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Abstract: This paper reviews 74 empirical publications that used high-frequency data collection tools
to capture facets of small collaborative groups—i.e., papers that conduct Multimodal Collaboration
Analytics (MMCA) research. We selected papers published from 2010 to 2020 and extracted their
key contributions. For the scope of this paper, we focus on: (1) the sensor-based metrics computed
from multimodal data sources (e.g., speech, gaze, face, body, physiological, log data); (2) outcome
measures, or operationalizations of collaborative constructs (e.g., group performance, conditions for
effective collaboration); (3) the connections found by researchers between sensor-based metrics and
outcomes; and (4) how theory was used to inform these connections. An added contribution is an
interactive online visualization where researchers can explore collaborative sensor-based metrics,
collaborative constructs, and how the two are connected. Based on our review, we highlight gaps in
the literature and discuss opportunities for the field of MMCA, concluding with future work for this
project.

Keywords: collaboration; multimodal; review

1. Introduction

Over the last decades, there has been a growing recognition of the importance of skills
beyond content knowledge that are transferable to the unknown careers of the future. With
the increasing automation for routine and manual tasks, skills such as expert thinking
and complex communication also rise in value [1]. In particular, the ability to collaborate
within diverse teams is a foundational skill for tackling global problems that traverse
several domains. Various organizations highlighted the need to foster collaborative skills
in the future generation. The American Association of College and Universities identified
teamwork skills as an essential intellectual and practical skill that students should develop
when working towards a post-secondary degree [2]. In the K-12 domain, the Program
for International Student Assessment (PISA) added a measure of Collaborative Problem
Solving to its battery in 2015, motivated by an increase in the incorporation of learning
teamwork tasks [3]. In summary, collaboration is increasingly recognized as a crucial skill
for work and success in modern society.

Traditionally, collaborative processes were studied through qualitative observation
and manual coding, which has the benefits of leveraging human intuition and heuristics,
but is limited in scale. Recently, sophisticated data collection tools such as eye-trackers,
motion sensors, and wearables have become affordable and reliable, which opens new
doors for capturing large, multidimensional, and fine-grained information during collabo-
ration. A sensor can collect data at a rate of 30 to 120 times per second (Hz) on dimensions
including group physiological state, gestures, body postures, and speech, among others.
The maturation of sensors and data mining techniques led researchers to envision new
instruments and methods to measure and understand collaborative skills. As the field is
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nascent and occasionally referred to through different terms, we use the term Multimodal
Collaboration Analytics (MMCA) hereafter. The term draws from multimodal learning
analytics [4], an overlapping field where interest extends to studying general learning
processes with high-frequency data, and from the adjacent field of collaboration analyt-
ics [5], which includes research endeavors employing purely computer-generated data
(e.g., log files).

Despite the increasing popularity, challenges remain in using sensor data in collabora-
tion research. To move away from singular approaches and allow for collective knowledge
building and the cross-pollination of ideas, we take note of synthesis efforts in more
established fields: the taxonomy of socio-emotional learning (SEL) constructs by [6] in
developmental psychology, the human genome project in genomics [7], or the human
connectome project in neuroscience [8]. With the belief that MMCA research could benefit
from similar organizing attempts, the current paper summarizes prior research into a
map of how data, metrics and collaborative constructs are connected, and visualizes this
mapping to make the state of the field accessible to other researchers.

Our work differentiates itself from prior reviews by scope, looking at MMCA papers
in both education and social computing. While there is work in both fields that shares
the same goal of detecting and supporting collaboration [9], there is little communication
between the two fields, and reviews either focus on multimodal learning analytics (MMLA;
e.g., [4,10]), or social computing research on collaboration (e.g., [11,12]). Additionally,
prior reviews in MMLA or social computing presented models of research (e.g., [13,14]) or
surveyed the types of collaborative outcomes that research focused on [10,11], or organized
the types of data sources used [9,15]. To our knowledge, there have been no attempts to
empirically map out the entire space between data, meric, outcome, and constructs, which
is difficult to achieve not only due to the sheer range in metrics and outcomes used, but also
due to the diverse ways that metrics and outcomes are connected [11,16]. Our empirical
survey of theory use in MMCA research is an additional novel contribution that responds
to the call for more theory integration in social analytics [9,17].

This paper contributes the following: (1) a model of research that conceptualizes how
constructs relate to sensor data, (2) a taxonomy to categorize collaborative outcomes and
metrics, and (3) a map of metric–outcome connections in prior research, supported by an
interactive online visualization. We also provide (4) an empirical analysis of how theory is
used to connect data to constructs.

2. Methodology
2.1. Data Collection

The scope of this review includes MMCA papers that used multimodal sensing
technology to study social interactions. We selected a date range of 2010–2020, given the
fact that sensor-based data collection tools were increasingly deployed in the last decade.
We survey the literature to select a subset of papers that aimed to connect collaborative
constructs (operationalized as “outcomes”) with sensor-based proxies (“metrics”). This
excludes several subtypes of wider MMCA research, such as those A/B testing two-sensor-
based applications for collaboration, qualitatively describing events in high-frequency
data (e.g., quantitative ethnography [18]), measuring the impact of an intervention with
high-frequency data, or analyzing only non-sensor based process data, e.g., application
log data or speech transcripts. While we acknowledge the contributions that these diverse
approaches made to the field, we set a narrow criterion for the overall goal of this paper: to
survey the assorted sensor data metric-outcome connections in MMCA research.

To source papers eligible for this review, we followed the principles of the PRISMA [19]
framework, which provides a set of evidence-based guidelines for a systematic review
and meta-analysis. The identification phase consisted of two parallel searches. First, we
conducted a database search using Google Scholar and Web of Science, with a set of pre-
determined key words. Examples of keywords include: “collaboration”, “collaboration
analytics”, “multimodal”, “sensor” and “group work”. For the second prong of our search,



Sensors 2021, 21, 8185 3 of 32

we gathered peer-reviewed articles from 2010–2020 conferences and journals that provided
a publication for MMCA research. These conferences and journals were: the International
Conference on Computer Supported Collaborative Learning (CSCL) and associated jour-
nal (ijCSCL), Conference on Computer–Human Interaction (CHI), ACM Transactions on
Computer Human Interaction (TOCHI), International Conference on Learning Analytics
and Knowledge (LAK), journal of Learning Analytics (jLA), International Conference on
Educational Data Mining (EDM) and associated journal (jEDM), ACM Conference on
Computer-Supported Cooperative Work (CSCW) and associated journal (jCSCW), IEEE
Transactions on Learning Technologies (IEEE TLT), ACM International Conference on
Multimodal Interaction (ICMI), and International Conference on Artificial Intelligence
in Education (AIED) and associated journal (jAIED). We filtered the aggregated articles
to select papers that were (1) full-length; (2) assessed collaboration instances between
human participants; (3) collected at least one type of sensor data; (4) transformed at least
one data source into metrics using computational methods (c.f., papers that solely used
manually coded metrics from video recordings); and (5) connected metrics to at least
one observed outcome. A visual representation of the study selection process under the
PRISMA framework [19] can be found in Figure 1.
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Figure 1. PRISMA diagram showing the flow of information through different phases of the review inclusion process.

2.2. Classification Framework and Process

The creation of our classification scheme and the mapping of prior findings in MMCA
was guided by a simple framework for MMCA research connecting process data with
different aspects of collaboration (Figure 2):
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This data-metric-outcome-construct framework does not apply to all MMCA research,
but our paper selection criteria target the significant portion of papers that are relevant
to this model. In papers that statistically link sensor data with collaborative outcomes,
researchers often begin with a construct(s) of interest and a data source. At one end,
constructs are operationalized into measurable outcomes of interest (e.g., the number of
questions solved, collaboration quality scored by a rubric, or the perceived helpfulness
of group members on a scale of 1–5). At the other end, metrics are generated from high-
frequency data as a hypothesized indicator of the target outcome (e.g., joint visual attention,
vocal pitch, or the prevalence of certain hand gestures). Outcomes are often measured
through manual methods (e.g., self-report, survey, human coding), while metrics are usually
calculated computationally. Of note is the fact that the term “outcome” has references
to the role of outcome variables in statistics and may include the process and conditions
of collaboration (e.g., symmetry of contribution, personality traits, prior expertise). We
discuss the outcomes targeted in MMCA research more comprehensively in Section 4.2.

In one hypothetical example of MMCA research, data could be the x, y location of gaze
locations captured by an eye tracker. One metric from this data could be the amount of time
two people spent looking at the same on-screen location. Coordination, a collaborative
construct, can be operationalized as a score given by researchers on coordination efficiency,
and thus becomes an outcome.

