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Abstract: High-throughput, nondestructive, and precise measurement of seeds is critical for the
evaluation of seed quality and the improvement of agricultural productions. To this end, we have
developed a novel end-to-end platform named HyperSeed to provide hyperspectral information for
seeds. As a test case, the hyperspectral images of rice seeds are obtained from a high-performance
line-scan image spectrograph covering the spectral range from 600 to 1700 nm. The acquired images
are processed via a graphical user interface (GUI)-based open-source software for background
removal and seed segmentation. The output is generated in the form of a hyperspectral cube and
curve for each seed. In our experiment, we presented the visual results of seed segmentation on
different seed species. Moreover, we conducted a classification of seeds raised in heat stress and
control environments using both traditional machine learning models and neural network models.
The results show that the proposed 3D convolutional neural network (3D CNN) model has the
highest accuracy, which is 97.5% in seed-based classification and 94.21% in pixel-based classification,
compared to 80.0% in seed-based classification and 85.67% in seed-based classification from the
support vector machine (SVM) model. Moreover, our pipeline enables systematic analysis of spectral
curves and identification of wavelengths of biological interest.

Keywords: hyperspectral imaging system; high-throughput seed phenotyping; phenotyping soft-
ware; seed heat stress; 3D convolutional neural network (CNN); support vector machine (SVM); light
gradient boosting machine (LightGBM); hyperspectral analysis

1. Introduction

Seeds are essential for the modern agricultural industry since they are not only an
important source for food supply but are also closely related to crop yield [1]. To obtain
a precise quantitative evaluation of seed quality, plant scientists have studied various
phenotyping methods. Traditionally, the seeds traits are measured manually. However,
the manual measurement often involves error-prone, laborious, and time-consuming
procedures for tackling massive number of seeds. Thus, there is a growing need for high-
throughput phenotyping methods to generate a more precise quantitative measurement
of seeds.

With the rapid development of sensors and computer vision technology, various
methods have been presented for phenotyping. Based on 2D images captured by regu-
lar red–green–blue (RGB) cameras, researchers proposed various imaging systems [2–5].
Computer vision algorithms were also explored to obtain the traits of seeds. For example,
Tanabata et al. proposed a software SmartGrain to obtain seed size and shape [6]. Zhu et al.
developed an open-source software SeedExtractor for seed phenotyping using seed shape
and color [7]. Besides RGB camera imaging, X-ray-based imaging has also proved a great
potential for seed phenotyping. X-ray-based methods have been presented to obtain the
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structure of the seeds and to predict the germination capacity [8,9]. However, these meth-
ods have some limitations. For example, the X-ray assessment is usually time-consuming,
potentially harmful, and not scalable for large-scale operations [10]. The methods based on
RGB cameras can only capture the surface characteristics. Moreover, since RGB cameras
only acquire three wavelengths (red, green, and blue), the spectral information on other
wavelengths that potentially indicate the chemical composition traits are not measured [11].

To overcome some of these issues, plant scientists are exploring the hyperspectral
imaging (HSI) technique that captures both spatial and spectral information. With a
hyperspectral sensor, a wide range of wavelengths, including the ultraviolet (UV), visible
(VIS), and near-infrared (NIR) spectra, can be obtained [12]. Due to its easy-to-operate
advantages and scalability, HSI is becoming a popular tool to explore seed traits. For
example, Wu et al. introduced an imaging system to determine seed viability by capturing
the hyperspectral images from two sides of wheat seeds [13]. Hyperspectral imaging has
also been applied to identify specific rice cultivars using deep learning techniques [14].
NIR hyperspectral images have been used to quantify the seed starch content [15].

Although various solutions have been developed for hyperspectral analysis of seeds,
there are still unsolved problems. First, the existing software tools to process hyperspectral
images are usually designed for general purposes rather than seed phenotyping. They are
not directly suitable for tackling high-throughput phenotyping of seeds since they do not
consider the unique features of seeds, such as shape. Second, the existing software tools
developed by the vendors selling the hyperspectral cameras (e.g., Headwall and Middleton
Spectral Vision) are proprietary, which makes it challenging to customize. Third, the cost of
solutions, including imaging platforms and analytic software, is a limiting factor for many
research laboratories in the public domain.

