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Abstract: Breast microwave sensing (BMS) has been studied as a potential technique for cancer
detection due to the observed microwave properties of malignant and healthy breast tissues. This
work presents a novel radar-based image reconstruction algorithm for use in BMS that reframes
the radar image reconstruction process as an optimization problem. A gradient descent optimizer
was used to create an optimization-based radar reconstruction (ORR) algorithm. Two hundred
scans of MRI-derived breast phantoms were performed with a preclinical BMS system. These scans
were reconstructed using the ORR, delay-and-sum (DAS), and delay-multiply-and-sum (DMAS)
beamformers. The ORR was observed to improve both sensitivity and specificity compared to DAS
and DMAS. The estimated sensitivity and specificity of the DAS beamformer were 19% and 44%,
respectively, while for ORR, they were 27% and 56%, representing a relative increase of 42% and
27%. The DAS reconstructions also exhibited a hot-spot image artifact, where a localized region
of high intensity that did not correspond to any physical phantom feature would be present in an
image. This artifact appeared like a tumour response within the image and contributed to the lower
specificity of the DAS beamformer. This artifact was not observed in the ORR reconstructions. This
work demonstrates the potential of an optimization-based conceptualization of the radar image
reconstruction problem in BMS. The ORR algorithm implemented in this work showed improved
diagnostic performance and fewer image artifacts compared to the widely employed DAS algorithm.

Keywords: microwave imaging; breast microwave imaging; image reconstruction; radar imaging

1. Introduction

Improving the potential of microwave-based breast cancer detection has been an
active area of investigation over the past two decades [1,2]. The observed contrast in the
microwave properties of cancerous and healthy breast tissues [3–6] has sparked research
into the use of breast microwave sensing (BMS) as a diagnostic tool to be used for breast
cancer screening or as a complementary technique to mammography [1,2]. Several research
groups have developed BMS systems and evaluated these systems using both phantom
and patient data [7–12]. Despite the progress made in BMS research over the past two
decades, several challenges remain before the technique can be considered for routine
clinical use.

The two families of image reconstruction algorithms used in BMS today are radar-
based and tomographic techniques. Microwave tomography typically aims to reconstruct
a quantitative image of the dielectric properties of the breast, and does using the full elec-
tromagnetic scattering model [13–16]. While some assumptions may be made to simplify
the inverse problem in tomography, using the full model is computationally expensive and
presents challenges when applying these methods to experimental data [13–16].

Radar-based techniques have seen widespread use and have been used in several clin-
ical trials [7–12]. These techniques assume a relatively straightforward radar signal model
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and are computationally inexpensive but typically neglect many aspects of the physics of
microwave scattering. Radar-based reconstruction methods produce qualitative images of
the breast, in which regions of high reflectivity are displayed. These techniques include the
delay-and-sum beamformer, which has been used in several clinical studies [17]. Several
other reconstruction methods have been derived from the delay-and-sum beamformer,
including the delay-multiply-and-sum beamformer [18], which has been demonstrated
to reduce both background and high-intensity clutter to accurately localize the tumour
response in patient data [19].

Current microwave tomography and radar-based reconstruction methods both face
challenges. This work presents a novel radar-based reconstruction method that conceptual-
izes the radar reconstruction approach as an optimization problem. The novel reconstruc-
tion method was used to produce images of an array of 3D-printed MRI-derived breast
phantoms using measurements obtained with a preclinical BMS system. A dataset consist-
ing of 200 scans of the phantoms was produced and is the third generation in the University
of Manitoba Breast Microwave Imaging Dataset (UM-BMID, the original dataset was first
presented in [20]) and was made open access. This dataset was used to compare the images
produced with the novel method to those produced using the standard delay-and-sum
and delay-multiply-and-sum beamformers. The signal-to-clutter ratio and localization
error of the reconstructions were compared, and the diagnostic sensitivity and specificity
were evaluated using the dataset. This optimization conceptualization allows for further
implementation of improved physics modelling within the reconstruction algorithm. This
article discusses the observed improvements in image quality and diagnostic performance
using the novel optimization-based reconstruction method and the potential for future
improvements through additional physics modelling.