We classified each paper in our dataset based on this MMCA data-construct frame-
work. Specifically, for each paper, we identified the data, metrics, outcomes, and constructs
from the raw text, then classified these into larger categories. When recording the raw
data, researchers directly copied the language used by authors whenever available. A
classification scheme was generated to classify the raw data into larger categories, and
involved iterative cycles of discussion and paper coding involving all researchers. We
sought internal consistency by repeatedly drawing on bottom-up categories for data and
outcomes, classifying a significant (35%) proportion of papers and discussing discrepancies
as a group. This process took place over a total of 20 iterations and yielded if-then rules
for classification, as well as a look-up table consisting of the raw metrics or raw outcomes
found in the papers (such as speech time or stress) and the respective larger category code
(such as speech participation and affective state). To achieve the reliability and consistency
of the synthesis process recommended by PRISMA, the four authors participated in parallel
and active communication during this phase.

The final classification scheme consisted of two primary spreadsheets. The first
captured general information about the paper including paper title, publication year,
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authors, author affiliations, research questions, and task domain. The second spreadsheet
focused on the data, metric, and outcome link assessed in the paper. Namely, information
on the types and brands of instruments used to collect data, raw data source, raw metric,
larger metric category, raw outcome, larger outcome category, outcome instrument, analysis
methods, and significance of metric–outcome links were logged onto the spreadsheet.

2.3. Theoretical Framework for Classification

While the raw metrics and outcomes were derived from a bottom-up approach closely
mirroring the paper text, the outcomes were further classified into larger categories identi-
fied through Dillenbourg’s [20] seminal theoretical framework for assessing collaboration.
In this work, Dillenbourg argues that, while generally the case, collaborative interactions
cannot solely be assessed by their effects on learning or task performance. For one, collabo-
ration takes place in a variety of contexts and through a variety of interactions. Exclusively
addressing the outcomes places a “black box” around these important variables, which
ignores the underlying mechanisms of collaboration.

Instead, Dillenbourg encourages researchers to study the conditions and processes
of collaboration in addition to its effects. As an example, the conditions of collaboration
detail the composition of the group, which include factors such as age, personality, or the
heterogeneity of these variables. The processes of collaboration describe “the mechanisms
which account for knowledge acquisition through collaboration”. These mechanisms
primarily draw on socio-constructive and socio-cultural approaches to learning, and in-
clude self-explanation, sharing cognitive load and mutual regulation. Finally, the effects
of collaboration identify what group members can do (either individually or together)
after the collaborative session. This is most commonly assessed through learning gains
or task performance, but is also expanded to include conceptual change or increased self-
regulation. Over the years, scholars seem to have converged on similar frameworks for
assessing collaboration. For example, Ref. [21] proposed a model that categorized the input,
processes and outputs of a group interaction, and [22] proposed a similar model identify-
ing the antecedents, processes, and outcomes of collaboration. Importantly, all of these
frameworks highlight the necessity of looking inside the “black box” of the collaborative
process.

In the current paper, we adapted and renamed this model to classify the outcomes
that multimodal metrics were designed to capture within our sample. Specifically, we
categorized these into the conditions under which collaboration can succeed, the specific
interactions that occur during the collaborative process, and the end product.

3. Research Questions for the Review

Based on the MMCA data-construct framework (Figure 2), our research questions
(RQs) can be summarized as follows:

RQ1: What sensor-based metrics have been used to capture collaborative processes?
RQ2: What outcome measures have been used to validate sensor-based metrics?
RQ3: Which connections between metrics and outcomes have been successful?
RQ4: How was theory used to inform the connections between metrics and outcomes?
The results section follows this order. In Sections 4.1 and 4.2, we present a taxonomy

of sensor-based metrics and collaborative outcomes. In Section 4.3, we summarize how
different outcomes have so far been connected to metrics using our taxonomy. Here,
we introduce an openly accessible web-based visualization where the entirety of data-
construct connections in our corpora can be interactively explored [23]. Our plans are
to keep updating the database so that it may serve as a central repository for MMCA
research. In Section 4.4, we investigate the role of theory in the data-construct research
model, summarizing how theory integration has so far been carried out in research.
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4. Results
4.1. What Sensor-Based Metrics Have Been Used to Capture Collaborative Processes (RQ1)?

Our first research question addresses the type of metrics that have so far been used in
MMCA research. Metrics represent a layer of abstraction created by processing raw data
into measurable features, hypothesized to be proxies of different collaborative outcomes.
We organized metrics into six larger categories, which are summarized in Table 1. The
six larger categories reflect primary data modalities that are closely tied to data sources
(e.g., ‘verbal’, ‘physiological’). Conversely, the smaller categories were generated using a
ground-up approach through iterative groupings of similar metrics found in the papers
(e.g., ‘vocals pitch’ and ‘energy’ into an ‘audio features’ category). The table also shows
examples of each metric category, the sensors and computation methods used, and papers
that use this metric type.

There are several observations we can make from Table 1. First, the table reflects
the richness of the data sources and metrics used to capture collaboration. We found
457 sensor-based measures in the 74 papers analyzed in our corpus. Metrics ranged
from indices of physiological synchrony, linguistic features, joint visual attention, body
movement/synchronization, facial expressions, to context-specific actions captured by log
files. This variety indicates that MMCA is a burgeoning field that has brought forth a rich
set of metrics to investigate collaboration.

Second, we observed that there was a preference for certain types of metrics in our
corpora. Verbal data were used in 35 papers (close to half of our corpus, or 47% of papers)
and gaze data were used in 28 papers, or 37%. More specifically, visual attention and
speech-related features were frequently utilized, while touch, eye motion, heart rate, brain
activity and eye physiology metrics were less frequently explored. This may have been
due to several reasons. The cost of some sensors can be inhibitive, as in the case of research-
grade wearable EEG devices, while ease of analysis can also play a part—for instance,
established front-to-end software exists for extracting acoustic features from speech. The
necessity of a human coding step, as is often the case in semantic speech features, or the
invasiveness of sensors may also have played a role. Finally, some data sources have
a larger perceived distance with collaborative constructs—for instance, more meaning-
making steps are required to connect heart rates to complex human behaviors compared to
hand gestures.

Third, we observed that papers tended to analyze only one modality. One strength of
MMCA is that collaboration can be understood through the combination of multimodal
features (i.e., the complex interplay of subtle body postures, tone of voice, gaze direction,
words chosen, physiological states, and other behaviors in collaborative interactions).
However, the majority of the papers only analyzed one modality (55%), a few combined
two modalities (33%), and only a small fraction used more than two modalities (12%).
This indicates that there are obstacles to conducting truly multimodal analysis, which we
elaborate further on in the discussion section.

Fourth, when describing how these metrics were computed from sensor data (5th
column in Table 1), we categorized whether they were computed using a procedure created
by the researcher (e.g., by generating them from the raw data, or by using a combination
of self-designed computations) or if they could be generated solely by an existing tool
or procedure (e.g., an eye-tracking software). We found that 405 metrics (87%) used the
former. This is not surprising, given that we only studied academic sources whose main
contribution is a new metric set. However, constantly inventing new features can introduce
issues when trying to generalize results. In several instances, we found that metrics shared
the same name but were computed in different ways; or metrics had different names but
were computed in the same way. For instance, Ref. [24] discusses interruptions, while [25]
discusses overlap cues, yet both papers calculate the number of events when a speaker is
interrupted by another.
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Table 1. Taxonomy of metrics.

Larger Category Lower-Level Category Metric Examples Sensors Used Computation Methods References

Verbal
(N = 35)

Speech Participation
(N = 18)

Speech time, Silence duration, Verbal
dominance, Speaking turns,
Interruptions, Speech frequency, Verbal
participation symmetry among group

Microphone, Microcone,
Video camera

Arithmetic calculation [24–41]

Verbal Content
(N = 10)

Dialogue acts, Sequences of verbal
utterances, Linguistic features

Arithmetic calculation,
Qualitative coding,
Supervised machine
learning

[27,32,42–49]

Audio Features
(N = 17)

Pitch, Energy, Speaking rate, Acoustic
features, Mean audio level, Prosodic
and tone features

Arithmetic calculation,
Supervised machine
learning, OpenSMILE

[28,32,33,39,41,42,48,50–59]

Physiological
(N = 13)

Electrodermal Activity
(EDA)
(N = 11)

EDA peak detection, Galvanic skin
response, Physiological synchrony

Varioport 16-bit digital
skin conductance
amplifier, Smart
wristband,
Electroencephalogram,
Wearable sensor

Arithmetic calculation,
Correlation,
Cross-recurrence
quantification analysis

[52,57,60–68]

Heart Rate
(N = 2) Heart rate Arithmetic calculation [63,68]

Neural Activity
(N = 1) Brain synchrony Arithmetic calculation [69]

Mixed (e.g., EDA +
Heart Rate)
(N = 2)

Physiological linkage, Physiological
simultaneous arousal, Physiological
concordance index

Arithmetic calculation [34,61]

Gaze
(N = 28)

Gaze/Eye Direction
(N = 28)

Gaze fixations, Gaze area of interest,
Attention center, Count of faces
looking at screen, Fraction of
convergent gaze, Gaze similarity, Joint
visual attention

Eye tracker, Video
camera, Microsoft Kinect,
Optical see-through
head-mounted display

Arithmetic calculation,
regression, Matrix
Calculation, BeGaze,
Maximum a posteriori
estimation, Supervised and
unsupervised machine
learning

[24–26,28,30,40,44,49,55,57,70–87]

Eye Motion
(N = 3) Gaze transitions, Gaze saccades

Arithmetic calculation,
Eye-tracking softwares
(e.g., BeGaze)

[70,72,75]

Eye Physiology
(N = 1) Pupil size Arithmetic calculation [84]
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Table 1. Cont.

