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Abstract: Individual tree structural parameters are vital for precision silviculture in planted forests.
This study used near-field LiDAR (light detection and ranging) data (i.e., unmanned aerial vehicle
laser scanning (ULS) and ground backpack laser scanning (BLS)) to extract individual tree structural
parameters and fit volume models in subtropical planted forests in southeastern China. To do this,
firstly, the tree height was acquired from ULS data and the diameter at breast height (DBH) was
acquired from BLS data by using individual tree segmentation algorithms. Secondly, point clouds of
the complete forest canopy were obtained through the combination of ULS and BLS data. Finally, five
tree taper models were fitted using the LiDAR-extracted structural parameters of each tree, and then
the optimal taper model was selected. Moreover, standard volume models were used to calculate
the stand volume; then, standing timber volume tables were created for dawn redwood and poplar.
The extraction of individual tree structural parameters exhibited good performance. The volume
model had a good performance in calculating the standing volume for dawn redwood and poplar.
Our results demonstrate that near-field LiDAR has a strong capability of extracting tree structural
parameters and creating volume tables for subtropical planted forests.

Keywords: ULS; BLS; point cloud; merge; synergetic effects; forest structural parameters; taper
equation; volume

1. Introduction

A volume table is critical for forest resource inventory, forest growth monitoring, forest
volume statistics, etc. [1]. Volume is a key metric for evaluating the effect of the cultivation
of plantations, and acquiring the standing volume is a crucial foundation for precise
plantation cultivation [2]. The accurate assessment of volume and the growth of planted
forests are of great importance in maintaining regional and global forest ecosystems, as
well as in scientific decision making concerning planation cultivation [3,4]. As the forestry
sector standard in China, the local volume table (i.e., one-way volume table), which allows
the estimation of the stem volume from the diameter at breast height (DBH), originated in
the 1970s. However, due to changes in climate, site and forest resource structures in China,
some volume tables from that year inevitably contain errors in the actual use process, which
has a significant impact on the results of evaluating the volumes of plantations. Therefore,
it is an urgent problem to redevelop the standard volume model with a high precision
and a strong applicability and to compile a standard volume table (i.e., two-way volume
table, requiring both DBH and tree height) for the precision of cultivation of planted forests
depending on the different requirements for forestry production and forest cultivation in
different areas. The forest volume is an important parameter for assessing forest health,
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as well as a crucial foundation for national and forestry workers when assessing the state
of a forest and formulating cultivation strategies. Although volume tables have brought
new opportunities to provide feasible and detailed volume estimations, using conventional
field measurements to construct forest volume tables is still a challenging task that is
labor-intensive, time-consuming, costly, destructive, and spatially limited [5–7]. Thus, a
non-destructive approach is urgently needed to improve the efficiency and accuracy of
estimations of forest volume for forestry workers in silvicultural practices.

In remote sensing, the emergence of light detection and ranging (LiDAR) technologies
has provided non-destructive and three-dimensional (3D) measurements in order to consis-
tently quantify forest structures across large areas at an unprecedented level of detail [8,9].
LiDAR technology can be operated from spaceborne, airborne, or near-field platforms,
with each platform serving specific forest inventory needs [10]. Compared to spaceborne
and airborne LiDAR systems, near-field LiDAR systems represent a promising alternative
for characterizing more spatially detailed forest structures at the plot level and at regional
scales due to their much lower cost, higher point density, and higher repeatability [11,12].

As a kind of near-field LiDAR remote sensing platform, unmanned aerial vehicle-
borne laser scanning (ULS), also known as UAV-LiDAR, can integrate a low-cost LiDAR
sensor with a UAV and offers an unsurpassed capacity to retrieve more accurate 3D
structural representations of the forest canopy, including crowns, stems, branches, and
understory vegetation [13–15]. In recent years, ULS has become particularly attractive
in key development stages (e.g., planting, pruning, thinning, and harvest) of planation
cultivation due to its light weight, low cost, wide availability, cloud insensitivity, and
repeatability. Liu et al. [16] employed ULS metrics to predict forest structural parameters
with parametric and non-parametric models and assessed the effects of UAV-LiDAR
point cloud density on the derived metrics and individual tree segmentation results in
a Ginkgo planation in southeastern China. Their results showed that k-NN performed
well for predicting the volume (CV-R2 = 0.94, rRMSE = 8.95%). Li et al. [17] assessed
and compared the performance of individual tree crown diameter estimation methods
using a low-cost ULS and an airborne LiDAR separately in the same study area as in our
study. The results showed that low-cost ULS obtained good results for individual tree
crown diameter estimation (R2 = 0.806, RMSE = 0.195 m). Puliti et al. [15] employed a
ULS system to estimate the tree volume of boreal forests with existing allometric models
in southeastern Norway. They reported that the accuracy of the ULS estimates varied
according to the forest structure, and it was highest in open pine stands and lowest in dense
birch or spruce stands. Although many previous studies have also demonstrated the great
potential of ULS for estimating forest structural parameters and its advantages compared
to airborne LiDAR, these “top-down” ULS systems may be problematic in estimating the
individual tree diameter at breast height (DBH) under the different sampling conditions
due to attenuation of the laser beam when interacting with a very dense overstory and,
consequently, the discontinuity and occlusion of the lower parts of canopy structures (e.g.,
stem diameter) [18–22].

