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Abstract: Accurate quantitative detection for trace gas has long been the center of failure diagnosis
for gas-insulated equipment. An absorption spectroscopy-based detection system was developed
for trace SF6 decomposition SO2 detection in this paper. In order to reduce interference from other
decomposition, ultraviolet spectrum of SO2 was selected for detection. Firstly, an excimer lamp was
developed in this paper as the excitation of the absorption spectroscopy compared with regular light
sources with electrodes, such as electrodeless lamps that are more suitable for long-term monitoring.
Then, based on the developed excimer lamp, a detection system for trace SO2 was established.
Next, a proper absorption peak was selected by calculating spectral derivative for further analysis.
Experimental results indicated that good linearity existed between the absorbance and concentration
of SO2 at the chosen absorption peak. Moreover, the detection limit of the proposed detection system
could reach the level of 10−7. The results of this paper could serve as a guide for the application of
excimer lamp in online monitoring for SF6-insulated equipment.

Keywords: SF6-insulated equipment; excimer lamp; absorption spectroscopy; online monitoring

1. Introduction

Sulfur hexafluoride (SF6) possesses great insulation capabilities and arc extinction
ability. Since 1960s, SF6 has been applied in many gas-insulated equipment such as
transformer, inductor, GIS (gas-insulated switchgear), GIL (gas-insulated transmission
line) and so on [1]. With the development and popularization of SF6-insulated equipment,
the insulation state detection for it has long been the center of research field. Based on
current studies, various detection techniques have been presented. For instance, ultra-
high frequency (UHF) [2], frequency-domain dielectric spectroscopy (FDS) [3], ultrasonic
method [4] and so on were proposed to detect relevant electrical parameters. However,
such detection techniques were vulnerable to electromagnetic interference or vibration
noise. Moreover, such invasive detections could impair the intact structure of SF6-insulated
equipment and result in leakage. Therefore, it is necessary to find a non-electrical method
to properly evaluate the insulation state of SF6-insulated equipment.

Decomposition gas analysis is one of the prevailing non-electrical methods for esti-
mating the insulation state of electrical equipment. Even though SF6 itself is a colorless,
odorless and innocuous inert gas, its decompositions under discharge are poisonous and
corrosive. Specifically speaking, under the condition of discharge, SF6 will decompose and
generate a series of sulfide. Furthermore, some of the sulfide will react with micro water
and oxygen in the equipment to generate H2S, SO2, SOF2, SO2F2 and so on [5]. To this day,
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plenty of techniques have been developed to detect trace SF6 and its decompositions [6,7].
Moreover, some forms of commercial products are also available [8,9].

Meanwhile, plenty of research studies have verified that among all the decomposition
of SF6, the concentration of SO2 strongly correlates with the discharge level inside the
equipment [10]. The larger the concentration, the higher the discharge level. In that case,
detecting the concentration of the decomposition of SF6, especially SO2, has become a
widely acceptable method for monitoring the insulation state of SF6-insulted equipment.
Among all the detection method for SO2, optical techniques have become more and more
prevalent due to its short response time and high accuracy.

Nowadays, common optical techniques for trace SO2 detection include differential
optical absorption spectroscopy (DOAS) [11], photoacoustic spectroscopy (PAS) [12], fluo-
rescence spectroscopy [13], Fourier transform infrared spectroscopy (FTIR) [14], et cetera.
Among those methods, absorption spectroscopy possesses several merits such as short
response time, simple structure and high accuracy. In addition, compared with other
optical detection techniques, the detection system based on absorption spectroscopy is
more suitable for modularized and portable design. Therefore, absorption spectroscopy is
extensively applied in the electrical industry for insulation state detection.

Usually, the detection system for SO2 based on absorption spectroscopy employs
infrared excitations. However, SO2 possesses two strong absorption bands in ultraviolet
(UV) range. According to Beer–Lamber’s law, the larger absorption cross-section band of
SO2 contributes to better detection performance. Moreover, the majority decomposition of
SF6 except for SO2 has no evident absorption band in the UV range. Hence, the employment
of UV excitation is able to avert crossover interference to a great extent, which results in
more accurate spectral information.

Usual UV excitation includes deuterium lamp [15], xenon lamp [16] and neon lamp [17].
However, such excitation depends on an electrode to launch electron and excite gas dis-
charge. Exposed to long-term UV illumination, the ageing process of an electrode is
accelerated. On the other hand, the excimer lamp, which does not have an electrode, excites
gas to discharge using microwave. Due to this characteristic, the lifetime of the excitation
drastically improved. Accordingly, the frequency of systematic maintenance is reduced.
As a consequence, the detection system based on excimer lamp is feasible for long-term
monitoring scenarios.

