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Abstract: The adoption of low-crested and submerged structures (LCS) reduces the wave behind a
structure, depending on the changes in the freeboard, and induces stable waves in the offshore. We
aimed to estimate the wave transmission coefficient behind LCS structures to determine the feasible
characteristics of wave mitigation. In addition, various empirical formulas based on regression
analysis were proposed to quantitatively predict wave attenuation characteristics for field applica-
tions. However, inherent variability of wave attenuation causes the limitation of linear statistical
approaches, such as linear regression analysis. Herein, to develop an optimization model for the
hydrodynamic behavior of the LCS, we performed a comprehensive analysis of 10 types of machine
learning models, which were compared and reviewed on the prediction accuracy with existing
empirical formulas. We found that, among the 10 models, the gradient boosting model showed
the highest prediction accuracy with MSE of 1.0 × 10−3, an index of agreement of 0.996, a scatter
index of 0.065, and a correlation coefficient of 0.983, which indicates a performance improvement
over the existing empirical formulas. In addition, based on a variable importance analysis using
explainable artificial intelligence, we determined the significant importance of the input variable
for the relative freeboard (RC/H0) and the relative freeboard to water depth ratio (RC/h), which
confirms that the relative freeboard was the most dominant factor for influencing wave attenuation in
the hydraulic behavior around the LCS. Thus, we concluded that the performance prediction method
using a machine learning model can be applied to various predictive studies in the field of coastal
engineering, deviating from existing empirical-based research.

Keywords: low-crested structure; machine learning; gradient boosting; wave attenuation; explainable
artificial intelligence

1. Introduction

Artificial structures for wave mitigation, such as breakwaters, headlands, detached
breakwaters, and submerged breakwaters, are utilized to control coastal erosion problems
by reducing incident wave energy and reducing sediment transports. Recently, shoreline
deformation from beach erosion and scouring by coastal development has been rapidly
increasing, along with sea level rise and external force of storm wave increases due to
climate change [1]. Among these, coastal erosion and sedimentation caused by morpho-
logical change can lead to changes in the natural environment and ecosystem of coastal
areas [2,3]. These problems directly/indirectly affect various factors involved in local
economic activities in related field such as fishery and tourisms.

Low-crested submerged structures (LCS), such as detached breakwaters and artificial
reefs, reduce the wave behind a structure according to the change in the freeboard at the still
water level, thereby protecting onshore environment by inducing the wave [4]. Since the
geometrical specifications of such LCS should be set under conditions to obtain the target
wave transmission coefficient, the calculation or prediction of the transmission coefficient
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of a structure is an important factor in designing the structure. Various studies have been
conducted to estimate the wave transmission coefficient of low-crested structures, and have
proposed formulas for calculating the wave transmission coefficient [5–7]. However, most
of the previously proposed formulas of wave transmission coefficients are estimated with
assumptions and a regression analysis of mathematical experimental data, which inhibits
the clear explanation of the natural phenomena. Existing models are limited to calculating
wave transmission coefficients from a limited range of input parameters, resulting in less
usefulness and applicability with low accuracy and reliability [8].

To cope with the limits, researchers have been conducting various studies to under-
stand wave motion and wave characteristics around structures by applying numerical
modeling [9,10] that are often used to model physical phenomena when analyzing hydro-
dynamic processes according to structural applications.

In order to simulate wave motion effectively and accurately, the non-hydrostatic effect
must be considered. Ai et al. [11] simulated 3D free surface flow to suggest a new fully
non-hydrostatic model. They verified the capabilities and numerical stability of the model
through various test cases of surface wave motions. The proposed model presented the
results of accurately and effectively resolving the motion of shortwaves with shoaling
nonlinearity, dispersion, refraction, and diffraction. Ning et al. [12] used a fully nonlinear
Boussinesq wave model to analyze runup characteristics according to solitary wave propa-
gation conditions of fringing reefs. Furthermore, they presented results that reasonably
reproduced the runup/rundown process for both non-breaking and breaking solitary
waves through verification with laboratory experiment results. Hur et al. [13] analyzed
hydrodynamic characteristics around permeable submerged breakwater using a 3D numer-
ical scheme. They presented the detailed analysis results for distribution of wave height
and wave breaking and average flow around the structure, considering the wave-structure-
sandy seabed interactions in the 3D wave field. Recently, OlaFlow, an open source licensed
open foam-based toolbox, has been developed. OlaFlow is composed of the Reynolds
Average Navier Stokes equation and the conservation of mass equation, and the free water
surface is tracked using Volume Of Fraction (VOF). Olaflow is widely used to analyze the
hydrodynamic characteristics around structures in the field of coastal engineering [14].

Recently, a machine learning model has drawn attention to determine and to predict
statistical structures from input/output data using a computer model. Machine learning is
an inductive method as a field of artificial intelligence, which finds rules through learning
using data and results, rather than a traditional program method that derives results
through rules and data. It can easily solve complex engineering problems, and provide
regression analysis of nonlinear relationships [15]. Compared to other traditional regression
methods, it employs a specific algorithm that can learn from the input data itself and
provides very accurate results on the output [16]. In machine-learning-based prediction
models, various deep learning algorithms are employed, such as neural networks, decision
trees, support vector machines (SVMs), and gradient boosting. In recent years, research
using machine learning algorithms have been continuously increasing in the field of coastal
engineering, in particular, for problems related to modeling behavior around coastal
structures [17,18]. Kim et al. [19] used a neural network to estimate the stability of a
breakwater, and presented the improved structure stability compared with the existing
empirical formula. Based on the experimental data of Van Der Meer et al. [20], Koc et al. [21]
proposed a model to predict the stability of a breakwater using a genetic algorithm.

Herein, to improve the feasible application of machine learning models in the field of
coastal conservation engineering, we investigated the application of various machine learn-
ing models to predict the wave transmission coefficient of LCS. In addition, we proposed a
machine learning pipeline model that selects a machine learning model suitable for data
characteristics and performs an overall analysis of the model. Finally, we evaluated the ap-
plicability of the machine learning model by analyzing the accuracy and errors associated
with the formulas for calculating the wave transmission coefficient of the existing LCS.
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2. Methodology
2.1. Machine Learning Model
2.1.1. Linear Regression Model

The linear regression model has the advantage that the parameters are linear and can
be easily interpreted and analyzed quickly. Linear regression models were developed over
100 years ago and have been widely used over the past decades. However, a very restrictive
shape results in low accuracy for data with nonlinear relationships. Linear regression
creates a regression model using one or more characteristics and finds parameters w and
b that minimize the mean squared error (MSE) between the experimental value (y) and
predicted value (ŷ) (Equations (1) and (2)).

