not as common as
a single-person 3D estimation. By repeating single-person 3D estimation, a multi-person
estimation can be done. Yet, holistic methods for estimating multi-person 3D poses from
a single image are still needed in severe person-person occlusion cases where individual
estimation suffers from the lack of information.

Recent fast technical advancement in computer vision and deep learning areas makes
a certain method obsolete in less than a few years. 3D pose estimation involves several
integrated tasks proposed by several research groups. The component methods needed for
3D pose estimation often make faster and more innovative advancement [33–37]. Holistic
methods where multiple tasks are conducted simultaneously by one research group are
not easy to catch up individual and specialized research groups for component methods.
Thus, the present study made a critical design choice to use a step-by-step and modular
approach. We chose a 3D human pose estimation method [32] and replaced its 2D key
joint detection module with OpenPose [24] for a better 2D pose estimation. To validate
the proposed method, we also conducted a comparative study in person re-identification
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using gait analyses. First, a feature-based gait analysis was performed. After extracting
key joint positions from each image, gait cycles were extracted from a sequence of images.
Gait features such as joint angles at a different moment in a phase of a gait cycle and
relative lengths of body segments were used to discriminate an individual’s gait patterns
from others. Second, without extracting such joint and body features, spatiotemporal
changes of key joints were simply fed to a recurrent neural network to train to identify a
person. The comparative study suggests that time-series-based classification outperforms
feature-based approaches.

3. Method and Problem Formulation

To achieve person re-identification using markerless vision-based gait analyses, five
major steps must be taken for time-series video images in sequence : (i) 2D pose estimation,
(ii) 3D pose estimation, (iii) repetition of (i) and (ii) to collect several gait cycles from
a subject, (iv) features extraction from gaits, and (v) person classification based on the
feature-based or spatiotemporal-based method.

The proposed method is an integrated framework where key body joints are detected
by a 2D pose estimator and a 3D human pose estimator restores the missing depth di-
mension from the 2D key body joint positions. The joint positions in 3D are inherently
viewpoint invariant so that they are also free from occlusion. To conduct comparative
analyses, we developed a gait feature extraction algorithm from 3D joint positions and
designed a Siamese LSTM network to train a classifier for the spatiotemporal-based gait
patterns. Unlike other holistic methods [31,32,38], we took a modular approach so that any
individual module can be replaced with a state-of-the-art method that will be available.
We chose OpenPose [24] as a 2D pose estimator since it supports 2D real-time multi-person
keypoint detection. The output format of the 2D pose estimator is JSON [39]. The output
JSON file is fed to a 3D pose estimator that predicts 3D joint locations using a deep end-to-
end system. We chose a Simple Yet Effective Baseline (SYEB) [32] method for 3D human
pose estimation. The SYEB is also a holistic method that embeds a 2D pose estimator
using a stacked hourglass network [25]. We replaced the embedded 2D position detector
with OpenPose, since the 2D estimator in OpenPose outperforms the embedded 2D joint
position detector. After successful inference of 3D joint positions, gait analyses take place
to get the re-identification system started.

3.1. 2D Pose Estimation from 2D Video Images

As we discussed in the Section 2.3, most 3D pose estimation methods are holistic [31–37].
A high quality 2D pose estimation is a prerequisite of 3D pose estimation since the estimated
2D joint locations are inputted to the 3D estimator. In this study, we took a modular design
approach, where a sub-module can be easily replaced with a better method.

Formally, given a 2D RGB image I of size W × H at frame t, and the total number of
images is T, and the input images can be described as (1).

I = {It}T
t=1, It ∈ RW×H×3. (1)

We need a mapping function to estimate body joints in 2D from images. OpenPose
is a realtime multi-person 2D pose estimation method that shows the state-of-the-art
performance [24]. This method was the first place finisher in the COCO 2016 keypoints
challenge. We chose to use OpenPose as a 2D pose estimator due to its performance
and efficiency. The latest version of OpenPose has 3D real-time single-person keypoint
detection. But this 3D keypoint detection is conducted by 3D triangulation from multiple
single views, which requires multiple viewpoint views for a single person. Since the
proposed work does not require multi-viewpoint images, we excluded the 3D keypoint
detection of OpenPose. The 2D pose estimator of OpenPose can be saved as the JSON file
format so that the 2D key joint positions can be easily transformed to an input type to a 3D
pose estimator. We define estimated 2D joint positions from an image as (2).
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W = {Wt}T
t=1, Wt ∈ RJ2×2, (2)

where J2 is the number of 2D joints.
When we define a mapping from a 2D image to 2D joint positions as: f ∗ : RW×H×3 7→

RJ2×2, Equation (3) represents a 2D joint estimator

f ∗ = min
f

1
T

T

∑
t=1

D( f (It), Wt), (3)

where D(a, b) is the distance between a and b.