The novelty of this work is three-fold: (1) an image reconstruction algorithm based on
a reframing of the radar image reconstruction problem within an optimization framework,
(2) an open-access dataset with well-understood positioning uncertainties, and extensive
reference scan and data collection documentation for the evaluation of image reconstruction
methods, specifically designed to isolate the effect of tumour size on tumour detection,
and (3) estimates of the specificity of the literature’s standard DAS and DMAS methods
(in addition to the novel reconstruction algorithm presented herein) using a relatively
large dataset of 200 phantom scans and the identification of an image artifact present in
reconstructions produced by the DAS and DMAS beamformers.

2. Materials and Methods
2.1. Standard Radar-Based Image Reconstruction Methods

The delay-and-sum (DAS) beamformer [17] is the standard method for radar-based
image reconstruction in breast microwave sensing and has been used as the basis for
the development of several derivative methods, including the delay-multiply-and-sum
(DMAS) [18], improved delay-and-sum [21], coherence factor delay-and-sum [22], channel-
ranked delay-and-sum [23], and the iterative delay-and-sum [24]. DAS reconstructs an
image of the breast through summation of the individual radar signals acquired during the
scan protocol. In a monostatic system, this can be expressed as

I(r) = ∑
a

∑
f

S(a, f )e−2π j f 2t(r,a) (1)

where S(a, f ) is the measured S11 signal at antenna position a and frequency f , I(r) is
the image intensity at position r, and t(r, a) is the one-way time-delay for the signal to
propagate from the antenna’s position a to the position r. Assuming a homogeneous
propagation speed along the propagation path, the time-delay is modelled as

t(r, a) =

∣∣r− a
∣∣

v
(2)
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where v is the (homogeneous) propagation speed.
The DMAS beamformer reconstructs an image through signal-pair multiplication

followed by summation,

I(r) = ∑
a

∑
a′

∑
f

S(a, f )e−2π j f 2t(r,a)S(a′, f )e−2π j f 2t(r,a′). (3)

This algorithm, originally proposed for application in radar-based breast microwave
imaging, has also been applied to ultrasound imaging [25]. The beamformer computes
the autocorrelation function at each antenna measurement position, a, but excludes the
autoproduct terms [25].

Both phantom [26] and patient [19] studies have demonstrated that the DMAS beam-
former outperforms the delay-and-sum beamformer and other methods, including the
improved delay-and-sum, coherence factor delay-and-sum, and channel-ranked delay-
and-sum beamformers, with respect to clutter reduction and tumour localization accu-
racy [19,26].

2.2. The Optimization-Based Radar Image Reconstruction Algorithm

Existing radar-based image reconstruction techniques perform one-step image re-
construction, as in DAS and DMAS, where the image is produced in one mathematical
step. While these techniques allow for rapid reconstruction, they do not allow nonlinear
components to be incorporated into the signal model. The implicit forward signal model
assumed in the DAS beamformer is given by

Sfwd(a, f , σ) =
∫

drσ(r)e−2π j f 2t(r,a) (4)

where Sfwd(a, f , σ) is the forward model S-parameter obtained at measurement position a,
frequency f , due to reflectivity profile σ. The DAS beamformer aims to reconstruct this
reflectivity profile, σ(r), as the image I(r).

This model assumes plane-wave propagation from the antenna to each scattering
point and from each scattering point to the antenna. The model assumes no signal losses
due to distance-based attenuation, partial transmission at interfaces, and losses due to lossy
propagation media. The model assumes an isotropic, point-source antenna with a uniform
gain as a function of frequency and also assumes a uniform propagation speed throughout
the imaging domain. These assumptions are all violated in a BMS system, and as a result,
the performance of the DAS beamformer and its derivatives are constrained.