Terrestrial laser scanning (TLS)—namely, ground-based LiDAR—also offers a de-
tailed 3D representation of the surroundings of forest structures with millimeter accu-
racy [10,23,24]. Compared to conventional forest inventory tools, such as the use of hyp-
someters to measure tree height and tapes to measure tree stem diameters [25], the use
of TLS point clouds provides non-destructive estimates of stem curve profiles and char-
acterizes the branching structures of trees, thus further improving the modeling of the
individual tree volume. TLS data can be collected with either a single- or a multiple-scan
mode [24,26]. In a single-scan mode, the scanner is placed at a single point and the obtained
data will, at best, make one side of an individual tree visible in the scan. However, this
typical scan mode often results in occlusion problems due to the fact that lower branches,
dense undergrowth vegetation, some stems, twigs, and leaves or other parts of the tree
may not be scanned, as they are hidden by elements that are closer to the scanner [10,27].
To relieve these occlusion problems, a plot can be scanned with multiple scans at differ-
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ent positions instead of a single scan in a fixed position. Yrttimaa et al. [25] employed a
multiple-scan TLS with point cloud cluster and RANSAC-cylinder filtering algorithms
to quantify structural changes in boreal forests in Evo in southern Finland. Their results
indicated that multiple-scan TLS has the capacity to characterize trees and forest stands
in space and showed that TLS technology could estimate structural changes over time in
boreal forests. Saarinen et al. [28] investigated the effects of TLS data captured at various
distance (i.e., corresponding to 25%, 50%, 75%, and 100% of tree height) on the accuracy of
the stem volumes derived. The results indicated that a scanning distance of approximately
25% of the tree height would be optimal for stem volume estimation. Theoretically, a
more complete set of forest observations should lead to improved estimates for forest
structures [25]. Thus, some studies have attempted to employ ULS and TLS data in order
to obtain complete vertical forest structures [25,29]. When combined, TLS and ULS can
compensate each other for their respective defects in characterizing the complete and
continuous vertical structures of individual trees and forest stands. However, the positive
effect of this combination is still limited because the inflexibility and the short functional
range in TLS data acquisition obviously increase the labor and time costs [26,30,31].

As a novel type of portable LiDAR platform, backpack laser scanning (BLS) (i.e., back-
pack LiDAR) integrated with a simultaneous localization and mapping (SLAM) algorithm
can gather multi-scanned point cloud data under forest canopies efficiently and flexibly,
and those scanned point clouds can be instantly auto-matched together [32]. Another
advantage of BLS is that it can acquire data efficiently and flexibly under various terrain
conditions, by using a professional and high-quality scanning senor and a navigation
system [30]. Thus, the BLS technology has a high capacity in terms of accessibility and
route choice. Notably, the implementation of a BLS system within a forest benefits greatly
from the usage of the SLAM algorithm, which enables accurate positioning of the scanner
in the forest environment, which hampers global navigation satellite system (GNSS) signals.
The SLAM algorithm combines the posture of the LiDAR and the constraint relationships
between changes in posture to solve for the position of the point cloud [32]. Tang et al. [33]
investigated an SLAM-aided positioning solution with point clouds collected by a small-
footprint mobile LiDAR and demonstrated the potential of positioning and mapping with
SLAM in forest inventories. To date, the SLAM algorithm has been incorporated into
some commercial scanners (e.g., Zebedee, GeoSLAM Horizon, Gexcel HERON, and Kaarta
Stencil systems), and this algorithm has been widely explored in some forests [34–36]. In
summary, the current shortcomings of TLS-based approaches include the aforementioned
tree occlusion and need for multiple scans, as well as the lack of available software for
processing (for specific fields) and the limited capacity to provide the information of the
upper canopy layer (especially the tree-top height) [34]. Compared with TLS, BLS is usually
much lighter, more flexible, more portable, and more timely [37]. Hyyppä et al. [34] used
a pulse-based backpack mobile laser scanner to estimate the stem curves of individual
trees in the boreal forests of Finland. They reported that the total root-mean-square errors
(RMSEs) of the extracted stem curves were 1.2 (5.1%) and 1.7 cm (6.7%) for the easy and
medium plots, respectively. Oveland et al. [31] compared TLS, BLS, and HLS (handheld
laser scanning) in terms of tree stem detection and tree stem diameter estimation. Their
results showed that BLS obtained better performance for both tree detection and stem
diameter estimation compared to TLS and HLS. In theory, point cloud data can be obtained
by combining the ULS and BLS technologies, and the vertical structural parameters can
be extracted more completely and accurately. As a result, it seems reasonable to assume
that the combination of ULS and BLS data has immense potential in the construction
of complete structural information for the trunk, branch, and crown, as well as in the
realization of the stem curve and construction of the volume equation.