ŷ = w[0] + x[0]× x[1] + · · ·+ w[p]× x[p] + b (1)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

2.1.2. Lasso Regression

In the existing linear regression method, overfitting with poor predictive performance
may occur when new data are provided. To solve this problem, a lasso regression was
developed using L1 regulation to forcibly constrain the model (Equation (3)).

E = MSE + penalty =
1
n

n

∑
i=1

(yi − ŷi)
2 + α

m

∑
j=1

∣∣wj
∣∣ (3)

Here, m is the number of weights, and α is a penalty parameter that determines w
and b that minimize the sum of the MSE and penalty terms.

2.1.3. Ridge Regression

Ridge regression is a model with an added L2 constraint to solve the overfitting
problem of the linear regression model. The model not only fits the data of the learning
algorithm, but also keeps the weights of the model as small as possible (Equation (4)).

E = MSE + penalty =
1
n

n

∑
i=1

(yi − ŷi)
2 + α

m

∑
j=1

∣∣wj
∣∣2 (4)

The weights become zero in lasso regression, whereas in ridge regression, the weights
become close to zero but not zero. The difference is that if some of the input variables are
important, lasso regression will have a higher accuracy, and if the importance of the input
variables is similar overall, the ridge model will have a higher accuracy.

2.1.4. SVM

The SVM was introduced by Boser et al. [22], inspired by the concept of statistical
learning theory. The SVM is a method of finding a hyperplane composed of support vectors
that can classify vectors of linearly different classes with the maximum margin for the
distance between them [23]. The machine learning algorithm reflects data that cannot be
classified linearly in a low-dimensional space in a high-dimensional space using a kernel
function, and classifies it using a hyperplane. Representative types of kernel functions
include polynomial, sigmoid, and radial basis function (RBF). In this study, the Gaussian
RBF kernel was used and applied to the model [24].

2.1.5. Gaussian Process Regression (GPR)

The GPR model is a probabilistic model based on nonparametric kernels. The Gaus-
sian regression analysis model can be performed when the wave attenuation coefficient,
which is the dependent variable, has a Gaussian shape [25]. Specifically, if a specific wave
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attenuation coefficient (Kt
*) is assumed as a random variable that includes an error, the

expected wave attenuation coefficient with the error removed can be expressed as a co-
variance function between the mean and the error (Kt

*= Kt + ε). Assuming that this error
covariance can be interpreted as a kernel function, Bayesian analysis model can predict
wave attenuation characteristics [26].

2.1.6. Ensemble Method

The ensemble method was created to improve the performance of the classification and
regression tree (CART). The method creates a more accurate prediction model by creating
several classifiers and combining their predictions. In other words, the method derives a
highly accurate prediction model by combining several weak classifier models, and not
using a single strong model. Ensemble models can be broadly divided into bagging and
boosting models. Bagging method reduces variance by using average or voting methods for
the results predicted by various models, and boosting method synthesizes weak classifiers
into strong classifiers. In this study, we performed a predictive study using boosting and
random forest (RF) ensemble methods.

(1) Random Forest (RF)

RF is a method that is employed to improve defects such as the variance and the
performance fluctuation range of the decision tree being large. RF combines the concept and
properties of bagging with randomized node optimization to overcome the shortcomings
of existing decision trees and improve the generalization performance. In line with bagging
method, the process of extracting bootstrap samples and creating a decision tree for each
bootstrap is similar, but instead of selecting the optimal partition within all predictors for
each node, the RF randomly extracts predictors and creates optimal partitions within the
extracted variables [27]. In other words, RF creates several learners of low importance
since it determines slightly different training data through bootstrap to give maximum
randomness, and simultaneously combines the randomization of predictors. Important
hyperparameters of RF include max_features, whether to use bootstrap, and n_estimator.
The max_features parameter represents the maximum number of features to be used in
each node, bootstrap is the option to allow duplication in data sampling conditions for
each classification model, and n_estimator means the number of trees to be created in
the model [28].

(2) Boosting method

Boosting is a method that is used to create strong classifiers from a few weak classifiers,
and is a model created by further boosting the weights on the data at the boundary.
AdaBoost is the most common and widely used ensemble learning algorithm, and is
specifically one of the boosting families of ensemble learning. The main feature of AdaBoost
is that after generating a weak classifier using initial training data, the distribution of the
training data is adjusted according to the prediction performance dependents on the weak
classifier training. The weight of the training sample with low prediction accuracy was
increased by using the information received from the classifier in the previous stage. In
other words, the method improves learning accuracy by adaptively changing the weights
of samples with a low prediction accuracy in the previous classifier. The method combines
these weak classifiers with low prediction performance to create a strong classifier with
slightly better performance. Gradient boosting method, which is applied in this study,
also sequentially adds multiple models in the same way as the Adaboost model [29]. The
biggest difference between the two algorithms is the recognition of weak classifiers. While
AdaBoost recognizes values that are more difficult to classify by weighting them, Gradient
Boost uses a loss function to classify errors. In other words, the loss function is an indicator
that can evaluate the performance of the model in learning specific data, and the model
result can be interpreted differently depending on which loss function is used.
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2.2. Analysis of Machine Learning Model
2.2.1. Performance Measurement

The correlation coefficient, which indicates the correlation between the predicted
output value and the measured value of the model, is an important factor for evaluating the
predictive performance of a machine learning model. To analyze the predictive performance
of the model, in this study, we measured the performance of the model using the mean
square error (MSE), index of agreement (I), scatter index (SI), and R2, which represent the
correlation coefficient. For each dataset, the correlation coefficient between the experimental
and predicted values is as shown in Equations (5)–(8).

MSE =
∑n

i=1(xi − yi)
2

n
(5)

I = 1− ∑n
i=1(yi − xi)

2

∑n
i=1(|yi − x̄|+ |xi − x̄|)2 (6)

SI =

√
1
n ∑n

i=1(xi − yi)
2

x̄
(7)

R2 = 1− ∑n
i=1(xi − yi)

2

∑n
i=1(xi − ȳ)2 (8)

Here, xi and yi are the experimental and predicted values, respectively, x̄ and ȳ are the
mean values of the experimental and predicted values, respectively, and n is the sample
number. Statistically, the closer R2 and I are to 1 and the smaller the MSE and SI, the higher
is the reliability.