3.2. 3D Pose Estimation from 2D Pose Keypoints

3D joint positions can also be similarly defined as (4).

S = {St}T
t=1, St ∈ RJ3×3, (4)

where St = {St(j)}J3
j=1 and J3 is the number of 3D joints.

When we define a mapping from 2D joint positions to 3D: g∗ : RJ2×2 7→ RJ3×3,
Equation (5) represents a 3D estimator. The 2D joint positions from (3) are fed to a 3D joint
estimator represented as in (5).

g∗ = min
g

1
T

T

∑
t=1

D(g( f ∗(It)), St). (5)

We chose to use the Simple Yet Effective Baseline for 3D human pose estimation
(SYEB) [32]. The original goal of the work was to understand error sources in 3D pose
estimation from 2D images. The inference of 3D joint locations is a cascading work from
2D to 3D pose estimation. Martinez et al. wanted to identify the sources of error in the
processing pipeline. What they found was that a relatively simple DNN can lift ground
truth 2D joint locations to 3D space. Their design choice was to use 2D pose key points
as input and 3D points as output. The input data format is not raw images but 2D joint
locations. This is beneficial for our modular design approach since we can plug their 3D
pose estimator into our process pipeline. The original 2D detection of the SYEB is the
stacked hourglass network [25] pre-trained on the MPII dataset [23]. We replaced this 2D
pose detection with OpenPose 2D pose estimation since OpenPose shows higher accuracy
in 2D pose estimation.

The human joint parts are differently indexed in OpenPose and the stacked hourglass
network. OpenPose uses COCO dataset parts index numbers (eighteen 2D keypoints) and
the stacked hourglass network uses the H3.6M dataset [40] parts index numbers (thirty-two
3D keypoints).

• The joint index numbers of the COCO dataset are as follows: 0-nose, 1-neck, 2-right
shoulder, 3-right elbow, 4-right wrist, 5-left shoulder, 6-left elbow, 7-left wrist, 8-right
hip, 9-right knee, 10-right ankle, 11-left hip, 12-left knee, 13-left ankle, 14-right eye,
15-left eye, 16-right ear, 17-left ear.

• The join index numbers of H3.6M dataset are as follows: 0-midpoint of the hips, 1-right
hip, 2-right knee, 3-right ankle (foot), 6-left hip, 7-left knee, 8-left ankle, 12-spine, 13-
thorax, 14-neck/nose, 15-head, 17-left shoulder, 18-left elbow, 19-left wrist, 25-right
shoulder, 26-right elbow, 27-right wrist.

The differences indicate that the output of OpenPose must be converted to a proper
format for the subsequent 3D pose estimation that uses the H3.6M dataset parts index
numbers. In addition to the index number reassignment, additional locations such as the
head, nose, neck, spine, and the center of the hip must be calculated using neighboring
positions and added to the list of joint positions. A 2D point for the center of the hip must
be generated with the left and right hip positions. The index number 12 in the H3.6M
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dataset parts does not exist in the COCO dataset index. The approximation has to be made
using the hip center and neck. We used the center position between them as a position of
index 12 (spine in H3.6M dataset parts index). See more details about the differences in
Figure 3.

The coordinate system also has differences. The 2D positions from OpenPose have
their coordinate origin at the left top corner. The 3D positions from the SYEB have their
coordinate origin at the right bottom side. The z-axis is from the bottom to the top. The y-
position of the joint 0 is 0. The 3D joint positions are not determined by their corresponding
2D positions. The detected positions do not have a unit. See the coordinate system
difference in Figure 4.
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Figure 3. Skeletal model difference. (a) COCO dataset parts index numbers. (b) H3.6M dataset parts
index numbers.
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Figure 4. The coordinate system difference between (a) OpenPose. The joint positions are labeled
in 2D locations. (b) SYEB. The joint positions are in 3D. The depth information is inferred by the
embedded 3D joint position estimator.