Moreover, climate change is driving the rising trend in temperature and posing
a challenge for sustaining agricultural productivity. The mean annual temperature has
increased by 1 ◦C for major regions in the past century [16]. The impact of high temperature
has been well-documented for rice, which is estimated to suffer a 10% reduction in yield
for every 1 ◦C increment in the growing season minimum temperature [17]. Besides
yield, supranormal temperatures also decrease seed quality, as heat stress (HS) during
the seed development phase drastically reduce the seed agronomic properties [18,19].
Poor seed quality under high temperature is a consequence of alteration in metabolic
and transcriptomic signatures of seed development. For instance, phytohormones auxin,
cytokinin, and ABA mediate the grain filling by regulating several genes that catalyze starch
biosynthesis [20]. However, genes that fine-tune these biochemical pathways are impaired
under HS [21]. A net effect of changes in the metabolic flux at the seed developmental
phase leads to the production of low-quality seeds. Along with the reduction in seed size,
abnormalities in grain filling pathways trigger distortion in the starch granule packing,
thus rendering an opaque white appearance at the center of the endosperm, termed as grain
chalkiness. While translucent grain fetches a maximum market price, chalky grains with
low milling and cooking quality have less consumer acceptance [22]. The development
of rice cultivars that can maintain seed quality under HS has become a key target for rice
improvement. A similar scenario is just as pertinent for other major crops, which are
relatively less characterized for heat sensitivity but are equally likely to suffer loss of yield
and quality.

To address the challenges of HSI, we propose an end-to-end solution named HyperSeed
that is designed for high-throughput seed phenotyping using HSI techniques. Moreover,
to explore the rice seeds under HS and illustrate the application of HyperSeed, we also
conducted an experiment as a case study. The proposed solution includes a lab-based
imaging system coupled to an application with a graphical user interface (GUI) for hy-
perspectral analysis on seeds. The imaging system, which is cost-effective and easy to
build, can capture the hyperspectral images of seeds at a large scale. The application is
designed to process the images and extract the averaged hyperspectral reflectance for each
seed in the form of comma-separated values (CSV) files that can be opened and viewed
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using conventional spreadsheet software tools. Hypercubes for each seed are generated
for pixel-based analysis. This software removes the background, segments every single
seed in an image, and calibrates the output. The general shape of seeds is considered in the
process of seed segmentation so that the application can process seeds with overlapping
regions, thus saving effort and time to spatially separate individual seeds. HyperSeed allows
users to explore and modify parameters for better performance of their own datasets. Our
experiments demonstrate that the system can be adapted to evaluate seeds from different
plant species without any major modifications. Moreover, the application is implemented
in MATLAB, which is open-source and available for researchers with an institutional li-
cense. For the users without a MATLAB license, we also provide a standalone version of
HyperSeed, which only requires the free accessible MATLAB Compiler Runtime (MCR) for
its operation.

In our case study on rice seeds, we performed an experiment for seed classification
and hyperspectral analysis. We used heat-stressed rice seeds as the test case since the
seeds developed under higher temperatures undergo morphological and biochemical
changes that otherwise are challenging to quantify using manual methods. For this, two
groups of rice seeds were utilized as samples; the seeds in the first group (control) were
harvested from plants grown under a ambient temperature, while the seeds in the second
group were harvested at maturity from plants exposed to a transient HS during seed
development. Then, we applied a 3D convolutional neural network (3D CNN) [23] to
classify the two groups and compared it with support vector machine (SVM) [24]. These
popular supervised models differ in training sample generation and spatial information
extraction. The experiment showed that the proposed 3D CNN achieved high accuracy in
the classification of the two groups, probably by extracting the spectrum of neighboring
pixels in the spatial direction. Moreover, we implemented a spectral analysis using a light
gradient boosting machine (LightGBM) model [25]. The wavelengths of biological interest
were identified.

2. Materials and Methods

The workflow of the proposed hyperspectral imaging system—HyperSeed—is illus-
trated in Figure 1. The seed samples (Figure 1a) are placed in the imaging system, and
hyperspectral images are generated in the form of a hypercube (Figure 1b). The software
processes the hypercube and segments each seed (Figure 1c). Finally, seed-based and
pixel-based reflectance are extracted for further analysis. The seed-based reflectance is
shown in Figure 1d, and each curve represents a single seed.

Figure 1. The overall workflow of proposed platform: (a) seed sample placement; (b) hypercube generation; (c) seed
segmentation; (d) reflectance curves extraction.