Larger Category Lower-Level Category Metric Examples Sensors Used Computation Methods References

Head
(N = 11)

Facial Expression
(N = 6)

Facial action units, Facial expression
features, Smiling synchrony Video camera, Microsoft

Kinect

OpenFace [43,48,51,54,64,67]

Head Motion
(N = 5) Head movement Arithmetic calculation [28,32,38,58,59]

Body
(N = 21)

Hand Motion
(N = 8)

Gesture, Wrist movement, Total
manual gestures per second, Iconic
gestures per second, Deictic gestures
per second, Distance between hands,
Hand motion speed, Touch patterns

Video camera, Webcam,
Microsoft Kinect

Arithmetic calculation,
Qualitative coding,
Unsupervised machine
learning

[15,26,38,43,58,79,88,89]

Gross Body Motion
(N = 12)

Total Movement, Type of movement,
Body synchronization, Physical
synchrony, Joint movement, Joint angle

Arithmetic calculation,
OpenPose, Supervised and
unsupervised machine
learning

[27,28,31,35,38,52,57,90–94]

Location
(N = 6)

Distance from the center of the table,
Body distance, Dyad proximity

Arithmetic calculation,
OpenTLD [27,28,59,90,91,95]

Activity Log
(N = 12)

Writing Action
(N = 1)

Total number of pen strokes, Average
stroke time, Average stroke path
length, Average stroke displacement,
Average stroke pressure

Digital pen, Touch
screen, Interactive
tabletop, Arduino IDE,
Video camera, Log files

Arithmetic calculation [27]

Touch
(N = 3)

Total number of touch actions,
Symmetry of touch actions among
group

Arithmetic calculation,
Qualitative coding [36,45,96]

Task-Related
(N = 9)

Object manipulation, Calculator use,
Times mathematical terms were
mentioned, Times commands were
pronounced, Amount of exploration,
Arduino measure of complexity,
Arduino active hardware blocks,
Arduino active software blocks

Arithmetic calculation,
Qualitative coding, OpenCV,
Micro-controller logs

[27,37,39,56,58,75,90,92,97]
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4.2. What Outcome Measures Have Been Used to Validate Sensor-Based Metrics (RQ2)?

Our second research goal was to catalog the types of outcome measures used by
researchers to validate their sensor-based metrics. To organize the types of collaborative
outcomes utilized in MMCA research, we referred to the seminal work by Dillenbourg [20],
as mentioned in Section 2.3. After grouping our raw outcomes by similarity, we observed a
parallel distinction based on these frameworks. That is, research in our corpora aimed to
connect data-derived metrics with either the conditions within a collaborative group (e.g.,
individual personalities, leadership); the processes integral to, or indicative of, successful
collaboration (e.g., group rapport, engagement, mutual understanding); or the products
of collaboration (e.g., learning gains, performance). The results of our analysis for each
outcome measure are displayed in Table 2. The first column shows the larger category of
the outcome, as classified by Dillenbourg’s framework [20]. These overarching categories
contain several lower-level outcome categories shown in the second column, which were
derived using a bottom-up approach to classifying our data.

The first observation we made from Table 2 is that performance and learning, the
‘product’ measures of collaboration, were most often assessed (in 53% of the papers, not
including repeat papers across outcomes). Among outcomes targeting the ‘process’ of
collaboration, coordination and communication outcomes, such as information pooling,
time management, and mutual participation, were studied in a number of papers. This
is likely because these factors are often linked with highly available data sources such
as audio and video, and often use a validated coding scheme (see [98]). Affective states
were not widely studied, possibly because they were primarily individual experiences,
rather than a consciously targeted outcome in collaboration (For a review of the active and
ongoing multimodal research on individual affective states during learning, see [99]).

Second, Table 2 also illustrates a significant diversity in task context and measurement
methods both across and within outcome measures. Column 4 indicates that the majority
of the papers used tasks from science, technology, engineering and math (STEM) domains,
such as programming, neuroscience, or robotics. Other domains included gameplay or
group decision-making tasks. Whether the field’s understanding of multi-modal analytics
are transferable to less frequently studied domains, such as subjects in the humanities or
creative endeavors, is an open area of research.

Third, column 6 reveals the common questionnaires and coding schemes consistently
used by researchers, notably the Meier, Spada, Rummel framework [98], to assess commu-
nication and coordination, the NASA Task Load Index [100] to measure cognitive load,
and the NEO-FFI questionnaire [101] to assess personality. However, papers employed
a large variety of measures for affective state, interpersonal relationships or perception,
and individual cognitive processes. In these outcome categories, there was a high level of
variability, even among validated measurement tools.

Finally, a related observation is that process outcomes of collaboration tend to have
the highest levels of variability in how they are measured. This could suggest that more
theoretical discussion among the field is needed to determine (1) what constitutes a process
measure and (2) to discover validated measures to assess this. We further elaborate on
these points in the discussion section.
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Table 2. Taxonomy of Outcomes.

Larger
Category

Lower-Level
Category

Outcome Examples (Data
Directly from Papers) Domain Measurement Methods

Questionnaires or Coding
Schemes (Ratio of Validated
to Generated)

Reference

Product
(N = 37)

Performance
(N = 24)

Completion time, Success of
task, Quality of task,
Correctness

Pair programming,
problem-solving, instruction
giving, math, physics,
engineering/design

Automated coding,
human coding,
self-report

Questionnaire (0:2):
Researcher Generated

[25,27,29,32,42,51,57,58,62,
64,65,69,71,74,76–
78,80,83,86,91,92,95,97]

Learning
(N = 19)

Normalized learning gain,
dual learning gain

Neuroscience, programming,
engineering/design,
nutrition

Pre-post test [15,26,34,43,44,47,56,59,61,
64,70,72–74,77,80,83,84,90]

Process
(N = 25)

Communication
(N = 22)

Conversational efficiency,
agreement, mutual
understanding, dialogue
management, verbal
participation

Pair programming,
neuroscience,
problem-solving, math,
nutrition,
engineering/design,
gaming, naturalistic

Automated coding,
human coding,
self-report

Coding Scheme (15:5): Meier,
Spada, Rummel [98],
Researcher Generated
Questionnaire (1:0): Meier,
Spada, Rummel [98]

[31,34,36,37,39,45,47,49,55,
56,61,63,72–74,81–
83,86,87,89,91]

Coordination
(N = 28)

Information pooling,
consensus reaching, socially
shared regulation,
synchrony, task division,
time management, technical
coordination, routine choice

Pair programming,
neuroscience,
problem-solving, math,
physics, nutrition,
engineering/design

Human coding,
self-report

Coding Scheme (17:6): Meier,
Spada, Rummel [98],
Researcher Generated
Questionnaire (1:1): Meier,
Spada, Rummel [98],
Researcher Generated

[31,34,36,38,39,41,45,47,51,
55,56,58,61,63,66,67,69,72–
74,78,79,81–83,86,91,96]

Affective state
(N = 6)

Stress, confidence, emotional
state, empathy, frustration,
perceived valence and
arousal

Programming,
problem-solving, physics,
engineering/design, gaming

Self-report

Questionnaire (3:3): Social
presence in Gaming [102],
NASA Task Load Index [100],
Ainley, Corrigan and
Richardson [103], Hadwin &
Webster [104], Researcher
Generated

[40,48,56,62,92]
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Table 2. Cont.