2.2.2. Analysis Method of Feature Importance

(1) eXplainable Artificial Intelligence (XAI)

XAI was developed to help users understand the overall characteristics of how an
AI system works and correctly interprets the final result. XAI is a surrogate model that
makes possible to explain the process of calculating results for the correlation between
input variables and dependent variables by determining the major factors that affect the
prediction of a machine learning model. The interpretation of such a machine learning
model is an important analysis method for deriving a suitable learning model according to
various conditions or to increase the prediction stability of the model through quantitative
analysis of predicted values through input variables.

The analysis method of the artificial intelligence system analyzes the characteristics
of input variables to interpret the model learning and prediction process, and is divided
into global and local interpretations. Global interpretation is a method of interpreting the
overall analysis process and results of a model, and local interpretation is a method of
interpreting model predictions for a single observation or part of a data set, and interpreting
the results derived from the model for one specific input data.

(2) Shapley Additive exPlanations (SHAP)

The Shapley value is the mean value of the marginal contribution for all possible sets
to understand the importance of one characteristic based on game theory (theorizing about
what decisions or actions each other takes in situations where multiple themes influence
each other). Lundberg et al. [30] developed the SHAP machine analysis model, which
achieves the highest accuracy, with a solid theoretical background among the machine
learning analysis models that have been released to date, and the Shapely value is given
in Equation (9).
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∅i = ∑
S∈N/(i)

|S|!(n − |S| − 1)!
n!

(f(S∪ {i} − f(S)) (9)

Here, S is a subset of the features used in the model, {i} is the vector of feature values
of observations for explanation, n is the number of characteristics. f(S) is the value obtained
by subtracting the predicted value from one observation from the average predicted value
obtained from the data for a combination of feature values.

SHAP values are obtained by using the conditional expected value function of the
machine learning model for Shapley values. The Shapley values for all input features are
obtained, and the SHAP values can be interpreted locally and globally with the SHAP
mean for each feature for each observation. The input feature importance can be expressed
by visualizing the input feature based on the dataset through the average or sum of the
absolute values of the SHAP values. In the case of the partial dependence plot provided by
SHAP, the value of the input characteristic of each instance and the corresponding SHAP
values are expressed as dots for all instances, and the average of the predicted values is
calculated by changing the specific characteristic value of each instance. In this study, we
analyzed the characteristics of a machine learning model built using the SHAP model.

2.3. Empirical Formula of Wave Transmission Coefficient

The wave transmission coefficient represents the ratio of the incident wave height
before passing through the LCS and the average wave height after passing through the
LCS (Figure 1).
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Figure 1. Example of a cross-section of a low-crested and submerged breakwater and the
governing parameters.

Existing theoretical and empirical equations for the LCS are based on the experimental
results of the hydraulic model, and many researchers have proposed empirical equations
to predict the wave transmission coefficient using experimental data [31–33].

The suggested equation for the wave transmission coefficient by D’Angremond et al. [32]
is as follows (Equations (10) and (11)):

Kt = −0.4
Rc

Hi
+ 0.64

(
B
Hi

)−0.31(
1− e−0.5ξ

)
,

B
Hi

< 8 (10)

Kt = −0.35
Rc

Hi
+ 0.51

(
B
Hi

)−0.65(
1− e−0.41ξ

)
,

B
Hi

> 12 (11)
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Here, Rc is the crest freeboard, Hi is the incident wave height, B is the crown width
ξ is the surf similarity coefficient for breakwater (ξ = tanα/

√
Hi/L0). However, in the

aforementioned equation, the effective range of the wave transmission coefficient is limited
to 0.075–0.8. Van der Meer [31] suggested a wave transmission coefficient equation based
on the breakwater coefficient to improve the accuracy of the wave transmission coefficient
(Equations (12) and (13)).

Kt = −0.3
Rc

Hi
+ 0.75

(
1− e−0.5ξ

)
, ξ < 3 (12)

Kt = −0.3
Rc

Hi
+ 0.75

(
B
Hi

)−0.31(
1− e−0.5ξ

)
, ξ > 3 (13)

Bleck and Oumeraci [33] proposed the exponential decay equation of the wave trans-
mission coefficient of the LCS, according to the relative freeboard (Equation (14)).

Kt = 1− 0.83e0.72 Rc
Hi (14)

In previous studies, factors such as relative freeboard
(

Rc
Hi

)
, relative crest width ( B

Hi
),

front slope of structure (tanα), and wave steepness (Hi/L0), are classified as the factors
related to wave decay around the LCS, and the empirical formula for this is presented.
Figure 1 shows cross-section of LCS structure. Herein, the crest freeboard (RC = hc − h)
indicates the differences between structure depth and water depth, which has a positive
value in emerged state and negative value in submergence state in still-water level.

In this study, we compared and reviewed the results of calculating the wave trans-
mission coefficient using the existing empirical formula (Equations (10)–(14)), and the
prediction results using a machine learning model.

2.4. Model Design Condition and Method
2.4.1. Machine Learning Automatic Pipeline Model

In this study, we applied 10 machine learning models, namely linear regression, kernel
ridge (KR), ridge, lasso, GPR, SVM, RF, artificial neural network (ANN), gradient boosting
regressor (GBR), and AdaBoost, to compare and review the performance dependencies on
the characteristics of each model. To determine the optimal conditions of the automatic
pipeline model dependent on input data characteristics, we adjusted hyperparameters
using Grid-searchCV, and constructed automatic models for 10 machine learning models
using the scikit-learn pipeline. The optimal machine learning model, selected through
the automatic model, was analyzed to determine the importance of variables affecting the
wave control of LCS using the machine learning analysis package SHAP.

2.4.2. Machine Learning Model Configuration and Input Conditions

The 260 items of input data were obtained and applied in this study, with reference to
the results of hydraulic model experiments with existing LCS by Seelig [34], Daemrich and
Kahle [35], van der Meer [20], and Daemen [36]. Data on the wave transmission coefficient
were obtained from DELOS database for permeable structures. The 260 data consist of:

• 81 data on rubble mound emerged/submerged breakwater [Seelig];
• 95 data on tetrapod submerged breakwater [Daemrich and Kahle];
• 31 data on rubble mound emerged/submerged breakwater [Van der Meer];
• 53 data on rubble mound emerged/submerged breakwater [Daemen].