Aiming at the discussion above, a trace SO2 quantitative detection system based
on excimer lamp is presented in this paper. The major contributions of this paper are
as follows:

(1) Study of the characteristic of UV excimer lamp and the feasibility of its application in
UV absorption spectroscopy;

(2) Establishment of trace SO2 quantitative detection system based on excimer lamp and
evaluation of the performance of the presented detection system;

(3) Selection of the most prominent absorption peak among the absorption spectra by
calculating spectral derivative for quantitative analysis.

The result of this paper could serve as a reference for the application of excimer lamp
in the field of gas insulated equipment fault diagnosis.

2. Theoretically Fundamental
2.1. Basic Principle of Excimer Lamp

Generally, excimer includes noble gas, halogen, noble gas-halogen and mercury-
halogen dimer [18]. Noble gas–halogen is the most common working substance of an
excimer lamp. The working principle of such an excimer lamp could be demonstrated
as follows.

Excited by energetic electron, noble gas and halogen are ionized, and their processes
are described as follows [19]:

e∗ + Rg→ Rg∗ + e (1)
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e∗ + Rg→ Rg+ + 2e (2)

e∗ + X2 → X + X− (3)

where Rg represents noble gas particle, and X represents halogen particle. Then, the
excimer is generated through a Harpooning reaction:

Rg+ + X− + M→ RgX∗ + M (4)

Rg∗ + X2 → RgX∗ + X (5)

where M represents three kinds of particle which include the atom, molecule and buffer
gas. Such an excimer is not stable; it will decompose and release excitation energies
through photons:

RgX∗ → Rg + X + hν (6)

where h represents the Planck constant, and ν represents the wavelength of the photon.
In this paper, a microwave was employed to bring electron kinetic energy and excite

the working substance in the excimer lamp. Then, photons with certain wavelength could
be obtained.

2.2. Basic Principle of Absorption Spectroscopy

According to Beer–Lambert’s Law, the absorption spectrum could be expressed as
follows [20].

I(λ) = I0(λ) exp[−cLσ(λ)] (7)

Equation (7) can be rewritten as follows:

c =
ln
[

I0(λ)
I(λ)

]
Lσ(λ)

=
A(λ)

Lσ(λ)
(8)

where I0(λ) represents the initial intensity of UV light, I(λ) represents the transmission
intensity of UV light, L represents the optical path length, σ(λ) represents the absorption
cross-section of the investigated gas, c represents the concentration of investigated gas
and λ represents the wavelength of incident light. In addition, absorbance is denoted as
A(λ) = ln[I0(λ)/I(λ)].

3. Experimental Setups

To quantitatively detect trace SO2, a detection system based on absorption spec-
troscopy was established in this paper. Crucial components of the detection system were
introduced as follows.

3.1. The Selection of the Formula of Excimer Lamp

In order to select a proper excitation for the detection system, the absorption charac-
teristic of SO2 was studied first in this paper. Based on current studies, it was recognized
that two major absorption bands of SO2 exist in UV band. According to the principle of
absorption spectroscopy, the nominal wavelength of the excitation falling into the absorp-
tion band of investigated gas contributes to better performance of the detection system.
Given the data provided by Gordon [21] and Blackie [22], the absorption cross section of
SO2 in the UV band can be depicted as follows.

From Figure 1, according to current research studies [23,24], in the wavelength range
between 198 nm and 310 nm, SO2 exhibited two strong absorption band, which were at
190 nm to 220 nm (1B2←1A1) and 250 nm to 310 nm (1A2, 1B1←1A1). Compared with the
absorption band at 250 nm to 310 nm, the absorption band at 190 nm to 220 nm was one
order of magnitude larger. In that case, it would be better if the nominal wavelength of
employed excimer lamp was in the range of 190 nm to 220 nm.
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Figure 1. Absorption cross section of SO2 in UV range.

Former scholars have performed abundant research on the characteristics of various
excimer lamps. According to reference [25], regular formulas of noble gas–halogen excimer
lamp and corresponding nominal wavelength are described as follows.

From Table 1, combined with the absorption band of SO2, a I-Kr lamp was selected as
the excitation in this paper.

Table 1. Common formula and nominal wavelength of excimer lamp.