However, this radar forward model can be also used to produce an optimization
problem,

σimg = arg min
σ

(
∑
a

∑
f

∣∣∣Sfwd(a, f , σ)− Sexpt(a, f )
∣∣∣2) (5)

where σimg is the reflectivity profile displayed in the reconstructed image and Sexpt(a, f ) is
the experimentally measured S-parameter at measurement position a and frequency f , and
where the sum-of-squares,

l(σ) = ∑
a

∑
f

∣∣∣Sfwd(a, f , σ)− Sexpt(a, f )
∣∣∣2 (6)

was used as the loss function, l(σ).
To solve this optimization problem, we employed the gradient descent optimizer to

find σimg,
σ(n+1) = σ(n) − α∇σl(σ) (7)

where the conjugate of the gradient (with respect to the reflectivity profile, ∇σ) of the loss
function is used due to Sfwd, Sexpt ∈ C [27].
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Let us explore the relationship between the DAS reconstruction algorithm and this
optimization problem formulation. Assume that the measured S11 is at only one position,
a0, and one frequency f0, to examine the exact solution for σ(r), assuming the implicit
forward model in Equation (4), by writing:

Sexpt( f0, a0) = Sfwd( f0, a0, σ) (8)

where Sfwd( f0, a0, σ(r)) is given as in Equation (4), so that

Sexpt( f0, a0) =
∫

V
drσ(r)e−2π j f02t(r,a0). (9)

The reflectivity profile that solves this equation, σD(r), is

σD(r) =
( 1

V

)
Sexpt( f0, a0)e2π j f02t(r,a0) (10)

where V is the volume of the integration domain.
To prove this, substitute Equation (10) into Equation (9), to obtain

Sexpt( f0, a0)
?
= Sfwd( f0, a0, σD) (11)

⇒ Sexpt( f0, a0)
?
=
∫

V
dr

[( 1
V

)
Sexpt( f0, a0)e2π j f 2t(r,a0)

]
e−2π j f0t(r,a0) (12)

⇒ Sexpt( f0, a0)
?
=
( 1

V

)
Sexpt( f0, a0)

∫
V

dr (13)

⇒ Sexpt( f0, a0)
?
=
( 1

V

)
Sexpt( f0, a0)V (14)

and the factor of V in the numerator of the right-hand side cancels with that in the de-
nominator, and so the left-hand side and right-hand sides are identical, demonstrating
that Equation (10) is a solution to the cost function l(σ) assuming the forward model to be
implicit to DAS when one measurement position a0 and one frequency f0 are used,

⇒ Sexpt( f0, a0) = Sfwd( f0, a0, σD(r)). (15)

The solution σD(r) in Equation (10) is also that given by the DAS beamformer, within
a normalization factor of 1/V. For a single-position, single-frequency measurement, DAS
therefore completely reconstructs the reflectivity profile σ(r) so as to minimize the loss
function l(σ) (in this case, l(σ) = 0). However, no current BMS system uses only a single-
position, single-frequency measurement to reconstruct an image (due primarily to the
non-unique time delays—i.e., a given time delay may correspond to many regions in the
spatial domain). If we consider a BMS system that uses a single-position, dual-frequency
measurement ( f0 and f1), we observe that the reflectivity profile produced by the DAS
beamformer, σD(r) as described in Equation (10), no longer reproduces the experimental
measured S-parameter, Sexpt, for either frequency. To illustrate this, consider the reflectivity
profile produced by DAS using the information from the dual-frequency measurement,

σD(r) =
( 1

V

)[
Sexpt( f0, a0)e2π j f02t(r,a0) + Sexpt( f1, a0)e2π j f12t(r,a0)

]
. (16)
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If this relationship is used in Equation (9), we obtain,