3.3. Gait Features

After successful 3D pose estimation, gait patterns will be analyzed to re-identify a
person. Gait is defined as locomotion that can be achieved through the movement of limbs.
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Human gait is bipedal using forward propulsion of the center of gravity (CoG) of the body.
A certain pattern is repeated during the movement. We define the repeated pattern as a gait
cycle. A gait cycle refers to the sequence of events during locomotion. A bipedal gait has
two phases: the stance phase and the swing phase. Individuals have different gait patterns
since there are characteristic features in the movements of their limbs, the velocity of joints,
kinetic energy, and anthropometric measures. Figure 5 shows the human gait cycle.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5. Human gait cycle. (a) Initial contact, (b) Loading response, (c) Mid-stand, (d) Terminal
stance, (e) Pre-swing, (f) Initial swing, (g) Mid-swing, (h) Terminal swing. The stance phase is defined
from (a) to (e). The swing phase is from (f) to (h). The initial contact and the terminal swing is the
same event with a different name.

To extract gait patterns, a sequence of 3D joint positions is required. With S(c) =

{S(c)}Nc
c=1 where Nc is the number of walkers, we define the i-th gait sample as G(c)

i extracted
from S(c) for the person c who can have multiple gait cycles. We define a group of gait
cycles of the person c as (6).

G(c) = {G(c)
i }

N(c)
g

i=1 , (6)

where N(c)
g is the number of gait cycles for the person c.

To have G(c), we need a gait cycle extractor h shown in (7) that can be defined as a
mapping from a sequence of the 3D joint positions of a subject body to gait pattern data.

h : {S(c)
i }

N(c)
g

i=1 7→ G(c). (7)

Feature-based training can be described as follows. The scatter matrices for intra- and
inter-class are shown in (8) and (10).

Σinter =
Nc

∑
c=1

(µ(c) − µ)(µ(c) − µ)>, (8)

where µ(c) = 1
N(c)

g
∑

Ng(c)

i=1 G(c)
i and µ = 1

Nc
∑Nc

i=1 µ(i).

Σc =
1

Nc

N(c)
g

∑
i=1

(G(c)
i − µ(c))(G(c)

i − µ(c))>, (9)

Σintra =
Nc

∑
c=1

Σc. (10)

The class separability was formularized as (11) in [41]. The feature-based training can
be understood as maximizing the class separability of given feature space.

Ψ = tr(Σinter − Σintra). (11)
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The trace function tr(m) measures the overall variance of a given matrix m, i.e., the
larger value of tr(m) indicates more scattered in a feature space. Therefore, the training is a
process of minimizing Σintra while maximizing Σinter.

3.4. Gait Cycle Extraction

A gait cycle can be extracted using a simple anthropometric measure that is the
Euclidean distance between the left ankle position and the right. The maximum distance
can be either the initial contact (a) or the terminal swing (h) in Figure 5. The Euclidean
distance of the left and right ankle is defined as follows.

dt(a) = |St(3)− St(8)|. (12)

The part index number 3 is the right ankle index number, and 8 is the left. The local
maxima of the dt(a) are considered as the moments where two ankles have the maximum
distance. In Figure 5, the initial contact (a) (=terminal swing (h)) and terminal stance are
the moments when two ankles have the maximum distance. Therefore, a gait cycle can be
identified with a sequence of one local maximum, one local minimum, and another local
maximum. Figure 6 shows an example of the Euclidean distances between two ankles.
Based on the local maxima, we can extract gait cycles from time-series data points of 3D
joint positions. This problem looks trivial, but it needs extra data preprocessing steps due
to the pose estimation errors and the occasions where there are not enough data acquisition
frequencies. As we can see in Figure 6, there are multiple local maxima around the peaks
(see the solid blue line). In the next section, we will explain the data preprocessing in
more detail.

(a)

(c)

(d)
(h)

(f)

Figure 6. Gait cycle extraction in a sample of dt(a). One gait cycle (green solid line arrows) is from
the changes in the distance of two ankles. To remove a subtle change in these ankle distances, data
smoothing is applied. The line in blue is raw data. The line in red is after smoothing. The x-axis is for
the image frame numbers. The y-axis is for the 3D distances between the two joints.

3.4.1. Interpolation and Smoothing

Due to the small frame numbers per second, the image sequences may not have critical
moments in gait cycles. Thus, it was imperative for us to add additional 3D key joint points
between frames. We interpolated the raw 3D joint points with four more points using the
Cubic Spline interpolation.

A smoothing process must be subsequently applied to the interpolated raw key joint
points to make clear local maxima and minima. To implement a smoothing process, we
used a discrete linear convolution.
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(d ∗ b)[n] =
M

∑
m=0

d[n−m]b[m], (13)

where d is an array of Euclidean distances, b is a moving average filter, and M is the filer
size. We used 12 for M. Figure 7 shows an example of data smoothing using discrete
linear convolution.