2.1. Sample Preparation

Seeds were dehusked and surface sterilized with bleach (40% v/v) for 40 min and
soaked in sterile water overnight. The sterilized seeds were germinated for 2 days in dark
and followed by 4 days in light on half-strength Murashige and Skoog media. Seedlings
were then moved to the greenhouse in 4-inch (101.6 mm) pots filled with pasteurized soil.
These plants were grown in the greenhouse under a diurnal condition with temperature
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28/25 ± 2 ◦C, light/dark 16/8 h, and relative humidity of 55–60% until flowering. At
flowering, open florets were marked for tracking the flowering time. Half of the plants
at 1 day after the fertilization stage were moved and maintained in the high day and
night temperature (HDNT) chamber (36/32 ± 2 ◦C) for 5 days to impose HS. HS-treated
plants were then transferred to control conditions and grown until maturity. Mature and
dehusked seeds from the control group and seeds of these HS-treated plants were used for
HSI and further analysis.

2.2. Imaging System

Figure 2a demonstrates our imaging system. A metal frame is assembled using
aluminum profile extrusion to hold the hyperspectral camera and the light source. A high-
performance line-scan image spectrograph (Micro-Hyperspecr Imaging Sensors, Extended
VNIR version, Headwall Photonics, Fitchburg, MA, USA) is fixed on the top of the frame,
which covers the spectral range from 600 to 1700 nm, with a 5.5 nm spectral resolution.
The focal length and the minimum working distance of the camera lens are 25 mm and
300 mm, respectively. A two-line lighting unit with four 20 W tungsten–halogen bulbs for
each line (MRC-920-029, MSV Series Illumination, Middleton Spectral Vision, Middleton,
WI, USA) is fixed in the middle of the frame to illuminate the seed samples. The emission
spectrum of the light source spans from 350 to 3000 nm. A camera slider with a track is
placed on the bottom of the frame, and a square platform driven by a motor is installed on
the track. Seed samples are placed on the platform and scanned line by line. The platform
is painted black to reduce noise and facilitate the extraction of the seeds for downstream
analysis. The whole system is placed in a dark chamber to eliminate external and varying
light source. The chamber is installed in a room where the temperature and the humidity
are controlled in the range of 66 to 74 °F, and 16% to 20%, respectively. A computer (Intel(R)
Core (TM) i7-9700K CPU @ 3.60 GHz (Santa Clara, CA, USA), RAM 8 G) is located next to
the dark chamber, and camera-controlling software (HyperSpecrIII, Headwall Photonics,
Fitchburg, MA, USA) is installed to set parameters for image acquisition.

(a) (b)
Figure 2. Hyperspectral imaging (HIS) system: (a) HyperSeed platform; (b) a generated hypercube of test-case seed samples.

2.3. Image Acquisition

Before image acquisition, the camera is turned on and warmed up to avoid baseline
drift [26]. Subsequently, the controlling software developed by Headwall Photonics is used
to adjust the parameters of the camera, such as exposure time, and take hyperspectral
images. Other settings, such as the distance between the camera and the platform, are
also calibrated to acquire the best quality images without distortion. For this study, the
distance, exposure time, and frame period are set to 15 cm, 12 ms, and 18 ms, respectively.
Rice samples are placed on the platform, and the image acquisition process is initiated.
On average, it takes 15 s to capture one image, and the images are obtained in the form of
three-dimensional (x, y, and λ) hypercubes. In this study, the hypercube includes 640 pixels
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in the x direction and 268 wavelength bands in the λ direction, respectively. The number
of pixels in the y direction depends on the duration of imaging, and it varies from 1100 to
1600 in our experiment. As an example illustrated in Figure 2b, one captured hyperspectral
image dataset in the form of a hypercube is shown in pseudocolor. A pixel on the x–y plane
corresponds to a spectrum curve. A sliced image at a specific wavelength in the λ direction
of the hypercube is shown in grayscale.

2.4. Software Implementation

The HyperSeed software is utilized for the analysis of hyperspectral images. This
open-source software is developed in MATLAB, and its standalone version can be operated
without a MATLAB license. It has a GUI with multiple adjustable parameters for flexibility
to process seed images shown in Figure 3. Users can process their seed samples follow-
ing these steps: (1) path specification, (2) data visualization, (3) parameters setting, and
(4) hypercube processing.