Larger
Category

Lower-Level
Category

Outcome Examples (Data
Directly from Papers) Domain Measurement Methods

Questionnaires or Coding
Schemes (Ratio of Validated
to Generated)

Reference

Process
(N = 25)

Interpersonal rela-
tionship/perception
(N = 14)

Self-report quality,
self-esteem in work teams,
collaborative will,
perception of peer
(helpfulness, understanding,
clarity), colaughter, social
presence, rapport level, team
cohesion

Pair programming,
neuroscience,
problem-solving, instruction
giving, math, physics,
nutrition,
engineering/design,
naturalistic

Human coding,
self-report

Coding Scheme (0:3):
Researcher Generated
Questionnaire (6:6):
Sanchez-Cortes, Aran, Mast
and Gatica-Perez [30],
MSLQ [105], Manson
et al. [106], Researcher
Generated

[24,25,30,48,50–
53,64,66,68,92,94,95]

Individual Cognitive
Processes
(N = 11)

Mental effort, cognitive load,
workload, engagement, task
difficulty

Programming,
problem-solving, physics,
engineering/design,
gaming, naturalistic

Human coding,
self-report

Coding Scheme (0:2):
Researcher Generated
Questionnaire (7:3): Social
Presence in Gaming [102],
User Engagement
Survey [107], NASA Task
Load Index [100], Paas [108],
Tapola, Veermans and
Niemivirta [109], Efklides,
Papadaki, Papantoniou, and
Kiosseoglou [110], Researcher
Generated

[43,59,60,62,65,67,68,79,86,
89,96]

Condition
(N = 15)

Group composition
(N = 15)

Expertise, personality,
assigned leadership,
emergent leadership

Problem-solving, math,
gaming

Automated coding,
Assigned role, self-report

Coding Scheme (0:4):
Researcher Generated
Questionnaire (8:0):
NEO_FFI [101], SYMLOG
[111], GLIS [112],
Manson et al. [106]

[22,24–26,30,32,37,43,50,51,
72,82,85,87,91]

Notes: In the fourth column titled “Domain,” “naturalistic” domains categorized studies that assessed ecological classroom settings without explicit specification of learning domain. Under column five,
“Automated coding” indicates measurements that were either automatically calculated by a computer or measures that were formulaically generated. Under the sixth column, the values in parentheses indicate
the ratio of previously validated measures to measures generated by the researchers for the study. Coding schemes and questionnaires generated by researchers do not necessarily indicate that these measures
have no literature backing, nor that they have not been used in other studies.
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4.3. Which Connections between Sensor-Based Metrics and Collaborative Outcomes Have Been
Successful (RQ3)?

In this section, we summarize the connections made between metrics and outcomes
in MMCA research as per our third research question. As the main focus of this paper,
these connections are investigated through different perspectives. First, we describe the
types of connections (i.e., analysis methods) used in our corpus (Section 4.3.1). We then
summarize the significant and non-significant connections made per each lower-level
outcome category, quantitatively (Section 4.3.2) and qualitatively (Section 4.3.3). Finally, we
introduce an openly accessible and interactive online visualization where data-construct
connections can be explored in detail (Section 4.3.4).

4.3.1. Types of Metric–Outcome Connections

One of the most frequent types of approaches found to connect metrics to outcomes is
testing the significance of individual links, often using correlation or regression analysis
methods. For instance, [71] runs a series of correlation analyses between different gaze
metrics and post test scores to report strength and significance. This type of approach
was widely found in our data, and has the benefit of being able to quantify the power of
individual metrics compared to a whole-model approach.

Another procedurally similar method builds the narrative backward from the outcome,
investigating if different people or work attributes translate to divergent patterns in the
data-derived metrics. T-tests, chi-squared tests and ANOVAs are frequent methodological
choices in this approach. One example is [45], where the researchers divide less versus
more collaborative groups using researcher codes, then test whether there are differences
in multiple audio- and log-data-derived metrics between the two groups.

A distinctive type of approach aims to create functional prediction systems for an
outcome of interest. Machine learning methods are often used, such as regression, neural
networks, or support vector machines. The research by [58] generated 18 features from
camera, Kinect, audio, and activity logs to build a neural network classifier, testing different
metric calculation methods and combinations.

While the focus of our review is on the quantitative associations made between metrics
derived from high-frequency data and collaborative outcomes, qualitative examinations
between metrics and outcomes can serve an important aim for advancing the field. One
such type of analytic strategy is to observe and then describe what happens during patterns
of interest in the data. Qualitative methods were used to draw observations from video
recordings, dialogue, or interview transcripts to shed light on metric measures, and to de-
termine the meaning of a metric–outcome connection. For example, Ref. [26] supplements
quantitative analyses by studying the dialogue of dyads who displayed high levels of joint
visual attention (JVA) during a task to examine the potential causes of JVA, and hypothe-
sizes their impact on the learning outcomes. Papers such as [64] attempt to understand
electrodermal activity metrics by observing events that take place during simultaneous
arousal.

These approaches are not mutually exclusive. Papers often test multiple links, or adopt
several approaches to test one set of links. Papers such as [24] or [56] for instance report
the strength of correlations between individual metrics and outcomes before combining
metrics for outcome prediction. Combining these approaches allows for the testing of
uniquely created metrics while also linking metrics multidimensionally and practically
with a learning outcome of interest.

4.3.2. Quantitative Trends in the Metric–Outcome Connections

To find trends in the metric–outcome connections, we investigated which metric–
outcome connections were the most and least successful. We adopt a simple definition of
success, determining it by whether a particular metric–outcome link was reported to be
statistically significant in a paper. The results of this survey are summarized in Figure 3.
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Figure 3 shows the count of connections made between a particular outcome and
metric, with the circles representing success (i.e., statistically significant connection) and
the x’s lack of evidence for a connection (i.e., statistically non-significant). The sizes of the
markers signify the count—for example, the connection between performance and verbal
metrics was found to be significant in eighteen cases, and non-significant in two cases. We
note here that the statistical significance of a connection does not imply a strong connection
between a metric and outcome. A statistically significant connection could be weak, but
discovered due to a large sample size, choice covariates, etc., while the opposite may occur
for statistically non-significant connections. In other words, our visualizations show the
frequency of connections, and not their strength.

The results showed that metrics had different rates of success. Head metrics, while
less frequently used, were found to have meaningful associations across all types of
collaborative outcomes, in particular for interpersonal relationships and perceptions. Verbal
metrics were most frequently applied among the different metric categories, and the
majority were successful across all outcome types. The opposite is true for physiological
metrics; while often employed, metrics failed to be associated with outcomes more often
than they were successful. However, we note that the success rates of a metric type do
not imply a need to move away or towards a particular metric. For instance, EDA signals,
while often less straightforward for understanding natural collaborative situations, offer
the unique benefits of being minimally invasive; privacy-preserving, based on universal
human biology; and usable in nearly all physical environments. Instead, we take this
to be a map summarizing the level of progress made in finding stable connections for
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different metric–outcome combinations. For pairs with low frequency or success rates,
more development and explorations of metrics are needed; for those with high frequency
or success rates, fruitful endeavors might be to refine previously developed metrics or find
new theory-based metric combinations and analysis methods. This has organically taken
place, for example, in the study of emergent leadership using gaze metrics, where papers
were built on a common understanding that a socially dominant person receives more
attention from peers. Therefore, the different ways of quantifying this received attention
can be tested by refining metrics to be more accurate, automated, and widely applicable to
different contexts (see [30,55,85] for examples).

4.3.3. Qualitative Findings for Metric-Outcome Connections

We discuss the significant findings for each outcome category of collaboration below.
We provide an overview of successful metric–outcome links per outcome type, with the
goal of informing future research directions.

Product: Performance

The most common way of assessing the success of a collaborative session is by how
well the team worked together to achieve a given task. The ‘product’ category of outcomes
is measured to find multimodal indicators of success in process data. By making this
connection, it is assumed that multimodal metrics measure one or many from a wide
range of adaptive behaviors characteristic of good collaboration, such as group members
being in ‘sync,’ or all members of the group being engaged in the task. As the target
mechanism varies widely, the metrics explored for this outcome category also span across
the entire range of metric types. Nonetheless, connecting process metrics with the products
of collaboration can help understand what the process of a successful collaboration looks
like, or yield practical algorithms for predicting performance or detecting underperforming
groups.

Both group and individual performances were studied as outcomes in our corpora,
although individual outcomes were targeted more than 80% of the time. Individual task-
dependent log metrics on how someone approached a task (e.g., variety of code blocks [58],
calculator use count [27]) had significant repeated links to performance. Body metrics
(e.g., amount of movement [27,52,91,92], distance between members [58,59]) achieved a
high rate of success for hands-on tasks while being generalizable across different contexts.
Combinations of verbal (e.g., speech participation [25,27,29,30]) and gaze metrics (e.g., area
of interest [78], joint visual attention [26,70,77,83,86]) were usually successfully linked to
increased performance, although one paper found low-level gaze features to be unsuccess-
ful predictors [72]. Physiological metrics, on the other hand, were largely unsuccessful and
there was notable divergence in the success levels of physiological synchrony [62,63,65,66].