Sexpt( f0, a0) =
( 1

V

) ∫
V

dr

[
Sexpt( f0, a0)e2π j f02t(r,a0) + Sexpt( f1, a0)e2π j f12t(r,a0)

]
·

· e−2π j f02t(r,a0), (17)

for Sexpt( f0, a0). Neglecting the prefactor 1/V and simplifying the integrand, this becomes

Sexpt( f0, a0) = Sexpt( f0, a0) +
∫

V
dr Sexpt( f1, a0)e2π j f12t(r,a0)e−2π j f02t(r,a0) (18)

⇒ Sexpt( f0, a0) 6= Sfwd( f0, a0, σD(r)). (19)

This demonstrates that the experimental S-parameters are not perfectly reconstructed
when the DAS beamformer is used with multiple measurements. Therefore, the gradient
descent algorithm may be able to provide an improvement with respect to the loss function
l(σ). This mathematical discussion motivated the development of the optimization-based
reconstruction approach, as the ORR may improve upon the DAS reconstruction, with
respect to the loss function l(σ).

The initial reflectivity profile estimate for all reconstructions produced in this work
was a uniform map of zeroes, ∀r, σ(0)(r) = 0. The reconstruction procedure was stopped
when the relative change in the loss function was less than 0.1%, i.e.,

l(σ(n+1))− l(σ(n))

l(σ(n))
× 100% ≤ 0.1%. (20)

2.3. Experimental Dataset: UM-BMID Gen-3

The open-access dataset developed by our group, the University of Manitoba Breast
Microwave Imaging Dataset (UM-BMID) [20], has been used in past work for machine
learning-based tumour detection [28,29]. The dataset presented in [20] consisted of two
generations, and while the data are well-suited for machine learning investigations, the
challenges in target positioning uncertainty and reference scan acquisition limit the utility
of the first- and second-generation datasets for image-based analysis.

The third generation of UM-BMID was developed to complement the existing dataset
generations and facilitate image-based tumour detection analysis in experimental BMS.
This dataset was generated using scans of 3D-printed phantoms (first described in [30]
and [20]) performed with the BMS system described in [31]. One modification to the system
in [31] was made in the completion of this dataset. The vector network analyzer (VNA)
in [31] was a Planar 804/1 (Planar 804/1, Copper Mountain Technologies, Indianapolis, IN,
USA), and operated over 1–8 GHz, while the VNA used to produce this dataset was the
C1209 model (C1209, Copper Mountain Technologies, IN, USA) and operated over 1–9 GHz.
The C1209 was used due to its improved dynamic range, an improved output power of
15 dBm (compared to 10 dBm for the Planar 804/1) and larger frequency bandwidth
than the Planar 804/1. The scan protocol was otherwise the same—measurements were
performed at 1001 frequencies over the 1–9 GHz bandwidth, and the antenna was rotated
to 72 positions equally spaced along a circular trajectory spanning 355◦.

The third generation dataset consisted of scans of 20 unique healthy phantom tissue
geometries. Five tumour-containing scans were performed for each unique phantom.
These five scans differed only with respect to the size of the tumour—the tumours were
placed at the same position in each of these five scans. Tumours of 10, 15, 20, 25, and 30 mm
diameters were used, as displayed in Figure 1.
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Figure 1. The glass tumour bulbs (filled with saline solution) used as tumour surrogates in the
breast phantoms.

Each tumour-containing scan had two unique reference scans and one nonunique
reference scan. The unique references were of the same phantom tissue geometry, excluding
the tumour (referred to as the healthy reference), performed immediately after the target
tumour-containing scan, and of the same phantom tissue geometry, excluding the tumour
and the fibroglandular components (referred to as the adipose reference), performed
immediately after the healthy reference. The nonunique reference was an empty chamber
scan. The healthy reference scans were performed to facilitate the visualization of the
effects of the fibroglandular inclusion, and the adipose reference scans were performed
to facilitate image reconstruction under conditions of ideal surface reflection subtraction.
The adipose reference scan subtraction allows for manual removal of the reflections due to
the air–tissue interface, serving as an experimental (but not clinically practical) method for
ideal surface reflection subtraction. While skin suppression is an active area of research [2],
this allows the relatively large reflections due to the air–tissue interface to be suppressed to
visualize the interior tissue components.