Figure 3. The GUI of HyperSeed software: (1) path region to define the path for input and output files; (2) loading region
to load the dataset of interest for visualization; (3) setting region for parameter setting; (4) log region to display progress
information; (5) visualization region for the sliced image and the corresponding histogram; (6) slider to specify wavelength
for visualization; (7) visualization region for segmentation results; (8) buttons for initiating the image processing.

2.4.1. Path Specification

HyperSeed application is compatible with hyperspectral images in the ENVI format
consisting of pairs of raw images and header files. As shown in region 1 (Figure 3), the path
of header files (*.hdr) and data filesof the hyperspectral image needs to be specified in input
data path. HyperSeed is designed for batch processing, and a path with a regular expression
is supported. As an example, [EXAMPLE PATH]/∗.hdr loads all the hyperspectral images
in the given path. Users also need to specify a path to output results in the output path box.

2.4.2. Data Visualization

After specifying the data path, users can visualize the hypercube. By clicking the Load
button in region 2 (Figure 3), a sliced 2D image is extracted and demonstrated in region 5
(Figure 3) for visualization. A slider under the image in region 6 (Figure 3) can be used to
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specify the wavelength for the visualized image. A corresponding histogram for image
intensity is also generated and displayed on the right of the sliced image.

2.4.3. Parameters Setting

A set of default parameters are automatically loaded when the application is launched.
In region 3 (Figure 3), the checkbox remove bands in beginning/end is used to decide whether
the software removes the bands at the beginning and end to increase accuracy. The
checkbox enable overwriting decides whether the software overwrites the existing result files.
The checkbox enable ellipse fitting decides whether an ellipse fitting algorithm, RFOVE, is
included (Section 2.4.6). The dropdown box input data type controls whether the software
generates intensity or reflectance. If intensity mode in the dropdown box is selected, only
the path of hyperspectral images in region 1 (Figure 3) needs to be specified. Otherwise, if
reflectance mode is selected, the paths of white and dark reference also need to be specified.
The parameters of band id, min intensity and max intensity are utilized to create a mask for
background removal. The parameter of min pixel for clustering decides the threshold for the
minimal pixels of one seed in segmentation (Section 2.4.5).

2.4.4. Hypercube Processing

Once all the parameters are set, the batch processing is ready to start. The application
has no assumption about the position of the seeds, so that seeds do not need to be placed
in the center. Moreover, results can be correctly generated even if there are overlapping
regions between seeds. The users can start the batch processing by clicking the Run button
in region 8 (Figure 3). The seed-based averaged reflectance and pixel-based reflectance are
extracted if reflectance mode (Section 2.4.3) are selected in GUI. Otherwise, image intensity
instead of reflectance is generated. All the results are sent to the output path for further
analysis. The critical information, such as the total number of images and the path of
current image being processed, is displayed in the log region, region 4 (Figure 3) for users
to visualize the progress. In general, there are four main steps to process a hypercube:
(1) initial seed segmentation, (2) refined seed segmentation, (3) spectral data extraction,
and (4) image calibration. In the first two steps, we generate masks using image processing
algorithms (Sections 2.4.5 and 2.4.6) on a sliced image with band id specified in region 3
(Figure 3). In this work, various bands are tested, and band 20 is utilized due to the clear
contrast between our seeds and the black background. The corresponding wavelength for
band 20 is 675 nm. Then, the segmentation is achieved by utilizing the generated masks to
the x–y plane of the hypercube. Segmentation results are visualized in region 7 (Figure 3).

2.4.5. Initial Seed Segmentation

The first step to process the hypercube is background removal in the sliced image.
To achieve this, we firstly filter out pixels using intensity thresholding techniques. The
application loads the parameters minimal intensity (Imin) and maximal intensity (Imax) in
region 3 (Figure 3) for thresholding. More specifically, a pixel with an intensity I will be
kept if Imin < I < Imax. The default minimal and maximal intensities are set to 400 and 2000,
respectively. After background removal, a components searching algorithm [27] is used to
find all the connected regions to further remove the remaining background. The searching
algorithm, which is integrated with MATLAB function bwlabel, extracts the connected sets
of pixels and labels each set with a unique number. After all the connected components
are located, the number of pixels for each component is computed. The components are
removed if their pixel count is less than the threshold. In this work, the threshold is set to
500. Examples of the raw image and the results of initial segmentation are illustrated in
Figure 4a,b, respectively.
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(a) (b) (c)
Figure 4. Seed segmentation: (a) the raw hyperspectral image of rice seeds; (b) the initial segmentation results showing
overlapping region of seeds; (c) the refined segmentation results clearly defining seed boundaries.