Figure 7. An example of data smoothing using discrete linear convolution.

3.4.2. Getting Local Maxima and Minima

Maxima and minima can be identified at points where the derivatives are zeros. Also,
we can distinguish maxima and minima from the identified points by getting their second
derivatives. But due to the slight data fluctuations, this basic method is not sufficiently
reliable. Therefore, we used the following algorithms to get local maxima and minima
from the distances of both ankles. We used 7 for N (window size).

• Create a moving window. Let N be the window size.
• From the center point, calculate the slopes of all left N/2 points.
• From the center point, calculate the slopes of all right N/2 points.
• If all left slopes are positive and all right slopes are negative, then the center point is a

local maximum.
• If all left slopes are negative and all right slopes are positive, then the center point is a

local minimum.

3.5. Feature-Based Approach

A feature-based approach can be categorized into two: dynamic and anthropometric
static features.

3.5.1. Dynamic Gait Features

We used mainly the lower body for the features since the positions of the upper limbs
are not consistent during walking [42]. Features can be categorized with angles, lengths,
areas, and times at a certain moment during a gait cycle. Angle features can be defined as
described in Figure 8. These angle features can be used at a certain moment during a gait
cycle. This will guarantee that we compare the same angle features at the same moment. At
the initial contact during a gait cycle, hip extension, knee flexion, leg inclination, trunk side
bending, lateral shoulder drop, lateral pelvic drop, and rearfoot eversion are potential gait
features. At the mid-stand, knee flexion is a gait feature. At the pre-swing, hip extension
angle and leg inclination angle are gait features.
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(c)

(a)

(b)

(d)

(f)

(g)

(e)

Figure 8. Angle features. (a) Hip extension angle, (b) Knee flexion angle, (c) Leg inclination an-
gle, (d) Lateral shoulder drop angle, (e) Trunk side bending angle, (f) Lateral pelvic drop angle,
(g) Rearfoot eversion angle.

In a gait cycle, we can also mean, standard deviation, maximum and minimum values
of certain angles. The following three angles can be considered to extract features from a
gait cycle [42].

• The angles of the upper leg (thigh) relative to the vertical.
• The angles of the lower leg (calf) relative to the upper leg (thigh).
• The angles of the ankle relative to the horizontal.

Also, the following values can be useful features in a gait cycle.

• The means and standard deviations of the horizontal and vertical distances between
the feet and knees and between the knees and shoulders.

• The mean areas of the triangle of the root (St(0)) and two feet.
• The step length: the maximum distance between two feet.

The following time-related features can be also a plus.

• The gait cycle time: from (a) to (h) in Figure 5.
• The gait velocity: two times of a step length is divided by a gait cycle.

3.5.2. Anthropometric Static Features

Anthropometric features are not changing during a gait cycle. Thus, they can be con-
sidered static features. Yet, due to the range of inference errors during 2D pose estimation
and subsequent 3D pose estimation, it would be ideal to use the mean values of these
lengths during a gait cycle. Anthropometric features are the lengths of two neighboring
joints. These lengths must be adjusted with a reference length since the size of a person in
an image can vary. In this research, no reference length was provided in the dataset that
we used. Thus, we were not able to use anthropometric features as they are. Instead, we
used a ratio of the lengths between two relevant joints.

3.5.3. Gait Feature Sets

This section describes the gait features that we selected for this comparative study.
The features that we used are angle, length, and time.

Joint angle features can be used to identify an individual since they show different
characteristics among individuals. We first need to redefine the time frame from the
simple image index to the gait phase in a cycle. t = {ta, tb, . . . , th|a = initial_contact, b =
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loading_response, . . . , h = terminal_swing}. Also, note that, in this study, the hip extension
angle is approximated with an angle between one thigh and another thigh. The hip
extension angle was originally defined as an angle between one thigh and the vertical line
from the pelvis to the ground. See Figure 8a for the definition of the hip extension angle.
We define St as (14) for lifting a position on the x− y plane up toward the z axis.

St = St + [0, 0, H], (14)

where H is a constant number to raise the z-axis assuming the ground is the x− y plane.
All angle features that we used in this study are as follows.