In the data applied to the model, wave attenuation characteristics behind the structure
were analyzed using random wave, and the data in range of 0.021 to 0.231 m were applied
to wave height, and 0.91–3.66 s to wave period (Table A1). Through various studies, re-
search results on the wave attenuation mechanisms of LCS and various factors that have a
dominant influence on wave attenuation are presented. Van der Meer [31] proposed a wave
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transmission coefficient equation using Rc/H0, B/H0 and ξ. Shin et al. [37] suggested the
wave transmission coefficient equation using B/L0, Rc/h, and Gadomi et al. [38] performed
research on porosity and hc/h. Therefore, in this study, we used seven dimensionless
numbers (X = {X1, X2,...., X7}) as input variables (Table 1) based on previous studies. Here,
Rc/H0 is the relative freeboard, B/H0 is the relative crest width, ξ is the surf similarity
parameter, B/L0 is the ratio of the crest width to the wavelength, Rc/h is the relative free-
board to water depth ratio, Dn50/hc is the ratio of the nominal diameter to the crest height,
and hc/h is the relative structure height. Herein, Dn50 means nominal diameter, which is
the ratio of median mass of unit (M50) and mass density of the rock (ρr) (Dn50 = (M50/ρr).
Therefore, Dn50/hc parameter is a factor related to the effect of voids as the ratio of the
structure height to the nominal diameter. Surf similarity parameter (ξ = tanα/

√
Hi/L0)

represents the ratio of the front slope (tanα) and wave slope (Hi/L0), which is an important
parameter in relation to wave breaking. The front slope of the structure applied in this
study was in the range of 1:1.38–1:4, and various slope conditions were considered.

Table 1. Definitions and ranges of scaled model parameter.

Parameter Definition Average Max Min

X1 RC/H0 Relative freeboard −0.494 4.0 −8.696
X2 B/H0 Relative crest width 4.525 43.478 0.889
X3 ξ surf similarity parameter 4.145 10.541 1.181
X4 B/L0 Ratio of the crest width to wave length 0.09 0.424 0.012
X5 RC/h the relative freeboard to water depth ratio −0.065 0.734 −0.56

X6 Dn50/hc
Ratio of the nominal diameter to

structure height 0.166 0.336 0.065

X7 hc/h The relative structure height 0.935 1.734 0.44
Y Kt Transmission coefficient 0.482 0.922 0.049

Figure 2 depicts the statistical distributions of the input and output variables. To
reflect the same feature scale, the input variable was converted to a range of 0 to 1 using
max-min normalization.
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Figure 2. Results and discussion. (a): RC/H0; (b): B/H0; (c): ξ; (d): B/L0; (e): RC/h; (f): Dn50/hc;
(g): hc/h; (h): Kt.

3. Results and Discussion
3.1. Comparison of Machine Learning Model and Model Selection

Recently, research on the development and application of various machine learning
techniques has been performed in the field of computer science. The performance of
these machine learning models differs according to the characteristics of the input vari-
ables. Therefore, to model the fluid mechanical behaviors of the LCS, we analyzed the
performance of the model by using 10 linear and nonlinear regression models. Figure 3
presents the performance results of the machine learning model of the artificial coral reef
data derived from the machine learning pipeline model. Among the 10 machine learning
models, GBR showed the highest model performance with an R2 = 0.983, and the linear
regression method showed the lowest performance with an R2 = 0.814. Table 2 shows the
model performance results based on the application of the 10 machine learning methods.
The ensemble method (Adaboost, GBR, and RF), including the ANN method, showed the
highest model accuracy (under 1.3 × 10−3 MSE) and model performance (>0.979 of R2).
Among them, GBR yielded the highest model prediction accuracy. This indicates that the
boosting method reinforces the weak classifier. In addition, the linear regression mod-
els (linear, ridge, and lasso) showed low accuracy, indicating that the application of the
linear model cannot reflect the nonlinear characteristics of the data. Furthermore, it is
believed that the linear model shows low model prediction performance when the model
has nonlinearity between the input variable and the dependent variable. However, the
performance of the model could be increased by regulating the L1 and L2 weights. We
presented the wave transmission prediction results for the LCS using a machine learning
model, as shown in Figure A1, which shows the distribution of the experimental values
and prediction values of the test set. In terms of designing coastal structure, the estimation
of the wave transmission coefficient with high accuracy is most important. As a result of
comparing machine learning models, the GBR model shows the highest accuracy in terms
of predicting the wave transmission coefficient for LCS structure. Therefore, we performed
an analysis by applying the GBR model, which showed the highest accuracy in predicting
the hydraulic characteristics around the LCS.
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Table 2. Proposed machine learning regressors and the resulting attenuation coefficient.

Performance Measures

ML Regressor MSE I SI R2

M1. AdaBoost 0.0013 0.995 0.073 0.979
M2. Gradient boost 0.0010 0.996 0.065 0.983

M3. ANN 0.0013 0.995 0.078 0.979
M4. RF 0.0013 0.995 0.073 0.979

M5. SVM 0.0022 0.991 0.101 0.965
M6. GPR 0.0038 0.984 0.132 0.941
M7. Lasso 0.0049 0.981 0.150 0.924
M8. Ridge 0.0050 0.980 0.152 0.922

M9. KR 0.0028 0.989 0.113 0.957
M10. Linear 0.0121 0.944 0.235 0.814

3.2. Model Performance Analysis
3.2.1. Results of Splitting a Dataset

To determine the most accurate parameter of the GBR model, we divided the collected
data into training data and test data. Traditionally in machine learning, when the number
of data is small, the training data and test data are divided by 7:3; however, recently, when
the number of data is large, the dataset can be divided by 9:1. We divided the data set
into 7:3, 8:2, and 9:1 conditions to perform sensitivity analysis on model accuracy. Table 3
shows the model performance results according to data splitting condition, and the highest
R2 can be obtained under the conditions of 9:1 and 8:2. As the training set ratio increases,
the number of training data increases, which allows the GBR model to produce a strong
learner. However, since overfitting of the model and generalization of the model may be
difficult due to insufficient data in the test set under 9:1 condition, we built the model by
applying the 8:2 condition.
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Table 3. Performance of machine learning model according to splitting a dataset.

Splitting Ratio MSE I SI R2

7:3 1.0 × 10−3 0.996 0.065 0.983
8:2 0.8 × 10−3 0.997 0.058 0.988
9:1 0.8 × 10−3 0.997 0.051 0.988

Figure 4 shows the prediction results of the training data and test data considering
seven input variables using gradient boosting; the horizontal axis represents the experi-
mental values, and the vertical axis represents the distribution of predicted values. As for
the results, I was 0.999, SI was 0.032, and R2 was 0.999 for the training data set, and the MSE
was 0.8 × 10−3, I was 0.997, SI was 0.058, and R2 was 0.988 for the test data set, indicating
the excellent prediction performance for the wave transmission coefficient. As a result, it is
deemed that the performance prediction method using such a machine learning model can
be applied to various predictive studies in the field of coastal engineering, deviating from
existing empirical-based research.
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Figure 4. Distribution of experimental and predicted values according to the GBR model application.
(a): Test set. (b): Training set.