2.4.6. Refined Seed Segmentation

Though the seed candidates are obtained after the initial segmentation, the results still
need to be improved since some pixels in seeds may be mistakenly treated as background
and removed. Moreover, multiple seeds may be considered as a single entity due to
possible overlapping. To improve the segmentation results, we utilize a morphological-
reconstruction-based algorithm [28] to repopulate the erroneously removed seed pixels
on the initial segmentation results. The algorithm is integrated with MATLAB function
imfill and considers the pixels as seed pixels if they are fully enclosed by seed pixels.
Furthermore, if the seeds are overlapped and mainly ellipse-shaped, we further conduct
a fitting algorithm named RFOVE [29]. RFOVE fits ellipses to each initial component,
and the components with multiple overlapped seeds are further segmented. Finally, we
obtain a series of masks, and each mask represents only one seed. An example of refined
segmentation result using RFOVE rendered in pseudo color is shown in Figure 4c, and all
the seeds are labeled with the corresponding index.

2.4.7. Spectral Data Extraction

The results of the refined seed segmentation are in the form of a series of masks. By
utilizing these masks to the x–y plane of the hypercube, the spectra of pixels in each seed
sample are extracted. The pixel-based intensityof each seed is outputted in the form of a
hypercube, and the number of hypercubes matches the number of seeds. To further obtain
the seed-based intensity, the spectra of these pixels are averaged as the mean spectrum
for the corresponding seed. Eventually, each seed will generate one corresponding record
of the averaged intensity. In addition, due to the low sensitivity of the camera sensors at
the beginning and end of the spectrum, outliers caused by random noises usually appear.
Therefore, these bands could be omitted for better accuracy [30]. If the checkbox Remove
bands in beginning/end is selected, the application will remove 5% of bands in the beginning
and end. In this work, the spectral bands with a wavelength not in the range of 655–1642 nm
are filtered out.

2.4.8. Results Calibration

After the spectral data extraction, spectra are obtained in the form of intensity (Io),
which is easily affected by the inconstant factors, such as the varying light source and
temperature-dependent hot pixels [31,32]. To solve this, a white reference image (Iw) and a
dark reference image (Id) is acquired for calibration. The white reference image with nearly
100% reflectance is captured using a standard white Teflon tile. The dark reference image
with reflectance close to 0% is collected with the light source turned off and the camera
lens covered by an opaque cap. Subsequently, the calibrated images (Ic), which are also
known as reflectance, are calculated using Equation (1) [31]. Moreover, the calibration step
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can be skipped if intensity mode is selected (Section 2.4.3). If so, the intensity instead of
reflectance will be directly generated as the final results.

Ic =
Io − Id
Iw − Id

(1)

2.5. Seed Classification and Wavelength Analysis

As a case study, wavelength analysis and classification are conducted using the
extracted spectrum. The support vector machine (SVM) models [24] and a neural network
model are utilized to classify the seeds between control and HS groups. LightGBM [25] is
used for wavelength importance analysis.

2.5.1. Support Vector Machine (SVM)

SVM is a widely used supervised learning model to analyze spectral data due to its
capability to process both linear and nonlinear data [13,14]. With a kernel function, SVM
maps the input data into a high-dimensional space, in which the mapped data is linearly
separable. Then, a linear classifier in the form of a hyperplane (or a set of hyperplanes for
multiple-class classification) is created to separate the mapped data in high-dimensional
space. In this work, the radial bias function (RBF) is selected as the kernel function.

2.5.2. Neural Network Models—3D Convolutional Neural Network (3D CNN)

Neural network models have been used for processing hyperspectral images [33]. One
of the essential neural networks in processing RGB images and hyperspectral images is
convolutional neural network (CNN), which is widely used for classification. In this work,
our network is adapted from the 3D CNN [23]. Compared to 1D or 2D networks, in which
either spatial or spectral neighborhood is not considered, 3D CNN directly processes the
sub-hypercubes and thus works on the spatial and spectral dimensions simultaneously. The
3D CNN has three main steps. The first step is sample extraction, as shown in Figure 5a.
Given an original hypercube with a size of M × N × L in the x, y, and λ dimensions,
S × S × L sub-cubes are extracted as samples. The extraction is implemented for each
pixel of the seeds, and the group labels of these sub-cubes are the same as the labels of
their central pixels. In this work, S and L are set to 5 and 239, respectively. The second
step is spectral-spatial feature extraction. Figure 5b shows the network architecture. The
S × S × L sub-cubes are fed to the first 3D convolution layer C1 with two 3D kernels. Then,
the output is sent to the second 3D convolution layer C2 convoluted with four 3D kernels.
After that, all the output features are flattened and sent to a fully connected layer. The third
step is feature-based classification. The features in the last layer are used for classification.
The parameters of the network are optimized using the stochastic gradient descent (SGD)
algorithm by minimizing the Softmax loss [34].