• max_Rdegree: the maximum right knee flexion

= max
ta≤t≤th

({](St(3), St(2), St(1))})

• max_Ldegree: the maximum left knee flexion)

= max
ta≤t≤th

({](St(7), St(6), St(8))})

• min_Rdegree: the minimum right knee flexion

= min
ta≤t≤th

({](St(3), St(2), St(1))})

• min_Ldegree: the minimum left knee flexion

= min
ta≤t≤th

({](St(7), St(6), St(8))})

• initial_contact_hip_extension

= ](Sta(7), Sta(6), Sta(3))

• initial_contact_left_knee_extension

= ](Sta(6), Sta(7), Sta(8))

• initial_contact_left_leg_inclination

= ](Sta(7), Sta(8), St(8))

• initial_swing_knee_flextion

= ](St f (6), St f (7), St f (8))

• mid_stance_knee_flextion

](Stc(6), Stc(7), Stc(8))

• terminal_stance_hip_extension

= ](Std(7), Std(6), Std(2))

• terminal_stance_right_knee_flextion

= ](Std(1), Std(2), Std(3))
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• terminal_stance_right_leg_inclination

= ](Std(2), Std(3), Std(3))

• terminal_stance_left_leg_inclination

= ](Std(7), Std(8), Std(8))

• terminal_swing_hip_extension

= ](Sth(2), Sth(1), Sth(7))

• terminal_swing_right_leg_inclination

= ](Sth(2), Sth(3), Sth(3))

Absolute lengths of body parts are not given in the datasets. Thus, we used relative
length features instead. With the definition of D(p1, p2) that is the Euclidean distance of
two joints p1 and p2, the following are the length features of a subject body.

• upper_body:
ub = D(St(0), St(12)) +D(St(12), St(13))

• right_lower_leg: the right calf w.r.t bb

= D(St(3), St(2))/ub

• right_upper_leg: the right thigh w.r.t bb

= D(St(2), St(1))/ub

• left_lower_leg: the left calf w.r.t bb

= D(St(8), St(7))/ub

• left_upper_leg: the left thigh w.r.t bb

= D(St(7), St(6))/ub

We also used dynamic features that can be defined as follows. The left and right stride
are dynamic features that must be calculated from the gait cycle shown in Figure 5.

• left_stride = D(Sta(8), Std(8))
• right_stride = D(Std(3), Sth(3))

Time-related features are defined as follows.

• RFoot_period: frames where the right foot is ahead of the left.
• LFoot_period: frames where the left foot is ahead of the right.
• period: the total frames in a gait cycle.

3.6. Spatiotemporal-Based Approach

Another way to extract representations from a gait pattern is to use changes of 3D
joint positions in time. We used the following seven 3D locations of key joints in a gait.

• Left ankle, knee, and hip: St(8), St(7), St(6)
• Right ankle, knee, and hip: St(3), St(2), St(1)



Sensors 2021, 21, 8208 15 of 25

3.7. Classification

In this study, we used several different classification methods that fall into two cat-
egories. The first category of the methods is the Ensemble method that uses multiple
predictors inside to improve accuracy. The second is a connectionist approach to capture
spatiotemporal features of gaits. We chose a recurrent neural network for this purpose.

3.7.1. Feature-Based Approach

We chose three Ensemble methods: Random Forest [43], XGBoost [44] and Cat-
Boost [45], since they allow us to see which features were more important than others.
Using these classification methods is beneficial because they not only infer a class but also
show the order of importance of those features. Random Forest uses a number of decision
trees to improve prediction accuracy while controlling the overfitting problem. XGBoost
and CatBoost are gradient boosting on decision trees. They are also able to show the feature
importance in order.

3.7.2. Spatiotemporal-Based Approach

We used a Siamese LSTM network (Figure 9) with seven spatiotemporal values in this
approach. A Deep Neural Network (DNN)-based learning needs ample datasets to train a
huge number of network weights. In this study, we only have a few gait cycles from the
MARS and CASIA-A datasets. This prohibited us from using a general DNN. Inspired by
the human ability to acquire and recognize a new pattern, researchers developed a way to
train a neural network with little data [46]. The Siamese network has, as its name implies,
a twin network that shares the same parameter. Their outputs will be computed in the L1
component-wise differences and compared to have a similar output from the same class
and a different output from the different classes.

(a) (b)

(c)

(a)(b)

(c)

(d)

(e)

Figure 9. Siamese Neural Network with two identical subnetworks. (a) Input (b) Convolutional Neu-
ral Network layers (c) Fully connected—sigmoid layer (d) Absolute difference (e) Fully connected—
sigmoid layer.

The input to the network is a fixed size vector, Λt as in (15) to encode the underlying
features in a gait cycle.

Λt = [St(8), St(7), St(6), St(3), St(2), St(1)] (15)

Therefore, a gait can be defined as (16) in a spatiotemporal-based approach.