3.2.2. 10-Fold Validation Analysis

To verify the model performance of the GBR model, we utilized 10-fold cross-validation.
This method was developed to minimize the bias associated with random sampling of the
training set. The entire data sample was divided into 10 parts: nine were used for training,
and one was used for model validation. The process of cross-validation was performed ten
consecutively. The 10-fold cross-validation method ensured the generalization and relia-
bility of the model performance. Figure 5 shows the model performance results obtained
using the 10-fold cross-validation method. Figure 5a shows the results of R2 according
to each fold and shows slight fluctuations; however, the minimum and maximum values
were 0.958 and 0.987, respectively. Figure 5b shows the minimum value of 0.97 × 10−3,
and the maximum value of 2.70 × 10−3 for MSE, showing that all errors are minimal, and
a high level of accuracy is maintained.
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Figure 5. Results for 10-fold cross validation. (a) R2; (b) MSE; (c) MAE; (d) MAPE.

Table 4 shows the model performance and statistical information using the 10-fold
cross-validation method. The mean R2 is 0.973, and the std is 0.009, demonstrating that
the results have a small deviation. In addition, the MAE and MAPE are 0.027 and 0.080,
respectively, indicating small prediction errors.

Table 4. Performance of 10-fold cross validation.

Folds
Performance Measures

MSE R2 MAPE MAE

Fold 1 1.4 × 10−3 0.971 0.073 0.029
Fold 2 1.5 × 10−3 0.969 0.060 0.027
Fold 3 1.0 × 10−3 0.987 0.076 0.024
Fold 4 1.4 × 10−3 0.979 0.080 0.024
Fold 5 1.1 × 10−3 0.982 0.056 0.023
Fold 6 2.1 × 10−3 0.965 0.114 0.030
Fold 7 1.5 × 10−3 0.979 0.082 0.026
Fold 8 2.7 × 10−3 0.958 0.070 0.034
Fold 9 1.6 × 10−3 0.961 0.108 0.033

Fold 10 1.3 × 10−3 0.978 0.085 0.027
Mean 1.6 × 10−3 0.973 0.080 0.027
STD 0.4 × 10−3 9.0 × 10−3 18.7 × 10−3 3.8 × 10−3

3.2.3. Evaluation of GBR Model Using Another Data Set

To verify the generalization of developed model additionally, we applied new data
set to the model. For the verification for the GBR model, we used 41 data sets from Delft
Hydraulics [39] and Allsop [40] as data.

• 20 data on rubble mound LCS (submerged) [Delft Hydraulics].
• 21 data on rubble mound LCS (emerged) [Allsop].
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Figure 6 Shows the prediction results for new data set using GBR model. For the new
data set, the relationship between the predicted and tested values converges closely to the
ideal y = x line, which shows the good prediction results of the proposed model. Quantita-
tive performance measurement showed high accuracy with R2 = 0.93, MSE = 2.3 × 10−3,
I = 0.98, SI = 5.2 × 10−3, which suggests that the GBR model actually has high accuracy in
predicting the wave transmission coefficient of LCS even for completely new data sets.
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3.2.4. Feature Importance Analysis

Around the coastal structures, the wave attenuation effect is not an action that is inde-
pendent of the input variables, but rather a complex interaction dependent on the variables.
Thus, the relative importance of each variable in the model unit to the total observations
should also be analyzed. Since the importance of the input variable is a measure of how
much the variable affects the dependent variable, analysis for the correlation between the
input and dependent variables is important. Therefore, we analyzed the importance of
variables that affect the wave attenuation of the LCS. Figure 7 shows the importance of
input variables that affect the dependent variable (wave transmission coefficient) when
applying the 260 hydraulic model experiment results to the GBR model. Figure 7a shows
the variable importance, and the x-axis represents the average of the absolute values of the
Shapley values of the input variables throughout the data. In short, this means that the
average influence of the input variable on the dependent variable, and the larger the x-axis
value, the greater the influence on wave attenuation.

As a result of the variable importance analysis, the SHAP value of relative freeboard
(Rc/H0) was 0.116, which verifies that Rc/H0 was the most dominant parameter for wave
control and wave energy reduction in hydrodynamics behavior around the LCS. Next,
the relative freeboard to water depth ratio (Rc/h) and relative structure height (hc/h)
were 0.062, 0.042, respectively, and the results show that the input variable related to
the freeboard has a dominant influence over 80% of the total wave height attenuation
behind the structure. The freeboard should be prioritized for wave control in the design
of the structure, as the attenuation effect of wave energy passing over the LCS along with
wave breaking increases as the freeboard increases. The SHAP values of the ratio of the
crest width to wavelength (B/L0) and relative crest width (B/H0) were 0.023 and 0.017,
respectively, indicating that the input variable related to the crest width has an effect of
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more than 8.6% of the total on the wave attenuation. Figure 7b shows a summary plot
combining the feature importance and feature effects of the input variables. Here, they
are arranged in order of importance, so that the one with the highest feature importance
is placed at the top. The stronger the red shading of the corresponding feature value, the
more positive is the influence on the wave transmission coefficient (Kt), and the stronger
the blue shading, the more negative is the influence. As a result, as Rc/H0, Rc/h, hc/h,
B/L0, and B/H0 increased, the wave transmission coefficient decreased, and as the surf
similarity coefficient (ξ) increased, the wave transmission coefficient tended to increase.
The results showed that this sensitivity trend was in line with engineering practice and
physical background.
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3.2.5. Influence of Input Variable Number

In this study, we analyzed the model accuracy by applying an input variable consist-
ing of seven dimensionless numbers (X = {X1:Rc/H0, X2:B/H0, X3:ξ, X4:B/L0, X5:Rc/h,
X6:Dn50/hc, and X7:hc/h}). If it is possible to build a model with high accuracy by excluding
insignificant input variables and constructing a model with only important input variables,
it is also possible to reduce computational complexity and to derive good results in terms
of time efficiency. Accordingly, we analyzed the effects on model performance when
some input variables or data were not reflected through various combinations. Table 5
presents the model performance results based on the eight combinations of input variables,
and Figure 8 presents the results of the predicted values and experimental values for the
eight combinations.

Table 5. Performance measures for analysis of different input variable combinations.