(a) (b)
Figure 5. (a) Sample extraction and (b) network architecture of 3D CNN.
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2.5.3. Dataset for Classification

Two datasets extracted by HyperSeed software are used to train models for comparison.
The first one is the seed-based reflectance for the seed-based SVM model. One sample
represents one seed, and the dataset is divided into two parts: 80% of seeds for training and
20% of seeds for testing. The second one is the pixel-based reflectance for the pixel-based
SVM model and the 3D CNN model. The test set of the second dataset consists of the
corresponding pixels of the seeds in test set of the first dataset. The rest of the pixels are
further divided into two sets: 95% of pixels for the training set and 5% of pixels for the
validation set. The number of the samples of the two datasets for classification are listed in
Table 1.

Table 1. Number of samples in each dataset.

Reflectance
Type

Total
Number

Training Set Validation Set Test Set

Control HS Control HS Control HS

Seed-based 200 80 80 N/A N/A 20 20

Pixel-based 274,641 104,517 104,719 5501 5512 27,527 26,865

2.5.4. Metrics for Classification

In this work, the models are evaluated using four metrics on the test samples: Accuracy,
Precision, Recall, and F-score, as shown in Table 2. These metrics are popular for machine
learning model evaluation and a higher value usually represents better performance. The
formula of the four metrics is shown in Equation (2):

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-score =
2 × TP

2 × TP + FP + FN

(2)

where true positive (TP) is the number of samples in the HS group predicted as HS group;
true negative (TN) is the number of samples in the control group predicted as the control
group; false positive (FP) is the number of samples in the control group but predicted as
HS group; false negative (FN) is the number of samples in the HS group but predicted
as the control group. Moreover, the model is also evaluated using seed group prediction
accuracy for a fair comparison, which presents the percentage of correctly predicted seeds
in the test set.

Table 2. The metrics of each model.

Model
Metrics on Test Samples Seed Group

Prediction AccuracyAccuracy Precision Recall F-score

Seed-based SVM 80.00% 75.00% 83.33% 78.94% 80.00%

Pixel-based SVM 85.67% 86.36% 84.30% 85.32% 92.50%

3D CNN 94.21% 90.83% 98.18% 94.37% 97.50%

2.5.5. LightGBM for Feature Importance Analysis

LightGBM is a gradient boosting framework widely used to solve machine learning
tasks such as feature selection, ranking, regression, and classification. As a decision-tree-
based model, LightGBM highly improves the strategy for tree construction. Unlike other
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similar tree-based models in which level-wise strategy is adopted, LightGBM implements a
leaf-wise method with depth constraints. The leaf-wise strategy chooses a leaf that leads to
the most significant decrease in loss and thus improves the accuracy. The depth constraints
limit the depth of the tree, which avoids overfitting. In addition, instead of searching for
the best node for splitting, LightGBM proposes an algorithm for nodes selection based on
the histogram. Since searching is usually time- and memory-consuming, LightGBM with
histogram improves the efficiency and reduces memory consumption. Moreover, parallel
GPU learning is supported in LightGBM. In summary, LightGBM is designed for high
accuracy, low memory cost, and parallel learning and, therefore, has the better potentiality
to analyze large-scale data. With the LightGBM, the importance of features in the form of
tree nodes in the model can be evaluated using various metrics. In this work, the number
of times for which a node is used for splitting is calculated as importance.

3. Results
3.1. Performance Testing

To test the performance of HyperSeed, we evaluated the time required to capture the
segmented seeds from hyperspectral images. The computing platform we used is an
Intel(R) Core (TM) i7-8700 K CPU @3.70 GHz (Santa Clara, CA, USA) and 16 GB DDR4
random-access memory. Generally, more seeds in one image indicates a more time-costly
procedure. On average, one additional seed in the image led to an extra 3.8 s in time cost,
which showed the potential in high-throughput processing.