G = {Λt}N
t=1 (16)

Our model is applied to assess gait similarity between the lower limb movement
identified by the 3D key joints. We used the Manhattan LSTM (MaLSTM) model [47]
shown in Figure 10.
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Figure 10. Siamese recurrent architectures for learning sentence similarity. Adapted from [47].

3.8. Datasets

To study person re-identification using gait features, we used two datasets: MARS
(Motion Analysis and Re-identification Set) [48] and CASIA (The Institute of Automation,
Chinese Academy of Sciences) Dataset A [4].

The MARS was released in 2016 to be used for re-identification. This, presumably
the largest video datasets for person re-identification, has around 20,000 tracklets from
1261 identities with random angles. Not all tracklets have gait data. For the current study,
we removed some tracklets that do not have gaits and collected 264 subjects where we
were able to extract 8 to 25 gait cycles from each class. In the present experiments, we used
eight gait cycles per class. Some sample tracklets are shown in Figure 11.

Figure 11. A sample tracklet of MARS. Adapted from [48]. Each row is labeled as the same identity.

The CASIA Dataset A was created in 2001 and released through [4]. Some sample
images are shown at Figure 12. The Dataset A includes twenty people. Three different
angles (parallel, 45◦, and 90◦ to the image plane) were used to acquire two sets of walking
image sequences. Each set has image sequences in which one person moves straight from
one end position to another. This means that each person’s data comprises twelve sets of
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image sequences. A set of image sequences equals about three seconds of video with a rate
of 25 frames/s. Figure 13 presents a gait example of the dataset.

(a) (b) (c)

Figure 12. An example of CASIA Dataset A [4]. The images show three different angles of each
person’s data. (a) Parallel to the image plane, (b) 90 degrees, (c) 45 degrees.

(h)(f) (g)(a) (b) (c) (d) (e)

Figure 13. Gait example from CASIA-A dataset. (a) Initial contact, (b) Loading response, (c) Mid-
stand, (d) Terminal stance, (e) Pre-swing, (f) Initial swing, (g) Mid-swing, (h) Terminal swing. The
stance phase is defined from (a) to (e). The swing phase is from (f) to (h).

4. Experimental Results

Experiments on the MARS and CASIA-A datasets show that the Siamese LSTM out-
performs feature-based approaches by 20% on MARS and 55% on CASIA-A. We interpret
the result as follows. The Siamese LSTM approach shows better performance because
extracted gait features are not accurate enough to clearly show the individual variations
in gait patterns. The 2D and 3D pose estimators we used in this study were trained with
various human motion, not particularly human gaits. We assume that the pose estimators
need to be enhanced to compete with the spatiotemporal-based classification powered by
the Siamese LSTM network. Our future study is to enhance the accuracy of estimations of
2D and 3D joint positions in gait patterns by developing large-scale human gait datasets
and designing 2D and 3D joint estimators specifically for gait patterns. The technical details
of the experiments are as follows.

Python 3.7 with scikit-learn 0.22.1, xgboost 0.9, catboost 0.21, and R programming
language were used for the Ensemble methods. To implement and test a Siamese LSTM, we
used Keras with Tensorflow. Data preprocessing was done with R programming language.
GeForce GTX 2080Ti and Intel Core i7-9800X @ 3.80 GHz×16 were used for GPU and CPU
respectively. The computer operating system was 64-bit Ubuntu 18.04 LTS.

We collected 264 subjects from MARS where we were able to extract the minimum
eight gait cycles from each class. From CASIA-A, we collected two different angles out of
three. Due to the low-resolution of the data, the image sequences of a subject who walks
from a distance to the front, named as 90◦ in the dataset, were not able to be used. See
Section 5 for more details. Each person has two round trips in each view angle. Thus, eight
samples were collected per person. The number of subjects in CASIA-A is 20. This means
the total number of samples is 160. We were able to extract three gait cycles from single
direction walking. This allowed us to use twelve gait cycles per person.

We used 20 frames per second for MARS and 25 frames per second for CASIA-A to
create videos of walking at normal speed. First, the system cranks the processing pipeline
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up. It reads a video and feeds it to the 2D estimator, OpenPose [24] that generates 2D
joint positions in the JSON format. Then, the 3D estimator, SYEB [32] lifts up the 2D joint
positions to 3D by inferring the depth information. Figure 14 shows an example of 3D
key joint estimation in step by step. The 3D joint estimation in Figure 15 represents the
SYEB outputs from multiple datasets. After the 3D estimator successfully predicts the joint
positions in 3D, a gait cycle extractor starts identifying the gaits in the sequential data of
3D joints. Then, gait cycles are analyzed to extract gait features.