To the best of our knowledge, most previous studies focused on the use of one
or two sensors (ALS/TLS combination or ULS/TLS combination) for forest structure
characterization in temperate or boreal forests. The published studies that have focused on
the synergetic usage of ULS and BLS data to extract individual tree structural parameters
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and to fit volume models to derive a volume table of a subtropical planted forest are few.
Therefore, this study is the first to proposes a new framework for estimating stem curves
and generating volume tables based on a non-destructive approach in a subtropical planted
forest using ULS and BLS data. The specific objectives of our study are: (1) to implement
individual tree segmentation algorithms on ULS and BLS data; (2) to extract tree-level
forest structural parameters by combining matched ULS and BLS data; (3) to fit taper
models, construct volume models, and compile volume tables for dawn redwood and
poplar trees in a subtropical planted forest.

2. Materials and Methods
2.1. Study Area

The study area was located in the state-operated Dongtai Forest (the Yellow Sea
National Forest Park) (32◦33′–32◦57′ N, 120◦07′–120◦53′ E), Jiangsu Province, close to the
Yellow Sea, with an annual average temperature of 14.6 ◦C and an annual average relative
humidity of 88.3%. This site belongs to the northern subtropical monsoon climate zone
and has four distinct seasons, full sunshine, abundant rainfall (annual rainfall of 1050 mm),
and an annual frost-free period of 220 days [38]. Dongtai Forest is located in an alluvial
plain with flat terrain, an average elevation of 4.5 m, and an average slope of 0.04%. The
area of Dongtai Forest is approximately 2239 ha, the forest cover is 85%, and the main
forest species are dawn redwood (Metasequia glyptostroboides), poplar (Populus deltoids),
and ginkgo (Ginkgo biloba). This forest in the study area consists of many regular stands.
In a stand, only one tree species is present, and the ages of the trees in the stand are the
same. On the inside of the stand, regular planting is performed with a fixed-line spacing.
The poplar stands have line spacings in ranges of 3 to 6, 4 to 5, 3 to 8, and 5 to 8 m, while
dawn redwood stands have row spacings in ranges of 3 to 4 and 4 to 6 m. The forest
farm’s personnel routinely nurses and manages the young forest, thinning the interior and
adjusting the stand structure.

2.2. Field Data Collection

In this study, a total of seven square plots with a 30 × 30 m2 area were designed and
surveyed; these included three sample plots with dawn redwood and four plots with poplar.
These plots’ stand densities were low, medium, and high. One additional sample plot of
medium-density poplar was set up as a backup. The coordinates of the centers and corners
of the plots were measured with differential GPS in each sample site. Figure 1 shows the
distribution of the study area and sample plots. Field survey data were collected in Dongtai
Forest from 23 to 26 July 2017. The survey factors within the seven plots included the
trees’ species, single tree location information, DBH (>5 cm), and tree height. The position
information of individual trees and the central coordinates and corners of the sample plots
were obtained with real-time differential GPS (RTK, Real-Time Kinematic). The positions
of the trees within the plots were measured using an ultrasound-based Haglöf PosTex®

positioning instrument (Långsele, Sweden). The DBH of the tree trunks was measured
with a tape at a height of 1.3 m above the ground. The tree height was measured with a
Vertex IV® hypsometer (Långsele, Sweden). In this study, we only measured the DBH and
heights of trees within a meter of each side of the walking route of the BLS data collection
path (see Polewski et al. [39] for more details). Table 1 summarizes the structural attributes
in the plots.
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Figure 1. Study area and distribution of sample plots. The study area was located in Dongtai City in the east of Jiangsu
province (see the subfigure in the top left) near the coast of the Yellow Sea.