Combinations

Performance Measures

MSE
I SI R2

Test Train Test Train Test Train

1: X1, X2, X3, X4, X5, X6, X7 0.8 × 10−3 0.997 0.999 0.058 0.032 0.988 0.999
2: X2, X3, X4, X5, X6, X7 1.3 × 10−3 0.995 0.999 0.073 0.040 0.981 0.998

3: X1, X4, X5, X6, X7 1.1 × 10−3 0.996 0.999 0.066 0.070 0.984 0.995
4. X1, X2, X3, X4, X6 1.6 × 10−3 0.994 0.999 0.082 0.041 0.977 0.998

5. X1, X4, X5, X7 1.3 × 10−3 0.995 0.999 0.072 0.071 0.982 0.995
6. X2, X3, X4, X6 22.5 × 10−3 0.894 0.967 0.303 0.351 0.675 0.845

7. X2, X3, X6 22.9 × 10−3 0.889 0.962 0.307 0.370 0.668 0.820
8. X1, X5, X7 3.7 × 10−3 0.986 0.987 0.123 0.230 0.947 0.948
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Figure 8. Predicted and experimental values for the eight combinations. (a): Combination 1;
(b): Combination 2; (c): Combination 3; (d): Combination 4; (e): Combination 5; (f): Combination 6;
(g): Combination 7; (h): Combination 8.
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Combination 1 showed the model performance results when applying pristine seven
dimensionless input variables, indicating the highest accuracy with an MSE of 0.8 × 10−3,
and R2 of 0.988. In contrast, combination 7, which applied four input variables (X2:B/H0,
X3: ξ, X6:Dn50/hc) showed the lowest accuracy with an MSE of 22.9 × 10−3, R2 of 0.668. In
addition, combination 8, which applied three input variables (X1:Rc/H0, X5:Rc/h, X7:hc/h),
showed relatively high accuracy with an MSE of 3.7 × 10−3, R2 of 0.947, despite the
application of a small number of input variables. It is worth noting that the accuracy of
the model does not simply increase with an increase in the number of input variables, as
can be seen from the combination 1–8 results. In addition, in combination 2, the relative
freeboard (X1:Rc/H0), which was classified as the most important factor in the sensitivity
analysis, was not taken into account; however, combination 2 had a relatively high accuracy
with an MSE of 1.3 × 10−3 and an R2 of 0.981. Even if the relative freeboard (X1:Rc/H0) is
ignored, it is judged that combination 2 showed high accuracy by considering the factors
(X5:Rc/h, X7:hc/h) related to the freeboard. However, combinations 6–7, which ignored
the factors related to the crest height (X1:Rc/H0, X5:Rc/h, X7:hc/h), showed low accuracy.
In summary, the factors related to the freeboard (X1:Rc/H0, X5:Rc/h, X7:hc/h) are the most
important input variables to consider when obtaining predictions with high accuracy.

3.3. Comparison of Wave Transmission Coefficient Using Empirical Formulas and Machine
Learning Models

Figure 9a,b show the results of substituting all experimental data into the empirical
formula for the wave transmission coefficient of LCS at the low-crest submerged breakwa-
ter suggested by Van der Meer [31] and D’Angremond [32]. However, the results out of
the effective range (0.075 < Kt < 0.8) suggested by the empirical formula were excluded.
As a result of the prediction of the wave transmission coefficient using the Van der Meer
empirical equation, the MSE was 0.009, and the determination coefficient (R2) was 0.81,
indicating that the overall result of the empirical formula was overestimated, with respect
to the experimental value (Figure 9a). As a result of the prediction of the wave transmis-
sion coefficient using the D’Angremond empirical formula, the MSE was 0.006 and the
correlation coefficient (R2) was 0.84, showing fewer errors than the Van der Meer empiri-
cal formula and high prediction accuracy (Figure 9b). However, in the case of empirical
formulas proposed by Van der Meer [31] and D’Angremond [32], applicable formulas are
classified according to the surf similarity parameter (ξ = tanα/

√
Hi/L0) and the relative

crest width (B/H0), and the effective range of the wave transmission coefficient is limited
to 0.075 < Kt < 0.8, which has a disadvantage in that uncertainty increases for other ranges.
Figure 9c shows the results of substituting all experimental data into the empirical formula
for the wave transmission coefficient of a low-crest submerged breakwater proposed by
Bleck and Oumeraci [33]. In the case of the prediction results for the wave transmission co-
efficient using the empirical formula, the MSE was 0.017, and the determination coefficient
(R2) was 0.71, indicating that the result of the empirical formula showed a low similarity
to the experimental value overall. In addition, for the experimental value under 0.32, the
transmission coefficient was 0.170, with a low prediction accuracy. The wave transmission
coefficient of the LCS should consider the influence of various factors, such as crown depth,
crown width, and porosity; however, the experimental formula of Bleck and Oumeraci [33]
only considered the relative freeboard (RC/H0), which led to a lower prediction accuracy
than the other empirical formulas. Table 6 shows the results of comparing the statistical
indicators of the existing empirical formula and the GBR model. Overall, all statistical
indicators showed that the results of the boosting model showed higher prediction accuracy
than that of the existing empirical formula. Furthermore, unlike the existing empirical
formula, the boosting model does not need to set the effective range of the wave transmis-
sion coefficient, and does not require a separate formula dependent on the input variable
(Figure 9d). In summary, a very accurate wave transmission coefficient can be predicted
by inputting the seven input variables required by the machine learning model. This
is because machine-learning models can interpret the non-linear relationships between
independent and dependent variables. In the case of the empirical formula, analysis is
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possible only in the effective range of the wave transmission coefficient, whereas when the
GBR model is applied, it shows good predictive performance in all ranges.
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Figure 9. Comparison of predictive performance of empirical formulas and machine learning
model. (a): Comparison of wave transmission formulas (Van der Meer) with experimental data.
(b) Comparison of wave transmission formulas (D’Angremond) with experimental data. (c) Compar-
ison of wave transmission formulas (Bleck and Oumeraci) with experimental data. (d) Comparison
of GBR model with experimental data.

Table 6. Statistical parameters of the results.