3.2. Segmentation Results Using Seeds from Various Plant Species

To evaluate the effectiveness of the software on seeds with different shapes, we
captured the hyperspectral images of seeds from various plant species and conducted
the segmentation using HyperSeed. The first row in Figure 6a–d shows the 2D images of
seeds of maize, rice, sorghum, and wheat, respectively. The second row in Figure 6e–h
demonstrates the corresponding segmentation results in which each seed are labeled with
the corresponding index. In general, HyperSeed is capable of accurately segmenting seeds
with various shapes.

3.3. Spectral Analysis

The averaged hyperspectral reflectance of control and heat stress (HS) groups were
obtained by averaging the reflectance of seeds in the two groups, respectively. As shown in
Figure 7, each curve presents the averaged reflectance of 100 seeds in the responding group.
The two curves illuminate similar patterns, and the HS group exhibited higher reflectance
than the control group on average. However, at the wavelength of 671–771 nm, curves
with similar reflectance were observed between the two groups. The differences indicate
that the transient HS might have modified the content of the seeds and thus influenced the
corresponding reflectance.

3.4. Classification

In this section, we utilized multiple models for the classification of control and HS
groups. The classification results are described in Figure 8. For better visualization, all
the 40 seeds in the test set are demonstrated in one figure. In each subfigure, the first two
rows and last two rows are the seeds from the control and HS groups, respectively. The
seeds or pixels are marked red if they are in the control group as ground truth (Figure 8a)
or predicted as control group (Figure 8b–d). In contrast, the blue color represents the HS
group in each subfigure.
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Figure 6. The 2D images of seeds of maize, rice, sorghum, and wheat (a–d); and the corresponding
segmentation results with each seed labeled with the corresponding index (e–h).

Figure 7. The averaged spectral curves of seeds in control and HS groups (n = 100 seeds for
each group).
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(a) Ground Truth (b) Seed-based SVM

(c) Pixel-based SVM (d) 3D CNN
Figure 8. The ground truth and the predicted results using different models: (a) the ground truth; (b) the seed-based
prediction results using SVM; (c) the pixel-based prediction results using SVM; and (d) the pixel-based prediction results
using 3D CNN.

3.4.1. Seed-Based Support Vector Machine (Seed-Based SVM)

To extend the machine learning applications in determining seed viability and seed
varieties detection [13,35], we implemented seed-based classification using the SVM model.
The averaged reflectance of each seed was fed to the model for training, and the number of
training samples matched the number of seeds. Since the number of training samples (160)
in this work was limited compared to the number of features (239), the SVM model was
expected to suffer from underfit if all the features are to be used in the model. Moreover,
the extracted spectral reflectance is usually redundant. Some bands as features for training
are highly correlated with each other. Therefore, the features can be preprocessed to reduce
the dimension of feature space without affecting the accuracy of classification [35,36]. To
achieve this, we implemented principal component analysis (PCA) [37]. PCA treated the
bands as initial features and mapped them to orthogonal components by implementing
a linear transformation. These components, which were the linear combination of initial
features, were utilized as the new features and ranked according to their corresponding
eigenvalues. By selecting the top-ranked new features, the correlation problem was solved.
In this work, 50 features were finally selected to train the SVM model. The accuracy of the
model on test samples was 80.0%, and since one seed represented one sample, the seed
group prediction accuracy was also 80.0%. The classification results and other metrics are
shown in Figure 8b and Table 2, respectively.

3.4.2. Pixel-Based Support Vector Machine (Pixel-Based SVM)

The performance of the seed-based SVM was limited as the number of training samples
were not sufficient. To address this issue, we fed the model with pixel-based reflectance,
in which each pixel, rather than each seed, was considered as one sample. As shown in
Table 1, the number of training samples increased from 160 to 209,236. Then, we classified
a seed by comparing the number of predicted pixels in the two groups. For example, a seed
was considered to be in the control group if more than half of pixels in this seed were in the
control group. Afterwards, the seed group prediction accuracy was calculated by counting
the number of correctly predicted seeds. Therefore, the issues of the number of samples
were solved, and the performance was improved. In the classification results shown in
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Figure 8c and the metrics shown in Table 2, we observed that the accuracy of seed-based
classification increased from 80.0% to 92.5%.