(a)

(b)

(c)

-800
-600 -400

-200
200

400 -800
-600

-400

-200
200

400
0

0

Figure 14. An example of 2D and 3D key joint estimation. (a) Input image. (b) The 2D estimation
result from the input image. (c) The 3D estimation from the 2D key joints.

(a)

(c)

(b)

Figure 15. Examples of the 3D estimation. (a) MARS datasets. (b) CASIA-A datasets. (c) A sample
from the authors.
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4.1. Training Ensemble Methods

We used three ensemble methods: Random Forest, XGBoost, and CatBoost. To use the
Random Forest, we chose the R programming language that is popular for data analysis.
The training and test ratio was seven to three. Two parameters must be tuned in the R:
mtry and ntree. The number of variables randomly selected as candidates at each split is
defined as mtry. The number of trees to grow is defined as ntree. The optimal numbers
of mtry and ntree can be tuned by the tune function. We used 6 for mtry and 750 for
ntree. To use XGBoost and CatBoost, we chose Python with scikit-learn [49]. The 25% data
samples were randomly selected for test data. For XGBoost, we chose gbtree as a booster.
The maximum tree depth was 3 and the number of boosting rounds was 300. For CatBoost,
we used MultiClass as loss_function and 200 was chosen for iterations. We repeated
each classifier 100 times and reported the mean values of accuracy and F-1 score in Table 1.

Table 1. The performance of classifiers for MARS and CASIA-A datasets.

Random Forest XGBoost CATBoost Siamese

Acc. F1 Acc. F1 Acc. F1 Acc.
MARS 81% 80% 82% 79% 83% 80% 99%
CASIA-A 32% 46% 41% 40% 34% 30% 95%

4.2. Training Siamese-LSTM Network

We prepared input data for the Siamese LSTM network as follows. The estimated
3D key joint positions with temporal information from the hip, knee, and foot from both
legs were used as inputs. Our LSTM uses 18 (=six joint positions in 3D space) dimensional
representations ht and memory cells ct. The batch size was 1024. The number of epochs
was 10. The Mean Square Error (MSE) was used as a loss function. We used the Adam
optimizer [50] as a parameter optimization method. The model accuracy and loss graphs
are depicted in Figure 16 and strongly indicate that the training has been done successfully.
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Figure 16. The training graphs for the Siamese-LSTM network with CASIA-A. The graph shows the
training was successful with around 95% accuracy and 0.04 loss after 10 epochs.

4.3. Classification Performance Comparison

The classification performances of gait feature-based and lower-body spatiotemporal
information-based were reported in Figure 17 as well as Table 1. Siamese LSTM method
using lower body spatiotemporal information outperforms the ensemble methods (Random
Forest, XGBoost, and CatBoost) in two different datasets. No meaningful performance
difference was observed between ensemble methods. The gait-feature-based approaches
show much lower performance in CASIA-A datasets compared to MARS. This is partly
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because of the small size of human subjects in the dataset. The size of a subject is as small
as 27× 76, which makes it a challenging task for the 2D estimator to predict exact 2D joint
positions. Due to the inaccurate 2D joint positions, it deteriorates the 3D estimator’s lifting
to 3D performance. As a result, gait features that are sensitive to 3D joint positions were
not accurate enough to classify individuals based on their gait features.

0

25

50

75

100

Random Forest XGBoost CATBoost Siamese

MARS CASIA-A

Figure 17. The performance of classifiers accuracy for the MARS and CASIA-A datasets.

5. Discussion

We would like to discuss two topics: (i) separability and importance of features and
(ii) open datasets for gait patterns.

5.1. Feature Study

To investigate the feature separability, we first visualized the feature maps using the
t-Distributed Stochastic Neighbor Embedding (t-SNE) [51]. We used learning_rate =
200, n_iter = 700, verbose = 2, perplexity = 20 for the t-SNE visualization. Figure 18
shows the separability of the 24 gait features for MARS datasets. Note that we do not
separate a feature among others, so this map does not directly represent our classification
performance. Our classifier uses all the features to classify an individual. Thus, the separability
in Figures 18 and 19 are promising since we do not use a single feature to identify a class.

Figure 18. t-SNE feature maps of MARS. A different color and shape marker indicates a feature.
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Figure 19. t-SNE feature maps of CASIA-A. A different color and shape marker indicates a feature.