Table 1 compares the novel third-generation dataset to the previously presented
second-generation dataset. The third generation reduced target positioning uncertainty by
nearly a factor of three and included more reference scans to facilitate more informative
image analyses.

Table 1. UM-BMID Gen-3 and Gen-2 comparison.

Gen-3 Gen-2

Number of Unique Scans 120 1008

Number of Scans 200 1008

Adipose Reference Scans Yes No

Adipose-Fibroglandular Reference Scans Yes No

Scan Frequencies 1–9 GHz 1–8 GHz

Tumour Diameters (mm) 10, 15, 20, 25, 30 10, 20, 30

Positioning Uncertainty 4 mm 10 mm

This dataset consists of 120 unique phantom scans and is publicly available at https:
//bit.ly/UM-bmid, accessed on 2 December 2021. All Python code used to perform
the analysis presented in this work and to create the figures displayed in this article
is openly accessible https://github.com/TysonReimer/ORR-Algorithm, accessed on 2
December 2021.

2.4. Image Quality Analysis and Diagnostic Performance Estimation

The signal-to-clutter ratio (SCR) and localization error (LE) were calculated for each
reconstruction. These image quality metrics were defined as in [24] and measure image
contrast (SCR) and image accuracy (LE). The SCR (in dB) was defined as

SCR = 20 log10

(
Tmax

Cmax

)
(21)

https://bit.ly/UM-bmid
https://bit.ly/UM-bmid
https://github.com/TysonReimer/ORR-Algorithm
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where Tmax is the maximum response in the target (tumour) region and Cmax is the maxi-
mum response in the clutter (nontumour) region.

The LE was defined as
LE =

∣∣∣rmax − rtum

∣∣∣ (22)

where rmax is the location of the maximum intensity response within the image and rtum is
the known location of the center of the tumour.

These metrics were determined for each reconstruction produced by the DAS, DMAS,
and ORR algorithms.

An automated and quantitative tumour-detection metric was used in this work to
evaluate the diagnostic sensitivity and specificity of the DAS, DMAS, and ORR methods.
The tumour-detection criteria used in this work were the same as described in [32]. If the
SCR of an image was greater than 1.5 dB, then that image was labelled as containing a
tumour because a large SCR indicates a high-contrast, localized region within the image.
For reconstructed images of healthy phantoms, this was the only criterion used to evaluate
the label of the image—all healthy images with SCR ≥ 1.5 dB were labelled as false
positives, and all healthy images with SCR < 1.5 dB were labelled as true negatives. For
reconstructed images of tumour-containing phantoms, if the SCR < 1.5 dB, the image was
labelled as a false negative. If the SCR ≥ 1.5 dB, the localization error was also evaluated. If
the localization error was LE ≤ rtum + δr, where rtum was the known radius of the tumour
and δρ was the uncertainty in the polar position of the tumour, then the image was labelled
as a true positive, because the highest-intensity point in the image was found to be within
the expected tumour region. If LE > rtum + δr, then the image was also labelled as an
incorrect prediction and was treated as a false negative when calculating the sensitivity of
the reconstruction method.