3.4.3. 3D Convolutional Neural Network (3D CNN)

Compared to seed-based methods, the pixel-based SVM increased the accuracy in
seed-based classification. However, it could be observed that the pixel-based SVM still
had space for improvement since it included many mispredicted pixels. One of the issues
with the pixel-based SVM was that it only considered each pixel as separate samples and
ignored the connection between them. Therefore, the spatial information of the seeds was
lost in the SVM model. In contrast, the 3D CNN proposed in this work processed the
pixels in the spatial and spectral dimensions simultaneously. As shown in Figure 8d and
Table 2, 3D CNN has better performance than the pixel-based SVM. The accuracy of 3D
CNN increases from 85.67% to 94.21% in the pixel-based classification. The accuracy of
seed-based classification calculated using the same methods as pixel-based SVM increases
from 92.5% to 97.5%.

3.5. Wavelengths Analysis

The extracted spectrum includes 239 wavelengths after calibration. In this section, we
considered each wavelength as a feature and utilized LightGBM to analyze the importance
with respect to group labels. By building a LightGBM model using the spectral data of
pixels, the wavelengths are used as nodes in the model. All the wavelengths are fed
to the model, and the importance of these wavelengths is evaluated by calculating the
number of times for which a spectral band is used to split the data across all trees. Then,
the importance is normalized by dividing the total number of splitting to rescale the
range to 0–1. The wavelengths are sorted with respect to normalized importance, and the
wavelengths with top 12 importance are shown in Figure 9. These wavelengths also match
our observation in Section 3.3 where the differences of reflectance for these wavelengths
is clear. Moreover, Figure 9 showed that most of the top important wavelengths for
classification ranged from 1000 to 1600 nm. Based on this analysis, the NIR component
of the hyperspectral camera capturing 900–1700 nm could be selected for cost-effective
imaging in future studies.

Figure 9. The wavelengths sorted by normalized importance, which is computed and scaled based
on the number for splitting the trees in the LightGBM model.
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4. Discussion

The proposed system HyperSeed has provided an end-to-end solution to hyperspectral
imaging of seeds. The system is specially designed for seed imaging and has achieved high
accuracy and efficiency. The cost-effective imaging system and the open-source MATLAB
software facilitate easy access and customized modifications. Our experiments on rice
seeds have shown the data analytic capabilities of HyperSeed.

Though HyperSeed has demonstrated its capability to process hyperspectral images
in a high-throughput manner, there is still space for improvement. First, the current
version of HyperSeed software is single-threaded. Since the initial segmentation has already
detected the potential individual seeds, it is possible to apply the refined segmentation
to these seed candidates simultaneously using multithread techniques. As a result, the
time cost to process each hyperspectral image can be further reduced if the software is
implemented in a multithreaded manner. Second, we only explored the labeled seed
samples and use them for wavelength analysis and classification. In HSI, compared to the
labeled samples, unlabeled samples are usually much easier to access. More applications
should be achievable if unsupervised machine learning methods with unlabeled samples
are applied. Third, though the 3D CNN method already has high accuracy on seed-based
classification, it still has the potential to be improved on pixel-based classification. In
the sample extraction step of 3D CNN, only the local spatial information is extracted to
generate training samples for fast training and easy convergence. The model performance
could be further improved if the global spatial traits such as shape are captured by the
model. Moreover, since the focus of this work is the end-to-end solution, we did not
explore the relationship between the seed composition and wavelengths. Due to the same
reason, the analysis of the activation maps in 3D CNN is not included.

5. Conclusions

We propose a novel end-to-end system called HyperSeed to process the hyperspec-
tral images of seeds in a high-throughput manner and provide details to establish both
hardware and software components. The system can be used on seeds from various
plant species. The cost-effective hardware is capable of capturing hyperspectral images
of multiple seeds. The open-sourced software with GUI extracts the calibrated hyper-
spectral reflectance of the segmented seeds effectively. The software’s output includes
seed-based averaged reflectance and pixel-based reflectance for each seed. To demonstrate
the potential of the proposed tool for biological interest, we performed experiments on
classification and hyperspectral analysis using the extracted reflectance data of control and
HS seeds. By comparing various machine learning models, the proposed 3D CNN showed
a high classification accuracy (94.21% at the pixel level and 97.5% at the seed level). The
spectral curves of the seeds were analyzed, and the wavelengths with top importance were
identified. Our future work will aim to implement the software in a multithreaded manner
to further improve efficiency. We will also explore the hidden layers in 3D CNN and the
relationship between the seed composition and wavelengths.
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