Product: Learning Outcomes

Another “product” of successful collaboration is increased learning for all group mem-
bers involved in the collaborative process. Because successful performance and successful
learning share comparable mechanisms, similar types of metrics were found to be asso-
ciated with both outcomes. Gaze metrics were most frequently connected with learning
in particular, with joint visual attention positively correlating with learning gains in both
in-person and remote settings [44,71,73,74,77,80,82,84]. Researchers typically view gaze
as a proxy for students’ focus of attention and use it to determine if students are paying
sufficient attention to the critical elements of the learning material. Sophisticated measures
of verbal content, such as linguistic coordination [47,49] and verbal coherence [47,49] were
predictive of learning outcomes, while simple measures of speech, such as the individual
length of utterances, were not correlated with learning gains [47]. In a similar vein, we
would expect students who are more proficient learners in classrooms to behave differ-
ently from others who were not. Individual clustered body movements, such as hand,
wrist movement [15] and active posture [90], but not group-level metrics such as body
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synchronization [90], were predictive of individual learning gains. Lastly, based on the
papers we reviewed, internal physiological measures such as EDA synchrony were more
successful for predicting learning than performance [34,57,60,62,65], although the results
were still mixed. Apart from EDA, we found that overall learning tended to have more
mixed success with metrics. In other words, there were fewer metrics that were established
as effective for predicting learning outcomes. One explanation is that successful metrics are
task- or domain-dependent: learning tests in our corpus targeted different types of learning
(e.g., memorization, conceptual understanding, transfer questions) in widely different
domains (e.g., programming, physics, math, history, language).

Process: Communication

Integral to the success of any kind of collaborative activity is effective communication.
Successful collaboration occurs in cases where members actively regulate their communica-
tion. For example, [113] finds that actively engaging in explaining and listening during
group work leads to better retention of learning.

Communication was most often studied as a sub-domain of ‘collaborative quality,’
in particular through the Meier, Spada and Rummel coding scheme, where the quality of
communication is judged by how well participants sustain mutual understanding, and
perform dialogue management, e.g., balanced turn-taking. Two papers [56,64] created
labels for the communication-related state of collaboration at a given time, while other out-
comes included balanced verbal participation [45,50], joint visual attention [47], and speech
cohesion [57]. The study by [87] was unique in its approach of using lower-level outcomes,
investigating connections between pair gaze patterns (metric) and use of referential forms
(outcome; e.g., a deictic pronoun such as ‘this’ or ‘those’).

Speech is the primary data type that holds information about dialogue management,
the first component of communication as per the Meier, Spada and Rummel coding scheme.
As such, verbal metrics were the most frequently employed metric for communication
quality, with speech time [50] and symmetry of speech among the group members [33,34]
found to be significant indicators. On the other hand, to gauge how well collaborators
sustain a mutual understanding, the second component of communication, JVA, was
frequently investigated as a metric in a number of papers. JVA was particularly found to be
correlated with students’ tendencies to reach a consensus and manage dialogue [74], similar
to [73] that found associations with sustaining mutual understanding, reaching a consensus,
and pooling information. EDA metrics showed mixed results for link to communication
measures [34,57,62,64], which may indicate that EDA metrics remain internal to the group
participants and have less observable connections with communication amongst group
members. ML models predicting communication outcomes most often used an extensive
set of audio and/or verbal metrics, although actions recorded in log data were combined
with verbal metrics in [36,37,39,56]. Network analysis-based joint gaze metrics [81] and
physical synchrony metrics were used independently in [57] to some success.

Process: Coordination

Given the complex and interdependent nature of many collaborative activities, group
members must coordinate their efforts in order to succeed [98]. In successful groups,
individuals must contribute useful information, process it together, divide tasks, allocate
enough time for subtasks, and coordinate parallel and joint activities. Coordination is
achieved not only through oral contributions, but also through subtle non-verbal interac-
tions: group members need to coordinate their attention by jointly looking at the same
areas of interest and coordinate their physical actions through various body postures and
gestures. In our coding, targeted activities included the coordination of communicative
content (information pooling, reaching a consensus) and processes (task division, time man-
agement, technical coordination). Coordination was also often studied as a sub-domain of
‘collaborative quality’ through the Meier, Spada and Rummel coding scheme.
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The verbal participation of group members was found to be consistently connected
to coordination [36,41,64,83]. This included measures of verbal coherence, such as the
similarity of within-group speech [47,49]; equal contribution to the discussion [45]; and
various Coh-metrix metrics, such as readability, intentional verbs or using the active
voice [57]. Speech features (e.g., loudness, pitch, jitter) were also heavily used in our
corpus, but only in conjunction with supervised machine learning approaches [39,41,56].
Several non-verbal metrics were also significantly related to coordination. For example, a
large body of evidence indicates that successful coordination is correlated with a higher
occurrence of joint visual attention [70,73,78], especially for task division and reaching a
consensus [74]. Gaze awareness tools (i.e., being able to see the gaze of a partner in real
time) was found to significantly improve information pooling, time management, reaching
a consensus [73], and verbal coherence compared to a control group [49]. This indicates
that helping group members achieve joint visual attention might be beneficial to their
coordination. Finally, several papers found that successful coordination is also associated
with increased physiological synchrony [34,68]. Qualitative evidence suggests that episodes
of high synchrony might be associated with a common response to external events, and
low synchrony with joint work or moments of confusion [62]. What is more, the number of
back-and-forth transitions between these two states was strongly correlated with dialogue
management, and moderately with reaching consensus or information pooling [62]. This
could indicate that successful coordination involves rapid transitions between states of
(dis)synchrony, a finding that was replicated for measures of joint visual attention [82].

Process: Affective State

An additional process measure integral to collaboration relates to the affective state
of individual group members. Emotions play an important role in the interactions and
performance of a collaborative team. Notably, individuals can perpetuate both positive
and negative emotions to their team members [114], and the forms of non-verbal commu-
nication triggered by certain emotional states impact team decisions and interactions [115].
Within our sample, outcomes were mostly individual affective states similar to those
found in the wider field, such as frustration, boredom, interest, and valence (from positive
to negative).

Due to the biological responses connected with affective states, physiological metrics,
and, in particular, physiological linkage were frequently studied in collaboration studies.
The study by [60] found that the physiological linkage between participants during a
gameplay scenario was correlated with feelings of empathy, suggesting support for “emo-
tional contagion”, which posits that individuals simulate similar biological responses in
order to understand the other person. This may be irrespective of the type of emotion,
since [66] found that physiological synchrony was not associated with emotional valence.
Both [43] and [95] assessed feelings of frustration using body movement data during learn-
ing. While [43] found that students expressed a higher frustration after receiving help
from a tutor, based on movement data, Ref. [95] showed that the transitional probability of
working with an instructor, compared to working individually, was negatively associated
with frustration. The study by [43] postulates that the increase in frustration could be due to
a lingering misconception, while [95] interpret their data to mean that instructors are often
effective in helping their students with problems. These discrepancies highlight a future
direction for using movement data to understand emotion, using observable contextual
information to form hypotheses that could then be verified in subsequent research. Finally,
using a combination of speech, body movement and skin response metrics across time,
Ref. [52] found that lower levels of team regularity corresponded to a more positive valence.
The authors suggest that this indicates that teams with more repetitive patterns felt that
the collaboration was more unpleasant.
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Process: Interpersonal Relationship/Perception

During group interactions, interpersonal relationships and perceptions can play a
mediating role in the products of collaboration as well as other process measures. For
example, rapport between individuals is linked with higher learning gains [116]. On the
other hand, group conflict (both task-related and social) was shown to negatively affect
group performance [117]. Understanding individual and interaction-level metrics that
contribute to interpersonal perceptions can help researchers develop interventions to foster
mutual rapport and support collaboration.

Examples of this outcome within our sample include group members’ perceptions of
the contributions and helpfulness of others, sense of rapport, and perceptions of group
cohesion. Verbal metrics were studied in the majority of interpersonal perception papers.
Verbal dominance and speech length was significantly correlated with perceived contri-
bution [25]; however, individual features of speech such as speech rate and voice features
were not significantly linked with interpersonal perception outcomes such as helpfulness
and understanding [48,52]. It may be that verbal cues are too granular to impact high-level
interpersonal relationships at the group level, or, as the authors of [52] propose, participants
may rely more heavily on visual metrics, such as facial expressions, to inform interper-
sonal perceptions. In line with this conjecture, Ref. [48] found that facial expressions were
correlated with perceptions of peer helpfulness, understanding and clarity.

Process: Individual Cognitive Processes

Individual cognitive processes during collaboration such as engagement and partici-
pation can be powerful indicators of the success of collaboration. In particular, imbalanced
cognitive engagement can be seen as a deterrent for effective collaboration [20]. Research
in this area has shown that mental effort is related to a group’s performance [118] and
that misunderstanding team members’ individual cognitive processes hinders successful
collaboration [110]. Thus, building an understanding of which metrics are indicative of
individual cognitive processes can enable teams to better direct and monitor their progress
together. Of the papers that measured individual cognitive processes, engagement, men-
tal effort, and cognitive load were among the most studied subdimensions. Commonly
used questionnaires were the Social Presence in Gaming questionnaire, and the NASA
Task Index.