3. Results

Figure 2 displays typical reconstructions produced by the DAS, DMAS, and ORR
algorithms. Figure 2a–c displays reconstructions of a 30 mm diameter tumour and is typical
of a case where all three beamformers successfully identified the presence of the tumour
inclusion based on the quantitative criteria described in Section 2.4. Figure 2d–f displays re-
constructions of a 20 mm tumour and demonstrates the generally observed trend, where the
DMAS and ORR reconstructions had higher SCR than the DAS reconstructions. Figure 2g–i
displays reconstructions of a 15 mm tumour and demonstrates typical reconstructions
produced by the beamformers when the tumour is not accurately detected. While the SCR
of the DAS and DMAS reconstructions are negative, the true tumour location does not
correspond to a visual image feature, and the central high-intensity localized region of the
reconstructions visually appears similar to that of a tumour response (as in Figure 2d–f).
This hot-spot artifact was present in many DAS and DMAS reconstructions and obfuscated
the true tumour response. Notably, the ORR reconstruction does not have a single localized
high-intensity region, as in the case of the DAS and DMAS reconstructions, but instead
has two distinct relatively high-intensity regions—one occurring near the center of the
image (as in the DAS and DMAS reconstructions) and the other at the known location of
the tumour.
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(a) DAS
30 mm tumour

SCR = (11 ± 2) dB

(b) DMAS
30 mm tumour

SCR = (21 ± 2) dB

(c) ORR
30 mm tumour

SCR + (15 ± 2) dB)

(d) DAS
20 mm tumour

SCR = (5 ± 2) dB

(e) DMAS
20 mm tumour

SCR = (10 ± 2) dB

(f) ORR
20 mm tumour

SCR = (7 ± 2) dB

(g) DAS
15 mm tumour

SCR = (−8 ± 3) dB

(h) DMAS
15 mm tumour

SCR = (−17 ± 3) dB

(i) ORR
15 mm tumour

SCR = (−3 ± 2) dB
Figure 2. Typical reconstructed images produced by DAS in (a,d,g), by DMAS in (b,e,h), and by the
ORR in (c,f,i). The first row displays reconstructions of a phantom containing a 30 mm tumour, the
second of a phantom containing a 20 mm tumour, and the third of a phantom containing a 15 mm
tumour. In all reconstructions, the dashed white circle indicates the approximate outer boundary of
the breast phantom, and the solid green circle indicates the known tumour position.

Figure 3 displays the diagnostic sensitivity and specificity obtained by the DAS, DMAS,
and ORR algorithms when (a) an adipose reference scan is used for ideal skin suppression
and (b) when an adipose and fibroglandular reference scan is used for ideal skin and clutter
suppression. The subtraction of a reference scan containing both adipose and fibroglandular
tissues allows for the removal of all responses not due to the tumour (neglecting secondary
and higher-order scattering). While this suppression is not clinically practical, it allows for
insight into the effects of the fibroglandular inclusions on the diagnostic performance of the
reconstruction methods. When ideal skin suppression is used, as displayed in Figure 3a, no
beamformer has a practical sensitivity. If adipose and fibroglandular reference subtraction
is performed, the beamformers have improved performance that is within the range of
reported sensitivity estimates in the literature (74–100% in [8,9,32–37]). The specificity
of the DAS and DMAS beamformers was observed to be worse than a random classifier
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acting on images of healthy breasts. Only the ORR algorithm achieved a specificity better
than 50%.

(a)

(b)
Figure 3. Sensitivity and specificity of the DAS, DMAS, and ORR reconstruction methods evaluated
on UM-BMID Gen-3 when (a) the adipose-only scan is used as the reference and (b) when the
adipose-fibroglandular scan is used as the reference.

Figure 4 displays the influence of tumour size on diagnostic sensitivity for the three
beamformers. The ORR algorithm had a 50% relative increase in sensitivity compared to
the DMAS beamformer for detecting tumours of 25 mm diameter. Even when ideal skin
suppression was used, all reconstruction methods failed to detect any 15 or 10 mm diameter
lesions. When an adipose-fibroglandular scan was used as the reference for subtraction,
all beamformers detected all lesions of at least 20 mm diameter. In all cases, the ORR
outperformed both the DAS and DMAS beamformers.
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(a)

(b)
Figure 4. Sensitivity of the DAS, DMAS, and ORR reconstruction methods as a function of tumour
size, evaluated on UM-BMID Gen-3 when (a) the adipose-only scan is used as the reference and
(b) when the adipose-fibroglandular scan is used as the reference.