Formula Nominal Wavelength

F-Kr 220 nm, 248 nm, 272 nm, 275 nm
Cl-Kr 200 nm, 222 nm, 240 nm, 235 nm
Br-Kr 207 nm, 222 nm, 228 nm
I-Kr 190 nm, 195 nm, 206 nm, 225 nm

After the working substance has been selected, the corresponding contents were
determined then. The luminance of excimer lamp relies on the gas discharge inside the
lamp. On the one hand, light intensity was determined by the number of excited gas
molecules. On the other hand, based on the theory of gas discharge, the mean free path of
an electron was described as follows:

λ =
1

πN(r1 + r2)
2 (9)

where λ represents the mean free path of electron, N represents the density of gas molecule
r1 and r2 represent the radius of electron and gas molecule, respectively. From (9), higher
pressure results in higher densities and smaller mean free path. Moreover, a smaller mean
free path indicates less time to gain energy for an electron. Hence, the probability of gas
molecules being ionized decreases accordingly. From a macro point of view, the emission
intensity of an excimer lamp decreases. To conclude, the light intensity might increase first
and decrease later when the content of I2 increases.

In order to verify the theory aforementioned and to select the proper formula of the
excitation, in this paper, the emission spectroscopy of excimer lamps with different content
of I2 was detected. In those excimer lamps, the content of I2 was 0.1 mg, 0.2 mg, 0.3 mg,
0.4 mg, 0.5 mg, 0.6 mg, 0.7 mg, 0.8 mg, 0.9 mg, 1 mg, 2 mg, 3 mg, 4 mg and 5 mg. As the
ambient gas, the pressure of Kr was 2 Torr. The experimental results are described as
Figure 2.
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From Figure 2, the emission intensity of excimer lamps increased first and decreased
later with an increase in the content of I2 roughly, which agreed with the statement above.
The emission intensity reached a peak when the content of I2 was 0.5 mg. Thus, combined
with both theoretical analysis and experimental outcome, the content of I2 was chosen as
0.5 mg in this paper.

3.2. Basic Structure of Detection System

According to the basic principle of absorption spectroscopy, a trace SO2 detection
system was built in this paper. The schematic diagram of the detection system is described
as follows.

From Figure 3, the optical path length of the gas cell was 0.8 m, and the model of the
spectrometer was OceanOptics MX2500+. A microwave generator comprised a transformer
and a magnetron. A generated microwave was transmitted to an excimer lamp through a
cable. The gas molecules were excited by the microwave and generated UV light, which
entered the gas cell and was absorbed by the investigated gas. The elliptical reflector
behind the excimer lamp was employed to enhance light intensity of the investigated gas.
Then, the transmission light arrived at the probe of the spectrometer for detection. Finally,
data obtained from the spectrometer were transmitted to a PC for further processing.
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4. Experimental Results and Analysis
4.1. The Influence of Dark Current

Considering the interference from surrounding and background noise, the spectrome-
ter would capture signals without the excitation being started. It is necessary to eliminate
such influence before spectral data are further processed. Denote such influence as dark
current, the modified absorbance is then calculated as follows:

A(λ) = ln
I0(λ)− IN(λ)

I(λ)− IN(λ)
(10)

where A(λ) represents the absorbance of investigated gas at wavelength λ, I0(λ) represents
the initial intensity of UV light, I(λ) represents the transmission intensity of UV light and
IN(λ) represents the dark current.

4.2. Quantitative Analysis of Trace SO2 Detection

Standard SF6 gas of 99.999% purity was employed as the background gas. SO2 gas
samples with the concentration of 0 µL/L, 56.9 µL/L, 97.5 µL/L, 163.8 µL/L and 199.1 µL/L
were taken for experiment. SO2 with the concentration of 0 µL/L, which was pure SF6,
was considered as the background. Gas samples were prepared by mixing certain volumes
of standard SO2 gas with known concentrations and pure SF6. A spectrometer was used
to detect the absorption spectra. Then, the dark current was deducted from detected
data. With background subtraction, the modified absorption spectra of the aforementioned
concentrations are depicted as Figure 4.
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Figure 4. Absorption spectra of transmission at different concentration of SO2.

In order to determine the most prominent absorption peak among all wavelengths,
spectral derivatives were obtained. By calculating the derivatives of the absorbance spectra,
matching between the absorption cross section of the investigated gas and the emission
spectrum of the excitation could be quantitatively determined. Therefore, the most promi-
nent absorption peak could be located. Such processing had potential for various objects
and scenarios instead of certain kinds of investigated gas.

In this paper, Savitzky–Golay convolution filtering was employed to smooth the
original spectral data and to eliminate irrelevant noise [26]. The order of the Savitzky–
Golay filter was set at nine. The filtered spectra are depicted as Figure 5.
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Then, one-order derivative spectra of the absorbance at each concentration of SO2
were calculated and depicted as follows.