Methods MSE I SI R2

Van der Meer (2005) 9.0 × 10−3 0.974 0.221 0.810
D’Angremond (1996) 6.0 × 10−3 0.983 0.161 0.840

Bleck and Oumeraci (2001) 17.0 × 10−3 0.960 0.238 0.710
Gradient boosting 0.8 × 10−3 0.997 0.058 0.988

4. Conclusions

In this study, we investigated the hydrodynamic performance modeling of a low-
crested structure using 10 machine learning models, including linear and non-linear models.
To construct the model, we used 260 hydraulic model test data for training (80%) and
prediction (20%). To predict the wave transmission coefficient behind the structure, we
applied seven dimensionless parameters (RC/H0, B/H0, ξ, B/L0, RC/h, Dn50/hc, and
hc/h). In addition, we evaluated the correlation between the input variable and dependent
variable by analyzing the main factors that affect the prediction of machine learning
models using XAI. The wave transmission coefficient for the linear model (M8, M9, and
M10) among the machine learning models showed low prediction accuracy; however, the
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ensemble technique, the GBR model (M2) in particular, showed the highest accuracy to
predict the wave transmission coefficient of a structure with a given input variable. To
validate the machine learning models, we performed a 10-fold cross-validation, which
indicates that the resulting R2 was 0.973, and the mean MAPE was 2.7%, confirming a
significantly low prediction error. This small degree of error proves the generalization
of the model reasonably. Based on the sensitivity analysis, we confirmed that the input
variable for the relative freeboard (RC/H0), and the relative freeboard to water depth
ratio (RC/h) show that the importance of independent variables is significant. As a result,
freeboard was found to be the most dominant factor influencing wave attenuation in
the hydraulic behaviors around the LCS. In addition, we comprehensively analyzed the
results of the empirical formulas and machine learning models. In the wave transmission
prediction of the trained gradient boosting model, the MSE was 0.8 × 10−3, I was 0.997, SI
was 0.058, and R2 was 0.988, which indicates high prediction accuracy and improved wave
transmission coeffcient prediction performance, compared with existing empirical results.
Since the prediction using machine learning can perform analysis non-linearly, the wave
transmission coefficient of a LCS can be predicted precisely and efficiently, in contrast to
the regression method adopted by the exiting empirical formula. It is determined that the
constructed machine learning automated pipeline model can be utilized for not only wave
attenuation studies on LCS, but also various applications in coastal engineering.
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Appendix A

Table A1. The indication of the range of the parameters.

Parameter Definition Average Max Min

H0 (m) Wave height 0.123 0.231 0.021
T0 (s) Wave period 2.017 3.660 0.910

RC (m) Crest freeboard −1.081 0.196 −0.420
B (m) Crest width 0.429 1.000 0.200

Dn50 (m) Nominal diameter 0.110 0.161 0.028
tanα Slope of structure 0.507 0.667 0.250
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Figure A1. Measured versus predicted values for the various models. (a) Linear; (b) Ridge; (c) Lasso; (d) KR; (e) GPR;
(f): SVM; (g) RF; (h) ANN; (i) AdaBoost; (j) Gradient boost.

References
1. Mimura, N.; Kawaguchi, E. Responses of Coastal Topography to Sea-Level Rise. In Proceedings of the 25th International

Conference on Coastal Engineering, Orlando, FL, USA; 1997; pp. 1349–1360.
2. Moghaddam, E.I.; Hakimzadeh, H.; Allahdadi, M.N.; Hamedi, A.; Nasrollahi, A. Wave-induced currents in the northern gulf of

Oman: A numerical study for Ramin prot along the Iranian Coast. Am. J. Fluid Dyn. 2018, 8, 30–39.
3. Hseih, T.C.; Ding, Y.; Yeh, K.C.; Jhong, R.K. Investigation of Morphological Changes in the Tamsui River Estuary Using an

Integrated Coastal and dEstuarine Processes Model. Water 2020, 12, 1084. [CrossRef]
4. Pilarczyk, K.W. Design of low-crested submerged structures—An overview. In Proceedings of the 6th International Conference

on Coastal and Port Engineering in Developing Countries, Pianc-Copedec, Colombo, Sri-Lanka, 15–19 September 2003; pp. 1–16.
5. Seabrook, S.R.; Hall, K.R. Wave transmission at submerged rubble mound breakwaters. In Proceedings of the 26th International

Conference on Coastal Engineering, Copenhagen, Denmark, 22–26 June 1998; pp. 2000–2013.
6. Tanaka, N. Wave deformation and beach stabilization capacity of wide-crested submerged breakwaters. In Proceedings of the

23rd National Conference on Coastal Engineering, Fukuoka, Japan, 25–26 November 1976; pp. 152–157. (In Japanese)
7. Buccino, M.; Calabrese, M. Conceptual approach for prediction of wave transmission at Low-Crested Breakwaters. J. Waterw. Port

Coast. Ocean. Eng. 2007, 133, 213–224. [CrossRef]

http://doi.org/10.3390/w12041084
http://doi.org/10.1061/(ASCE)0733-950X(2007)133:3(213)


Sensors 2021, 21, 8192 20 of 21

8. Ahmadian, A.S.; Simons, R.R. Estimaion of nearshore wave transmission for submerged breakwaters using a data-driven
predictive model. Neural Comput. Appl. 2016, 29, 705–719. [CrossRef]

9. Losada, I.J.; Losada, M.A.; Martin, F.L. Harmonic generation past a submerged porous step. Coast. Eng. 1997, 31, 281–304.
[CrossRef]

10. Martinelli, L.; Zanuttigh, B.; Lamberti, A. Hydrodynamic and morphodynamic response of isolated and multiple low crested
structures: Experiments and simulations. Coast. Eng. 2006, 53, 363–379. [CrossRef]

11. Ai, C.; Jin, S.; Lv, B. A new fully non-hydrostatic 3D free surface flow model for water wave motions. Int. J. Numer. Meth. Fluids
2011, 66, 1354–1370. [CrossRef]

12. Ning, Y.; Liu, W.; Sun, Z.; Zhao, X.; Zhang, Y. Parametric study of solitary wave propagation and runup over fringing reefs based
on a Boussinesq wave model. J. Mar. Sci. Technol. 2018, 24, 512–525. [CrossRef]

13. Hur, D.S.; Lee, W.D.; Cho, W.C. Three-dimensional flow characteristics around permeable submerged breakwaters with open
inlet. Ocean Eng. 2012, 44, 100–116. [CrossRef]

14. Higuera, P.; Lara, J.L.; Losada, I.J. Realistic wave generation and active wave absorption for Navier-Stokes models: Application to
OpenFOAM. Coast. Eng. 2013, 71, 102–118. [CrossRef]

15. Mitchell, T.M. Machine Learning; McGraw-Hill, Inc.: New York, NY, USA, 1997.
16. Salehi, H.; Burgueño, R. Emerging artificial intelligence methods in structural engineering. Eng. Struct. 2018, 171, 170–189.