4. Discussion
4.1. Image Artifacts in DAS, DMAS, and the Gradient Descent Method

A hot-spot artifact was observed in the reconstructions produced by both the DAS
and DMAS beamformers. This artifact was observed as a localized high-intensity region
within a reconstructed image that did not correspond to any physical phantom feature. The
appearance of this artifact was similar to the appearance of a tumour response within an
image. While this artifact can be observed in other published work that used the DAS and
DMAS, to the best of the authors knowledge, this article is the first to identify and discuss
its presence. Notably, the ORR reconstructions were not observed to have this artifact.
Two typical cases of this artifact are displayed in Figure 5. The effect of the presence of this
artifact in the DAS and DMAS reconstructions can be directly observed in the diagnostic
specificity estimates.
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(a) DAS
SCR = (9 ± 3) dB

(b) DMAS
SCR = (17 ± 2) dB

(c) ORR
SCR = (5 ± 2) dB

(d) DAS
SCR = (8 ± 3) dB

(e) DMAS
SCR = (15 ± 3) dB

(f) ORR
SCR = (1 ± 2) dB

Figure 5. Typical reconstructed images produced by DAS in (a,d), by DMAS in (b,e), and by the ORR
in (c,f). All reconstructions are of healthy, tumour-free phantoms. In all reconstructions, the dashed
white circle indicates the approximate outer boundary of the breast phantom, and the solid green
circle indicates the known tumour position.

4.2. The Diagnostic Performance of DAS, DMAS, and ORR

Only two studies in the literature have estimated the specificity of BMS techniques.
Both studies used radar-based image reconstruction methods. One study [37] estimated the
specificity to be 62% in a trial with 103 breast images from a patient trial. The other study
estimated the specificity to be 20% and estimated the specificity using five phantoms [32].
Neither estimates were promising, and while the sensitivity of BMS has been estimated
in several publications and has been reported to be between 74% and 100% [8,9,32–37],
insufficient attention has been awarded to the specificity of the modality, which must be
considered in tandem with the sensitivity.

The specificity results in this work demonstrate a qualitative observation—the DMAS
beamformer tends to produce reconstructions with hot spots, even in the absence of a
tumour. DMAS had the worst specificity (40%), while the ORR algorithm provided more
than a 50% relative increase in specificity. DAS had a similarly poor specificity of 44%. Both
DAS and DMAS were worse than a random classifier when predicting the presence of a
tumour in healthy breasts. The hot-spot artifact discussed in Section 4.2 must be considered
when evaluating image quality. While image artifacts may be difficult to quantify, the
effects of this artifact on the specificity of the beamformers are clear from Figure 3.

The tumour detection criteria used in this work, as defined in [32], requires two
parameters to be defined a priori: (1) the SCR threshold used to determine whether an
image is labelled as containing a tumour response and (2) the localization error threshold
used to determine whether a high-intensity response labelled as a tumour response (due
to the SCR threshold) belongs to the true tumour within the image. The localization error
threshold used in this work was based on the known uncertainty in the positioning of the
tumour surrogate within the imaging chamber, and the SCR threshold was the same as
in [32], SCR ≥ 1.5 dB. The diagnostic performance estimates obtained in this analysis are
sensitive to the selection of the SCR threshold. Figure 6 displays the receiver operating
characteristic (ROC) curves of the DAS, DMAS, and ORR beamformers as a function of the
SCR threshold used in the tumour detection criteria. One thousand linearly spaced SCR
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thresholds between 0 and 30 dB were used to compute each point on the curves. The ORR
beamformer outperformed the DAS and DMAS reconstruction methods in all cases.