From Figure 6, it could be observed that the zeros of four derivative absorbance
spectra met at the point of 205.79 nm. The fact indicated that all four spectra reached
their extremums at this very point. Combined with original spectra, the absorbance at
this point was the maximum. According to the theory of absorption spectroscopy, a more
prominent phenomenon contributed to better performance of the detection system. Ergo,
the experimental data at the wavelength of 205.79 nm were used for further calculation
and analysis. Linear fitting between absorbance and concentration at this wavelength was
as Figure 7.
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From Figure 7, linear fitting R2 > 0.9996 confirmed the linearity of the absorbance re-
sponse to the concentration of SO2. Moreover, the linear fitting function could be expressed
as follows.

A = 0.0057c− 0.0102 (11)

From what has been discussed above, the fitting result proved the rationality of
using a linear function to characterize the relationship between the absorbance and the
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concentration of SO2. As a result, SO2 gas with unknown concentrations could be calculated
by (11) once the corresponding absorbance was measured.
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4.3. Estimation of the Detection Performance

In this paper, the performance of the proposed detection system was evaluated from
three aspects, accuracy, DL and drift over time, which are demonstrate successively.

Firstly, the accuracy of the proposed detection system was quantitatively estimated.
In detail, in order to evaluate the accuracy of the proposed detection system, gas samples
with different concentrations of SO2 were employed as the benchmark for comparison.
Gas samples were prepared by mixing certain volumes of standard SO2 gas with known
concentrations and pure SF6. Standard gas was purchased from Beijing Haipubeifen gas
product company. Based on the error of standard gas and barometer employed in this
work, the error value of the concentrations of gas samples was ±2.255%. The main process
of obtaining detection results was as follows:

(1) Introduce one gas sample into the gas cell for detection;
(2) Detect five successive points of transmission light intensity and calculate their average

as the detection transmission light intensity;
(3) Take the detection transmission light intensity to calculate the corresponding concen-

tration. The calculated concentration is then taken as the detection result;
(4) Clean the detection system and repeat above procedure in order to obtain the detection

result of each gas sample.

By comparing the detection result with the corresponding gas sample, the relative error
could be obtained. Hence, the accuracy of proposed detection system could be evaluated.
Furthermore, in order to fully evaluate the performance of the proposed detection system,
the error budget was presented. In this study, the error mainly came from the error of
standard gas, barometer and detection process. In detail, the error of purchased standard
gas was 2%, and the error level of the barometer was 0.25. Therefore, the gas samples
prepared in this study had an error of ±2.255%. Moreover, the errors of experimental data
obtained from spectrometer were evaluated by calculating the standard deviation of raw
data, which are given next. Finally, the comparison results are listed as follows.

From Table 2, it could be concluded that the proposed detection system could measure
trace SO2 with high accuracy at both low and high concentrations. Such capability brought
the applicative potential to the proposed detection system.
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Table 2. Accuracy of detection system.

Gas Sample Detection Result (µL/L) Gas Concentration (µL/L) Relative Error (%)

1 3.9 (±23.189%) 3.3 (±2.255%) 18.1
2 6.2 (±20.239%) 6.4 (±2.255%) 3.1
3 15.5 (±7.026%) 15.8 (±2.255%) 1.9
4 84.6 (±2.023%) 83.5 (±2.255%) 1.3
5 126.3 (±1.857%) 116.9 (±2.255%) 8.0
6 139.5 (±3.393%) 135.6 (±2.255%) 2.9

Secondly, the detection limit (DL) is a common criterion employed to gauge the
capability of a detection system. The DL (1σ) of the presented detection system was
calculated as follows [27]:

DL =
c

SNR
(12)

where c represents the concentration of SO2, and SNR represents the signal to noise ratio.
In this paper, the main process of obtaining DL was as follows:

(1) Introduce pure SF6 into the gas cell for detection;
(2) Detect five successive points and calculate their average as the background signal

and the standard deviation of their absorbance as the systematic noise;
(3) Clean the detection system and introduce gas samples into the gas cell for detection;
(4) Detect five successive points of transmission light intensity and calculate the average

of their absorbance;
(5) Calculate DL.

Based on the aforementioned procedure, the performance of the proposed detection
system could be evaluated. Particularly speaking, the systematic noise represented the
fluctuation degree of obtained data from the spectrometer and reflected the uncertainty of
calculation results. A gas sample with the concentration of 56.9 µL/L was taken to calculate
SNR and DL. The calculation results are listed as follows.

From Table 3, low systematic noise indicated that the emission of the excitation was
stable, which was beneficial to high SNR. Accordingly, low DL could be obtained. It could
be observed that the DL (1σ) of the detection system was 0.632 µL/L. Currently, the SO2
diagnostic threshold level is about 1 µL/L. Therefore, the results proved the feasibility of the
application of proposed detection system in failure diagnosis in SF6-insulated equipment.