Physiological metrics were studied most frequently for cognitive processes, and
physiological synchrony between participants was shown to significantly predict engage-
ment and mental effort [60,61,66,68], but not perceived workload [63]. The study by [66]
presents their findings as showing that episodes of continuous physiological synchrony
among group members during collaborative problem solving refer to the groups’ increased
mental investment in the tasks. Other notable findings revealed that body distance was
significantly related to physical engagement [79]. Additionally, during voice-based commu-
nication between collaborators, the presence of shared gaze reduced cognitive workload,
potentially because it provided a shared referent [86]. However, the authors also sug-
gest that, in text-based communication, shared gaze may increase cognitive load since
participants must divide their attention.

Condition: Stable Personal Attributes

Stable personal attributes, such as personality type and individual expertise, were
long studied as important contributors to group success. For instance, studies found that
too many high achievers in a group can actually hinder collaboration [119] or that social
loafing tendencies of individuals can have a negative impact on group performance [120].
In MMCA, three types of personal attributes seem to have emerged as key research areas:
the ‘Big Five’ personality traits (extroversion, agreeableness, openness, conscientiousness,
and neuroticism), leadership, and expertise.

For personality traits, Ref. [40] showed that the amount of speech activity and gaze
attention in a group in the presence of an individual are good indicators of extroversion.
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The study by [54] explores verbal, nonverbal and motion metrics to list key predictors for
each trait, e.g., voice pitch for agreeableness. The study by [28] refines these metrics by
studying the co-occurrence of verbal and nonverbal metrics, improving prediction accuracy.
Lastly, Ref. [46] showed a high classification accuracy (around 80%) using a combination
of inter- and intra-personal vocal behaviors, such as pitch and intensity. Their approach
differs in that they use a time-aware machine learning method (i.e., BLSTM).

For leadership, visual dominance ratio (VDR) was found to be a popular metric that
took advantage of the fact that dominant individuals receive more attention from peers.
The early study by [55] automatically measured VDR through gaze and speech cues. Two
papers spearheaded by Beyan [35,85] then used head pose to measure the attention received
and successfully predicted leadership. Verbal metrics were also commonly used to predict
leadership, such as verbal dominance and speech length [24,25]. The study by [24] explains
that these findings are intuitive in light of their data, where leaders typically drove the
conversation, proposed new topics, and summarized group decisions. Prosodic features,
such as articulation rate or low pause durations were also indicative of leadership among
student groups [33].

In the prediction of expertise, there is less convergence in the metrics used, but a range
of promising metrics emerged as grounds for future investigation. The study by [33] found
that students with higher expertise had a shorter pause duration in speech, and spent less
time writing. The study by [29] achieved preliminary success in detecting domain experts
in math using vocal features, in particular the patterns of transitions between speakers.
The study by [27] looks at more context-dependent features for predicting math expertise,
namely the time spent using calculators and mentions of numbers or mathematical terms,
along with the more generalizable feature of speed of writing or drawing. The study
by [88] finds that experts gesture less, but dynamically gesture more in hard problems, and
differ in the type of gestures they make. Lastly, Ref. [75] somewhat uniquely predicted the
expertise of Tetris papers with gaze and action metrics such as gaze fixation duration and
the use of effective in-game actions.

We make three overarching observations across findings for different outcomes. Firstly,
several established metrics were employed across all outcome types. Joint visual attention,
physiological synchrony, acoustic features, verbal participation, and turn-taking, and visual
attention, either given to a group member or an area of interest for a task, were among
the most popularly explored metrics. Secondly, not all metrics from the same data source
were predictive of the same outcome. For example, sophisticated verbal metrics such as
linguistic coordination, but not speech length, were successfully correlated with learning
gains. Thirdly, there were very few cases in which two metric–outcome connections could
be said to be exactly alike. Homonymous metrics varied in their calculations, and outcomes
were frequently dependent on task context or based on study-specific researcher codes.
Connections were, in many cases, only many to one, or one to one, rather than both. This
all points to the necessity of being principled and explicit about connecting metrics and
outcomes in MMCA research. We explore this issue further in the discussion section.

4.3.4. Interactive Visualizations of the State of the Field

While prior connections between multimodal metrics and collaborative outcomes are
important to keep in mind when designing new MMCA studies, it is difficult for individual
researchers to keep track of this ever-growing landscape. Thus, our metric-construct
mappings are available online [23] as a series of interactive visualizations, seen below in
Figure 4. The graph starts on the far left with higher-level outcome categories, and ends
on the far right with the specific types of metrics that were used. The edges represent the
count of successful connections that were made, or the prevalence of certain lower-level
categories within a higher-level category.
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outcomes and measures used to connect the two. By further clicking on the nodes, users can open
the actual paper on Google Scholar.

This website has several intended functions. For non-academic users, it provides an
entry point into the field of Multimodal Collaboration Analytics (MMCA). It shows what
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the most studied metrics and outcomes are, and newcomers can access detailed instructions
for replicating the approach used by the authors with the paper links. For academics, this
website can help identify established and under-explored areas of study. For example, it
seems that very few researchers have studied the group effect using multimodal sensing
technology. Additionally, it provides a bird’s eye view of approaches that could be used for
capturing an outcome of interest. For example, an expert researcher interested in group
coordination might be knowledgeable in eye-tracking methodologies, but less aware of
other approaches that use verbal or body movement data. The website provides a map
that could be used to make informed choices on metrics and data types, supporting a
more holistic approach to studying collaborative processes. Our long-term vision is to
continuously update the database and keep developing the visualizations to provide an
easy-to-use website for understanding multimodal collaboration analytics. Ultimately, this
could become part of a project such as the human genome project, for collaborative metrics
and outcomes.

4.4. How Was Theory Used to Inform the Connections between Metrics and Outcomes (RQ4)?

Our final research question aims to understand the use of theory in past MMCA
research. There is a growing consensus on the importance of theory in multiple stages
of research for quantitative social sciences research (e.g., [17,121]). While this is often
argued for, there is less empirical evidence on the ways or degree to which prior work
has actually employed theory. We attempt to fill this gap by looking at how theory has
so far been integrated into research. We then identify the references used repeatedly in
MMCA research, presenting a list of key theories that can inform research for each of the
collaborative sub-dimensions in our taxonomy.

4.4.1. How Is Theory Used in MMCA?

We reviewed papers in our corpora to understand how theory was actually utilized.
While the degree to which theory was integrated forms a continuum, we were able to
observe three distinctive categories: (1) no theory was explicitly used; (2) a theory was
used to justify an outcome or metric; (3) a theory was used for more than simply justifying
a metric or outcome.

The first category consists of studies that do not explicitly mention a theoretical
framework for their analyses. A significant portion of papers belonged to this category
(e.g., [39,41,49,79]). Studies concentrated on reporting the results of predictive analyses (e.g.,
supervised machine learning models) for an outcome of interest. For example, Ref. [49]
adopts a data-driven approach to predict types of collaboration, generating thousands of
gesture- and audio-based metrics and using strengths of correlations and a best first search
method (similar to stepwise feature selection) to select a subset of metrics.

In the second (and largest) category, a theory was mentioned in the introduction
or related work section of the paper to justify the choice of a particular collaborative
outcome or data-derived feature (e.g., [48,79,86,91]). Studies often drew upon theory to
argue for the significance of a particular sub-dimension of collaboration. For example,
Ref. [79] draws upon various theoretical research (e.g., [20,122]) to establish the meaning
and importance of collaborative problem solving, a process they then capture using mul-
timodal data. Conversely, papers such as [91] draw from theoretical work (namely [123],
on the role of gestures in teaching and learning) to justify the use of gestures in studying
collaboration quality.

In the last (and smallest) category, a theory was used for more than simply justifying
the use of a particular variable or construct. One example is the study of joint attention [124],
the mechanism by which a shared reference helps collaborators build common ground (i.e.,
grounding theory [125]). Joint visual attention (JVA) was extensively studied using eye-
trackers in MMCA studies (e.g., [24,70,71,73,77,82,84,86]). In this case, theory did more than
inform the choice of collaborative features; it created a space where researchers could go
back and forth between theoretical constructs and data-generated metrics to obtain a clearer
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understanding of the relationship. For example, Ref. [26] identified which collaborator
initiated and responded to offers of joint visual attention from the eye-tracking data,
and showed that group members who shared this responsibility achieved more effective
interactions in a collaborative learning task. Ref. [126] combined JVA with cognitive load
information (generated from participants’ pupil sizes). Combining these two measures
provided deeper insights about the collaborative processes than JVA alone, suggesting
that moments of joint visual attention and joint mental effort are crucial for high quality
collaboration. Finally, theory was also used to inform interventions: Ref. [84] designed
a controlled experiment where participants could see the gaze of their remote partner in
real-time while solving a collaborative learning task. They found that this “gaze awareness
tool” helped groups achieve more joint visual attention compared to a control group, which
was positively and significantly correlated with collaboration quality and learning gains.
In summary, a small subset of our corpora engaged in data-driven theory building (by
clarifying and refining the relationship between the outcome and metrics), and designing
interventions to support collaboration.