[CrossRef]
17. Kundapura, S.; Arkal, V.H.; Pinho, J.L. Below the data range prediction of soft computing wave reflection of semicircular

breakwater. J. Mar. Sci. Appl. 2019, 18, 167–175. [CrossRef]
18. Kuntoji, G.; Manu, R.; Subba, R. Prediction of wave transmission over submerged reef of tandem breakwater using PSO-SVM

and PSO-ANN techniques. ISH J. Hydraul. Eng. 2018, 26, 283–290. [CrossRef]
19. Kim, D.H.; Park, W.S. Neural network for design and reliability analysis of rubble mound breakwaters. Ocean Eng. 2005, 32,

1332–1349. [CrossRef]
20. Van der Meer, J.W. Rock Slopes and Gravel Beaches under Wave Attack. Ph.D. Thesis, Delft University of Technology, Delft,

The Netherlands, 1990.
21. Koc, M.L.; Balas, C.E.; Koc, D.I. Stability assessment of rubble-mound breakwaters using genetic programming. Ocean Eng. 2016,

111, 8–12. [CrossRef]
22. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classifiers. In 5th Annual ACM Workshop on

COLT; Haussler, D., Ed.; ACM Press: Pittsburg, PA, USA, 1992.
23. Steve, R.G. Support Vector Machines for Classification and Regression; Technical Report; University of Southampton: Southampton,

UK, 1998.
24. Bruges, C.J.C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121–167.

[CrossRef]
25. Rasmussen, C.E. Gaussian processes in machine learning. In Advanced Lectures on Machine Learning; Bousquet, O., von Luxburg,

U., Ratsch, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 63–71.
26. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, UK, 2010; 266p.
27. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
28. Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I. Random Forests and Decision Trees. Int. J. Comput. Sci. Issues 2012, 9, 272–278.
29. Zhou, W.; Eckler, S.; Barszczyk, A.; Waese-Perlman, A.; Wang, Y.; Gu, X.; Feng, Z.-P.; Peng, Y.; Lee, K. Waist circumference

prediction for epidemiological research using gradient boosted trees. BMC Med. Res. Methodol. 2021, 21, 47. [CrossRef] [PubMed]
30. Lundberg, S.A.; Lee, S.I. Unified Approach to Interpreting Model Prediction. In Proceedings of the 31st Conference on Neural

Information Processing System(NIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 1–10.
31. Van der Meer, J.W.; Briganti, R.; Zanuttigh, B.; Wang, B. Wave transmission and reflection at low-crested structures: Design

formulae, oblique wave attack and spectral change. Coast. Eng. 2005, 52, 915–929. [CrossRef]
32. D’Angremond, K.; Van der Meer, J.W.; De Jong, R.J. Wave transmission at low-crested structures. In Proceedings of the 25th

Coastal Engineering Conference, Orlando, FL, USA, 2–6 September 1996; pp. 2418–2426.
33. Bleck, M.; Oumeraci, H. Hydraulic Performance of Artificial Reefs: Global and Local Description. In Proceedings of the 28th

International Conference on Coastal Engineering, Cardiff, UK, 7–12 July 2002; pp. 1778–1790.
34. Seelig, W.N. Two Dimensional Tests of Wave Transmission and Reflection Characteristics of Laboratory Breakwaters; Technical Report 80-1;

Coastal Engineering Research Center: Fort Belvoir, VA, USA; Army Corps of Engineers Waterways Experiment Station: Vicksburg,
MS, USA, 1980; p. 187.

35. Daemrich, K.; Kahle, W. Schutzwirkung von Unterwasser Wellen Brechern unter dem Einfluss Unregelmassiger Seegangswellen; Technical
Report, Report Heft 61; Franzius-Instituts fur Wasserbau und Kusteningenieurswesen: Hannover, Germany, 1985.

36. Daemen, I.F.R. Wave Transmission at Low-Crested Structures. Master’s Thesis, Delft University of Technology, Delft,
The Netherlands, 1991.

37. Shin, S.W.; Bae, I.R.; Lee, J.I. Physical Modelling of the Wave Transmission over a Tetrapod Armored Artificial Reef. J. Coast. Res.
2019, 91, 126–130. [CrossRef]

http://doi.org/10.1007/s00521-016-2587-y
http://doi.org/10.1016/S0378-3839(97)00011-2
http://doi.org/10.1016/j.coastaleng.2005.10.018
http://doi.org/10.1002/fld.2317
http://doi.org/10.1007/s00773-018-0571-1
http://doi.org/10.1016/j.oceaneng.2012.01.029
http://doi.org/10.1016/j.coastaleng.2012.07.002
http://doi.org/10.1016/j.engstruct.2018.05.084
http://doi.org/10.1007/s11804-019-00088-4
http://doi.org/10.1080/09715010.2018.1482796
http://doi.org/10.1016/j.oceaneng.2004.11.008
http://doi.org/10.1016/j.oceaneng.2015.10.058
http://doi.org/10.1023/A:1009715923555
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1186/s12874-021-01242-9
http://www.ncbi.nlm.nih.gov/pubmed/33750311
http://doi.org/10.1016/j.coastaleng.2005.09.005
http://doi.org/10.2112/SI91-026.1


Sensors 2021, 21, 8192 21 of 21

38. Gandomi, M.; Dolatshahi Pirooz, M.; Varjavand, I.; Nikoo, M.R. Permeable Breakwaters Performance Modeling: A Comparative
Study of Machine Learning Techniques. Remote Sens. 2020, 12, 1856. [CrossRef]

39. Hydraulics, D. AmWaj Island Development, Bahrain: Physical Modelling of Submerged Breakwaters; Report H4087; Delft Hydraulics:
Delft, The Netherlands, 2002.

40. Allsop, N.W.H. Low-Crested Breakwaters, Studies in Random Waves. In Proceedings of the Coastal Structures’83, Arlington, VA,
USA, 9–11 March 1983; pp. 94–107.

http://doi.org/10.3390/rs12111856

	Introduction 
	Methodology 
	Machine Learning Model 
	Linear Regression Model 
	Lasso Regression 
	Ridge Regression 
	SVM 
	Gaussian Process Regression (GPR) 
	Ensemble Method 

	Analysis of Machine Learning Model 
	Performance Measurement 
	Analysis Method of Feature Importance 

	Empirical Formula of Wave Transmission Coefficient 
	Model Design Condition and Method 
	Machine Learning Automatic Pipeline Model 
	Machine Learning Model Configuration and Input Conditions 


	Results and Discussion 
	Comparison of Machine Learning Model and Model Selection 
	Model Performance Analysis 
	Results of Splitting a Dataset 
	10-Fold Validation Analysis 
	Evaluation of GBR Model Using Another Data Set 
	Feature Importance Analysis 
	Influence of Input Variable Number 

	Comparison of Wave Transmission Coefficient Using Empirical Formulas and Machine Learning Models 

	Conclusions 
	
	References