Table 3. Systematic noise and detection limit of the detection system.

Signal of Gas Sample Systematic Noise Signal to Noise Ratio Detection Limit

0.310 3.47 × 10−3 90.038 0.632 µL/L

Thirdly, the drift of the proposed detection system was analyzed over time. The drift
of the proposed detection system mainly came from two perspectives: the drift of the
excitation and the drift of the detector. In order to evaluate their drift, the excitations of the
proposed detection system, which was the excimer lamp, and the detector, which was the
spectrometer, were tested respectively. Power and energy meters were employed to detect
the output of the excimer lamp. The measurement results are as Figure 8.

The excimer lamp was switched on at 30 s, and after a period of ascending, the light
power tended to be stable. Finally, the light power fluctuated around 21.7 mW. The standard
deviation of stable data was 0.111% of the average of stable data. It can be observed that
the fluctuation degree of the emission was quite small once the excimer lamp stabilized.
In that case, drift of the output of excimer lamp over time could barely be observed.

On the other hand, the spectrometer was employed to measure the emission of the
excimer lamp after it stabilized. Considering that every detection process often lasted less
than 1 min, the emission of the stable excimer lamp for 10 successive minutes was detected.
The detection results were as follows.
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From Figure 9, the standard deviation of experimental data was 1.22% of the average
of detected data. According to experimental data, the performance of the spectrometer
employed was stable over time. Hence, drift over time barely existed in the spectrometer.
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In summary, the experimental results indicated that the minor fluctuation existed
in the process of obtaining data. Therefore, drift over time did not emerge prominently.
Such stability was beneficial for better performance of the proposed detection system.

4.4. Discussion and Future Works

According to above results, the feasibility of the excimer lamp in trace SO2 detection
could be verified. On the one hand, due to the good linearity between the absorbance and
the concentration of SO2, a gas sample with unknown concentration could be calculated
via a calibrated relationship. Based on the calculation results presented in Section 4.3, it
could be observed that good linearity resulted in accurate relationships and calculations.
This result indicated that the proposed detection system had the capability of providing
accurate detection results. On the other hand, the excimer lamp was capable in providing
stable and emergent UV light as the excitation. Therefore, the emission of the excimer lamp
had minor drift over time, which was beneficial to high SNR.
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Based on the aforementioned experimental results, the proposed detection system
possessed the DL of sub-ppm level and had fast response speed. For comparison, several
common optical detection methods for trace SO2 are listed as follows.

From Table 4, the performance of the proposed detection system was comparable to
common optical detection methods for SO2 such as DOAS, fluorescence, FTIR and PAS [28].
Thus, the proposed detection system has potential for practical applications.

Table 4. Comparison of the performances of common optical detection methods.

Methods Detection Limit Response Speed

UV-DOAS Sub-ppm Fast
UV fluorescence Sub-ppm Fast

FTIR ppm Medium
PAS Sub-ppm Fast

Proposed detection system Sub-ppm Fast

Future studies derived from this paper may focus on two major aspects. First, due
to the simple structure of proposed detection system, it was able to be highly integrated
and modularized. Such a design is required when it is applied to equipment that is hard to
reach, such as bushings. Second, during the operation of the microwave generator, a lot of
heat was generated as well. Heat may cause the detection result to drift and the excimer
lamp to quench. As a result, the heat dissipation problem is of great significance when
such a detection system was implemented.

5. Conclusions

In this paper, a detection system for trace SO2 was established. Firstly, the emission
characteristic of the excimer lamp was studied, and the working substance and correspond-
ing formula of the excimer lamp were determined. Then, based on the selected excimer
lamp, a UV absorption spectroscopy detection system was established for trace SO2. Next,
the derivatives of absorbance spectra were calculated to locate the most prominent absorp-
tion peak for further linear fitting and analysis. Experimental results indicated that at the
wavelength of selected absorption peak, good linearity existed between the absorbance and
concentration of SO2. Moreover, experimental results testified the potential of a proposed
detection system in trace SO2 quantitative measurements. Furthermore, the error budget
of the proposed detection system was proposed. Based on the error budget, the detection
results of the proposed detection system were quantitatively analyzed. According to the
comparison the detection results and the known gas samples, the proposed detection
system performed good accuracy when measuring trace SO2. In addition, the DL of the
proposed detection system could reach a level of 10−7. In a nutshell, the study in this paper
could verify the feasibility of the application of the excimer lamp in trace gas detection
systems. The results of this paper may serve as a guideline for SF6-insulated equipment
failure diagnosis.
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