4.4.2. What Are the Core Theories for MMCA Research?

While collaboration is a multi-faceted construct, we expected a set of theories to be
cross-referenced across MMCA papers. To test this assumption, we extracted 4278 ref-
erences from the corpus, and found only ten references that were cited more than five
times. Among these ten papers, four were empirical studies of joint visual attention using
multiple eye-trackers [84,127–129]; two papers were reviews (of the use of multimodal data
in education [4] and non-verbal activity in small groups [11]); two papers were empirical
studies of leadership [30,130]; one paper was a collaboration coding scheme [67]; and one
empirical paper studied physiological synchrony [65]. In short, we did not find a core set
of theoretical references collaboration in our corpus. This finding reflects the diversity, or,
alternatively, the lack of cohesive theoretical perspectives used to study collaboration with
sensor data.

Even though we did not find a set of theories that were widely cited in our corpus, we
observed a variety of frameworks that were used to inform the connection between data
and constructs. First, there were holistic frameworks that integrated different collaborative
dimensions. For example, McGrath [21] provides a conceptual framework that describes
the relationship between individual characteristics, group structures, the task at hand, the
technological setting, and how these factors influence the interactions within the group.
This framework was useful for papers that attempted to combine multiple data sources
and collaborative factors. Another framework that was used across multiple papers is
the coding scheme developed by Meier, Spada and Rummel [98]. While this is not a
theory paper per se, it describes a taxonomy of different collaborative dimensions, provides
links to related theories, and is helpful in breaking down collaboration into nine distinct
constructs (i.e., sustaining mutual understanding, dialogue management, information
pooling, reaching a consensus, task division, time management, technical coordination,
reciprocal interaction, and individual task orientation). In Table 3 we provide a more
exhaustive list of theories for each of our outcomes.
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Table 3. Theories commonly used in the study of collaborative outcomes.

Product: Group performance

- Studies connecting group performance with data-derived metrics used the largest number
of theories across all collaborative outcomes, from Convergent conceptual change [131],
to Leadership styles [132], Interactive alignment [133], Joint attention [124], Grounding
theory [125] and Personality theories [134]. These theories are described in more
detail below.

Product: Learning outcomes

- Convergent conceptual change [131]: In this framework, collaboration is seen as the process
of constructing shared meanings for conversations, concepts and experiences. Markers of
collaborative learning are captured through iterative cycles of interactions that converge
toward a shared set of behaviors and terms.

- Shared meaning making [135] is associated with “the increased cognitive-interactional effort
involved in the transition from learning to understand each other to learning to understand
the meanings of the semiotic tools that constitute the mediators of interpersonal
interaction”.

Process: Affective state

- Emotion contagion [136]: This theory postulates that group members tend to be affected by
each other’s emotional state. In MMLA, this kind of “ripple effect” can be captured from
observable behaviors (e.g., facial expressions, body postures).

- Some researchers go further and posit the existence of emotion cycles [137], where emotions
from an individual affect other group members, and subsequent reactions influence future
interactions, creating emotion cycles.

Process: Interpersonal relationship

- Bion-Thelen Interaction theory [138]: the Bion-Thelen Interaction theory posits a “work”
versus “emotion” distinction, but assumes that these are parallel processes. Thus, the
Bion-Thelen Interaction theory predicts that interpersonal relationships should positively
correlate with group performance.

- Interpersonal relationships over time: Tickle-Degen and Rosenthal [139] proposed a
dynamic structure of rapport, including mutual attentiveness, positivity and coordination
and predicted that in early interactions, positivity and attentiveness weighed more heavily,
whereas coordination and attentiveness weighed more heavily in later interactions. Less
research in MMLA attempted to assess the temporal aspect of group dynamics, though the
nature of high-frequency sensors is well-suited to lend empirical support for, or opposition
to, these theories.

- Nonverbal correlates of rapport [139]: In theorizing about measures of rapport,
Tickle-Degen and Rosenthal described two levels of non-verbal correlates for interpersonal
relationships. One was the molecular level, which included duration-level measurement,
such as head nodding or eye-contact, and the other was the molar level, which combined
the discrete acts of many participants in interaction. These dual levels of measurement
correspond well to MMLA analysis. For example, correlations assess individual metrics,
while machine learning often utilizes complex combinations of metrics together.

Process: Communication

- Interactive alignment: Pickering and Garrod [133] call for a mechanistic account of the
dialogue—the interactive alignment account, which posits that the linguistic representations
used by participants gain alignment through an automatic process.

- Joint attention: Tomasello [124] postulates that the presence of joint attention is a necessary
prerequisite for the understanding of other individuals as intentional agents, and for
development of social cognition.

- Media synchronicity theory [140] claims that the effectiveness of communication is affected
by matching between the capabilities of the communication medium and the needs of the
communication process.
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Table 3. Cont.

Process: Coordination

- Grounding theory [125]: This theory describes how group members coordinate their actions
to establish and maintain a common ground. For example, participants orient their body
posture so that they attend to the same thing; they might use deictic (i.e., pointing) gestures
to make sure that the group’s attention is correctly directed to a location of interest; and use
particular linguistic constructions to create and sustain mutual understanding. Grounding
ensures that collaborators are on the same page and share a common definition of the
terms used.

Process: Individual Cognitive Processes

- Metacognitive monitoring [141]: Metacognitive monitoring describes the process of
recognizing and adapting an individual’s cognitive or behavioral activity in order to better
achieve one’s aims. Within the context of collaboration, this theory predicts that an
individual’s perception and regulation of the team’s collaboration should influence the
group’s final performance. As evidence for the validity of this theory, Järvelä and
Hadwin [142] demonstrated that joint attention and mutual efforts were facilitated by the
sharing of metacognitive judgements and feelings.

Condition: Stable personal attributes

- Personality: The big-five personality traits framework [134] is frequently applied in papers
that aim to measure personal traits relevant to group work.

- Expertise: Cognitive load theory [143] was used to hypothesise that experts are able to
downshift to unimodal communication and show less gesturing in complex tasks.

Our survey suggests that theory might be underused in MMCA research; researchers
primarily used theory to choose which features should be used to predict collaboration,
but there are rich opportunities for MMCA to contribute to theory building. Finally, we
note that the deep integration of theory is not a universal prerequisite for a paper to make
meaningful contributions to the study of collaboration. In some fields conducting MMCA
research, the norm is to draw implications ground-up from the data (e.g., computer science).
Rather than making normative arguments on ‘what ought to be’ for any single paper, we
hope to illustrate the range of ways theory can, and were used in MMCA.

The interest from various disciplines (e.g., social psychology, education, and com-
munication, but also human–computer interaction and artificial intelligence) in studying
collaboration with new analytical methods is reflected in the rich number of theories de-
scribed above and how they are used to guide data collection and analysis. While this
interest offers new opportunities for multidisciplinary collaborations and for advancing
the field, it also presents challenges for creating shared methodologies and conceptualiza-
tions of collaboration analytics. We discuss these challenges and opportunities in more
detail below.

5. Discussion

The overall takeaways of Section 4.1 (metrics), Section 4.2 (outcomes), Section 4.3
(metric-outcome connections), and Section 4.4 (the use of theory) are summarized into
current strengths, potential challenges and future opportunities in Table 4.
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Table 4. Takeaways from this review of the field (strengths, challenges, opportunities).