Even though the ensemble approaches showed lower performance than the Siamese
LSTM with spatiotemporal information of gaits, the decision trees inside the ensemble
methods can identify which features are more important than others. Table 2 reports the
top ten gait features considered important in their classification tasks.

Table 2. The top 10 important features identified by the ensemble approaches.

Random Forest XGBoost CATBoost

1 period left_stride period

2 right_stride right_stride right_stride

3 left_stride period left_upper_leg

4 Lfoof_period left_upper_leg left_stride

5 Rfoot_period terminal_swing_
hip_extension

terminal_stance_
hip_extension

6 right_upper_leg terminal_stance_
hip_extension max_Ldegree

7 min_Ldegree left_lower_leg Lfoot_period

8 terminal_swing_
hip_extension max_Ldegree main_foot

9 min_Ldegree left_lower_leg Lfoot_period

10 terminal_stance_
hip_extension right_upper_leg terminal_swing_

hip_extension

The lengths of the strides of each foot (right_stride, left_stride), speed of walking
(period), and relative lengths of lower body parts (left/right_upper/lower_leg) are gener-
ally more important than angular values in a certain phase in a gait cycle (max/min_Ldegree,
terminal_swing/stance_extension) according to Table 2. The results can be a strong indi-
cation that angular gait features were not accurate enough to differentiate a person from
others based on the features.

5.2. Further Thoughts on Feature-Based Approach

From this comparative study, we found that a recurrent neural network trained by spa-
tiotemporal lower body joint data outperformed gait feature-based ensemble methods. Yet,
we believe that it is premature to conclude that a gait feature-based person re-identification
approach is not a good choice. The results from the present work have the following
potential limitations. The currently available human pose datasets are not specifically
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for human gait study. The 2D and 3D pose estimators were trained with various human
poses. To increase the overall accuracy of the estimations, the prediction accuracies of
some sets of human motions or poses were possibly sacrificed. Another challenge was the
low-resolution of human subjects in the datasets that adversarially affect the accuracy of
2D key joint estimations. Even though the 2D pose estimator we used was successful in
extracting body parts from a small (30× 78) and blurred subject in an image (352× 240),
the accuracy was not good enough to be used in the 3D estimator. See Figure 20 for an
example of a human subject size.

Figure 20. A 90° example from CASIA-A. The data name is lsl-90_1-006.png. The image size is
352× 240 and the human subject size is 30× 78.

We also conducted an additional qualitative experiment with a toy dataset to validate
the low-resolution issue. See Figure 21 for more details. This test validates that the small
human subject size in input images can be an important factor in estimation accuracy. Our
future work will consider human subject size in the new training dataset.

(a)

(c)

(b)

Figure 21. The test with scale-up images that shows a better 3D pose estimation. (a) The original
image size 352× 240. The 3D estimation result shows some deformation (b) The scaled image to
704× 480. No more severe deformation is found. Yet, it is not enough to extract gait features (c) The
scaled image to 1126× 768. The human subject size is roughly 100× 250 which is big enough as an
input to 2D and 3D pose estimator.
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Thus, as a future study, we plan to collect large-scale and high-definition gait-specific
datasets and re-train 2D and 3D pose estimators with the newly acquired datasets to more
fairly evaluate the gait feature-based approaches.

The potential limitations of the current work are as follows. According to [52], chang-
ing walking speed can be a significant factor in changing dorsiflexion of the knee and
ankle. The authors in [52] found that peak values of the knee and ankle dorsiflexion in
the side and front view of a subject significantly increased in fast walking compared with
normal and slow walking. The proposed method assumes that the gait features of a subject
share the same latent properties even at a different walking speed. The current study must
be extended by conducting additional experiments to investigate the effect of different
walking speeds in a specific subject’s gait features.

6. Conclusions

In this study, we proposed a markerless vision-based gait analysis technique and pre-
sented its validity by showing person re-identification performance using an individual’s
gait patterns. We also conducted a comparative study of feature-based and spatiotemporal-
based approaches to identify strengths and weaknesses. Our results indicate that using
a recurrent neural network trained with spatiotemporal key joint values outperforms a
feature-based approach. This study also suggests that gait feature-based methods need
more accurate 2D and 3D key joint estimations. Our suggestion for future study is to
develop large-scale human gait ground truth data to re-train 2D and 3D joint estimators
to improve the inference quality of the estimators. Then we can expect that the proposed
framework and comparative study will further contribute to rehabilitation studies, forensic
gait analysis, and the early detection of neurological disorders.
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