Figure 6. ROC curves of the DAS, DMAS, and ORR algorithms when either adipose-only phantom
scans or healthy (adipose and fibroglandular) phantom scans are used as references for artifact
suppression, determined using one thousand linearly spaced SCR thresholds between 0 and 30 dB.
The ORR outperformed the DAS and DMAS beamformers for all SCR thresholds.

While the specificity of ORR is relatively poor compared to existing clinical modalities,
it is similar to the 62% specificity reported in [37], and the relative increase in specificity
compared to the literature standard DAS and DMAS beamformers is promising. No
existing technique has been demonstrated to have specificity that would be clinically
acceptable, but the relative improvement of 40% (compared to DMAS) demonstrates the
potential of the ORR algorithm for BMS. The incorporation of improved physics modelling
into the ORR method may further improve the specificity of the modality.

4.3. Advantages of Enhanced Physics Modelling in Radar-Based Image Reconstruction

This work demonstrates the advantages of the optimization conceptualization of the
radar-based image reconstruction problem mathematically in Section 2.2 and empirically
in Section 3. The optimization approach also allows for the incorporation of enhanced
physics modelling to further improve the signal model used in the approach. The base
radar forward model, also implicitly assumed by the DAS beamformer, in Equation (4),
was used in the ORR presented in this work. This base model still reduced image artifacts
and improved sensitivity and specificity compared to the DAS and DMAS beamformers.
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Future work will explore the incorporation of improved physics modelling. The
antenna beam pattern and frequency-dependent gain, system output signal, signal at-
tenuation, non-uniform propagation speed, and multiple scattering can be incorporated
into the radar signal model. Work performed with a maximum likelihood expectation
maximization algorithm [38] demonstrated that modelling the antenna beam pattern im-
proved reconstructions, and future work with the ORR will explore this further. Notably,
this optimization approach allows for the incorporation of nonlinear enhanced physics.
Multiple scattering effects are ignored in current radar-based reconstruction approaches,
but second-order scattering could be included in the ORR through a modification in the
signal model to

Sfwd(a, f , σ) =
∫

drσ(r)e−2π j f 2t(r,a)

+
∫

drσ(r)e−2π j f t(r,a)
∫

dr′σ(r′)e−2π j f [t(r′ ,a)+t(r,r′)] (23)

where the second term models the second-order scattering.
This optimization-based reconstruction method provides the first opportunity in

radar-based BMS image reconstruction to incorporate the multiple scattering effects into
the reconstruction algorithm, and future work will examine the impact of this modelling
on image quality and diagnostic performance.

5. Conclusions

This work describes a novel framework for image reconstruction in radar-based
breast microwave imaging based on a complex optimization approach and presents results
obtained using an implementation of this framework with the gradient descent optimizer
and base radar signal model. The optimization-based radar reconstruction (ORR) algorithm
was compared to the literature standard delay-and-sum (DAS) and delay-multiply-and-
sum (DMAS) beamformers. A dataset of 200 scans of 3D-printed MRI-derived breast
phantoms was created to compare the reconstructions produced by the DAS, DMAS, and
ORR methods. The diagnostic performance of the ORR algorithm was better than the
performance of DAS and DMAS with respect to sensitivity and specificity. The ORR
algorithm had a relative increase in sensitivity of 42% and 35% compared to DAS and
DMAS, respectively, and a relative increase in specificity of 27% and 40%, compared to DAS
and DMAS. This work is the first to identify and describe the hot-spot image artifact present
in DAS and (particularly) in DMAS reconstructions. This artifact appears as a localized
high-intensity region within the image that resembles a tumour response but that does
not belong to a physical phantom feature. This artifact was observed in reconstructions
produced by both the DAS and DMAS beamformers, and the presence of this tumour-like
artifact in the reconstructions of healthy phantoms resulted in poor specificity estimates for
both beamformers. The ORR algorithm was not observed to produce reconstructions with
this artifact. This work demonstrates the potential utility of the ORR algorithm as a novel
methodology for image reconstruction in radar-based breast microwave sensing.
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