Dimension Current Strengths Potential Challenges Future Opportunities

Metrics

- Data sources (e.g., sensors and
computer vision algorithms)
have become more accessible

- They generate a rich range of
metrics for capturing
collaborative outcomes (see
Table 1)

- Many metrics have some level
of divergence (same name,
different computation; or
vice-versa)

- Researchers tend to specialize
in unimodal data, and/or
create their own metrics

- To converge on agreed upon
definitions and
standardized data
collection/cleaning/feature
generation processes

- To make multimodal data
collection and analysis easier

Outcomes

- There is a theoretically
grounded way of categorizing
outcomes into products,
processes, and conditions

- There are emerging gold
standards for generating
ground truth measures of
collaborative outcomes and
processes (see Table 2)

- Terms such as “collaboration”
are used interchangeably for
distinct collaborative
outcomes

- Different ways of capturing
collaborative outcomes, even
when they share the
same label

- There are understudied
outcomes (e.g., affective)

- To develop a finer taxonomy
of collaborative outcomes,
with associated definitions
and operationalizations

- To investigate outcomes and
processes that are
understudied (e.g., effects in
groups)

Metric-
outcome
connections

- Some trends are emerging; for
example, stable connections
between: verbal metrics/head
motion and interpersonal
relationships, joint attention
and coordination, etc. (see
Figures 3 and 4)

- Methodologies and types of
connections vary (e.g., 1:1
t-tests, n:1 machine learning),
which makes it difficult to
compare connections

- Some modalities have mixed
results (e.g., physiological
data, in particular,
physiological synchrony)

- To develop the best practices
for computing and reporting
results, to facilitate
meta-analyses

- To share data for easier
replication

- To connect a wider variety of
group-level metrics with
outcomes

Theory

- MMCA attracts researchers
from very different fields,
who use a rich variety of
theories (see Table 3)

- These different perspectives
are useful for painting a
holistic picture of
collaboration (i.e., viewed
from different angles)

- Reconciling different
theoretical perspectives is
difficult, sometimes
impossible

- Theories tend to be
modality-specific (e.g.,
emotion contagion for
physiological data), which
makes it challenging to
integrate them

- To integrate different
theoretical perspectives by
developing meta models of
collaboration

- To use theory to inform
confounds, which results in
interpretation and
generalization

Overall

- This is an exciting time. There
is a lot of innovative work and
momentum in MMCA.

- This momentum is attracting
researchers from very
different fields (e.g.,
psychology, education,
engineering, etc.)

- As a field, MMCA is both old
(in terms of the theories and
framework used) and young
(in terms of the metrics
generated, and their
connection to outcomes)

- To create multidisciplinary
collaborations, so that the
field can generate shared
definitions, data collection
tools, methodologies, and the
reporting of results

As the current strengths and challenges were described in the Results section, we
dedicate the discussion section to propose opportunities for the future of multimodal
collaboration analytics. We structure this section according to our framework, and suggest
opportunities for metrics, outcomes, metric–outcome connections, and the integration of
theory.

5.1. Opportunities for Improving Sensor-Based Metrics

While sensor-based metrics are becoming more accessible, we observed a lack of
common terminology, definitions, and methods for computing them. For instance, in deter-
mining what qualifies as joint visual attention, Refs. [78,83] employ different computations
and parameters (e.g., thresholds for the amount of time delay and distance between two
gazes). While varied approaches contribute to building momentum in MMCA, the field
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would likely benefit from building up common ground across disciplines by explicitly shar-
ing, replicating, and converging towards principled data collection, cleaning and metric
creation processes.

5.2. Opportunities for Improving the Use of Collaborative Outcomes

Collaborative outcomes play a major role in validating sensor-based metrics by provid-
ing ground truths for collaborative constructs. Because the validity of results is contingent
upon the validity of outcomes, researchers need to use validated, reliable instruments to
measure outcomes whenever possible. From this perspective, there are many opportunities
for improvement.

First, many papers tend to use generic terms such as “collaboration”, “communica-
tion”, or “coordination” when they are capturing different constructs. Oftentimes, these
terms are not defined or operationalized precisely, which presents challenges for aggre-
gating findings across studies. A first step towards pursuing rigor in outcomes is the
taxonomy of outcomes we proposed in Section 4.2 and the related list of validated mea-
sures used to capture them (Table 2), intended to aid researchers in choosing appropriate
instruments when validating sensor-based metrics. In the long term, however, MMCA
would likely benefit from developing explicit “best practices” for measuring outcomes
across collaborative dimensions. For example, in the field of social-emotional learning
(SEL), researchers aimed to define rigorous domains of development, including cognitive,
emotion, values and perspectives. These domains have specific skills and frameworks
used to assess each one, which helps to build clarity and allows a greater precision for the
field [6].

5.3. Opportunities for Improving the Connections between Metrics and Outcomes

Promising metric–outcome connections seem to be emerging, based on our review.
For example, joint visual attention was repeatedly found to relate to coordination; verbal
and head-based metrics seemed to reflect interpersonal relationships; and so on. However,
we also noted some challenges. Findings are likely biased because researchers tend to
report significant results and omit non-significant ones. Most metrics seem to be successful
for this reason, which makes a fair evaluation challenging. There is also a variance in how
researchers connect metrics to outcomes (from using simple correlations to supervised
machine learning), and how they report their results. Effect sizes or variances were often
omitted from results, which makes it difficult to conduct statistical meta-analyses. There
is an opportunity to develop guidelines so that findings across studies can more easily
be integrated (e.g., include non-significant results whenever possible and report effect
sizes). Alternatively, the field would benefit from having a central repository where data
are shared and can be jointly analyzed, so that meta-analyses can test the same metric
across papers. Other fields benefited from this kind of data sharing practice (e.g., [144]).
This would also allow researchers to build meta-models of collaboration and prediction
models for different outcomes that are built from larger datasets. The website described
in Section 4.3.4 is a first step in this direction. Finally, there is an opportunity for more
researchers to study a wider variety of group-level metrics, particularly for verbal, body
head and log modalities.

5.4. Opportunities for Integrating Theory

Lastly, our review suggests that theory might currently be underused. There are
opportunities to use theory not just to select which aspect of collaboration to focus on, but
also to inform micro-decisions in the MMCA pipeline. For example, Wise and Shaffer [17]
organized the role of theory into distinct functions: giving guidance on variable choice, on
potential confounds, subgroups, or covariates, and serving as a framework when choosing
to attend to certain results, interpreting and generalizing them to new contexts. This
suggests there are opportunities to use theory for more than simply informing the choice of
sensor-based metrics and collaborative constructs. A final challenge is that there is a vast
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number of collaborative theories available, and not all of them are suitable for informing
sensor-based metrics. Thus, an additional opportunity is to organize a list of suitable
theories, and how they can be used in MMCA. Table 3 is a first step in this direction.

5.5. Limitations and Future Steps

We acknowledge several limitations to our review. Firstly, we adopt a particular
framework to understand prior work in MMCA, which may magnify or obscure certain
issues within the field. Secondly, we are unable to carry out a quantitative meta-analysis,
because more often than not effect sizes were not reported. As such, we do not have
statistical evidence for our observations beyond count. Thirdly, we made simplifications in
Section 4.3 to determine the success of a metric–outcome connection, particularly ambigu-
ous in the case of machine learning papers. We chose models that had a higher-than-chance
rate, and were highlighted as the best-performing models by the authors, but this required
several judgement calls.

Future steps for the current project revolve around updating and enhancing the
MMCA website. We plan to expand the database for the website and provide more fine-
grained visualizations. Additionally, this platform would benefit from other features, such
as the ability for other researchers to add their own data; provide the code used to generate
metrics; or even a wiki-like platform associated with each outcome and metric so that
researchers can discuss and agree on definitions, operationalizations and measurements.
In the future, we also hope to create some of the standards mentioned in our opportunities
section, such as the best practices for measuring outcomes, or guidelines for sharing
MMCA results.

6. Conclusions—Why This Work Matters

While summarizing metric–outcome connections might not seem groundbreaking, it
is the foundation on which innovative research and applications can be developed. Not
only can this advance our scientific knowledge of collaboration by rigorously defining
and operationalizing constructs from sensor-based metrics, it can also tell us, precisely, the
strength of these connections. This matters in the context of developing valid and robust
assessment tools. Cutting-edge Bayesian frameworks, such as the Evidence-Centered
Design (ECD, sometimes referred to as Stealth Assessment [145]), require an evidence
model where weights are given to particular behaviors. In the age of Big Data, one can
imagine such an evidence model being fueled not just by limited, anecdotal, context-
specific data, but by the entire academic literature, taking into account contexts, as well as
individual and cultural differences, to build a generic assessment tool that can adapt to
most common collaborative scenarios.

Other fields of research benefited from this kind of quantification. In medicine, for ex-
ample, diagnostics were based on accumulated evidence of particular measures (e.g., white
blood cells, cholesterol, glucose) crossing a particular threshold and connecting these values
to particular health issues. Sensors had to be designed to capture these measures, and then
the accumulated evidence was able to connect a set of values with particular diagnostics.
When applied to collaboration, a similar approach can generate collaborative diagnostics.
These diagnostics could provide information about which specific collaborative outcome is
lacking, and which metrics were used to identify it.

If this kind of model of collaboration is created, however, the hope is that it will be
used to create experiences that “augment the human potential” [146]. For example, by
allowing Human–Computer Interaction (HCI) researchers to design playful, life-enhancing
learning experiences through various media (e.g., Virtual/Augmented Reality, simulations,
and video games, to name a few) to help individuals improve their collaborative skills.
These examples provide a justification for tediously building the kind of metric-outcome
connections described in this review.
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