Table 1. Summary of the structural attributes of the field plots.

Plots Tree Species Age
Measured Trees

(Trees) Mean DBH (cm)
Standard

Deviation of
DBH (cm)

Mean
Height (m)

Standard
Deviation of
Height (m)

a Dawn redwood 39 12 29.11 5.97 25.30 2.47
b Dawn redwood 43 26 31.57 3.95 27.30 1.71
c Dawn redwood 34 20 27.11 6.42 23.22 2.41
d Poplar 21 9 33.30 10.32 27.84 3.59
e Poplar 22 12 34.57 5.22 31.46 1.90
f Poplar 23 11 38.15 7.57 33.16 2.41
g Poplar 13 16 24.69 5.44 23.20 2.14

2.3. LiDAR Data Acquisition and Preprocessing

The full-coverage ULS data were acquired with a LiAir (GreenValley International,
Berkeley, CA, USA) multi-rotor UAV-mounted VLP 16 (Velodyne 16E) laser sensor on 24–26
July 2017, with the unmanned aerial vehicle (UAV) integrated with the NovAtel SPAN-IGM-
S1 Inertial Navigation System (inertial measurement unit, IMU) (NovAtel Inc., Calgary, AB,
Canada). The UAV-LiDAR system flew at 86 m above ground level with a flight speed of
3.6 m/s. The laser wavelength emitted by the LiDAR was 903 nm, the scanning angle was
15◦, the beam divergence was 3 mrad, the number of independent layers of Velodyne 16E
was 16 line/s, and the pulse emission frequency was 21.7 kHz. The final LiDAR point cloud
data acquired had an average point cloud density of about 84 pts/m2, and the average
number of ULS point clouds in each sample plot was approximately 270,000 pts. The IMU
had a gyro (bias instability of 0.5 deg/h, input range of 400 deg/sec, angular random walk
of 0.15 deg/

√
hr) and accelerometer (bias instability of 0.05 mg and range of 10 g) with a

random walk velocity of 0.06 m/s/
√

hr.
The full-coverage BLS data of the seven plots were obtained with the LiBackpack

(GreenValley International, USA) mobile LiDAR backpack system on 23–26 July 2017. For
the BLS data of each plot, four reference poles were placed at the beginning and end of two
outer strip paths. An “S”-shaped strip path (see Polewski et al. [39] for more details) was
designed to collect the BLS point clouds for the plots. The walking speed was 1 m/s. The
vertical scanning angle of the instrument was ±15◦, the laser wavelength was 905 nm, the
divergence was 3 mrad, the pulse emission frequency was 21.7 Hz, the scanning frequency
was 16 lines/s, the height of the scanner was 1.9 m, and the average number of BLS point
clouds in each sample plot was approximately 5.7 million pts.

Because non-vegetation objects, such as birds in the sky, that obstructed the laser pulse
would interfere with the point clouds in the raw LiDAR data, it was necessary to preprocess
the data. Firstly, the ULS and BLS point cloud data were de-noised to remove noise points
that were not associated with the forest. The improved progressive TIN densification
(IPTD) filter algorithm was adapted from Zhao et al. [40] and used to filter and extract
the aboveground points. After filtering the aboveground points, a 1-m digital elevation
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model (DEM) was generated by calculating the average elevation from the ground of points
within a rasterized cell grid using the ground points of the ULS data with approximately
8000 pts per plot. If there were no returns within cell grids, these cell grids were filled
through interpolation by using an inverse-distance-weighted (IDW) algorithm. Then, the
point cloud height value was normalized against the DEM surface height. The normalized
point cloud data were obtained by subtracting the elevation information of each point in
the point cloud data from the elevation value vertically projected onto the DEM. After
normalization, the elevation value of the point cloud data was the height value of each
point’s actual distance from the ground.

2.4. Tree Height Extraction with ULS Data

The individual tree segmentation algorithm in this study was an algorithm from
Li et al. [41]. The individual tree segmentation technique used in this work was based on
the point cloud distance judgement clustering approach in order to extract the crown widths
of single trees, and the algorithm had a good segmentation effect in a mixed coniferous
forest in the Nevada mountain range in the United States [41]. The algorithm was directly
based on a point cloud, and the steps of the process were as follows: The highest point of
the normalized point cloud data was searched within a certain threshold value T1 in the
point cloud data of the experimental area; each high point was treated as a treetop point,
and the threshold value was close to the spacing between two trees. The other threshold
value T2 was set, and the points outside the threshold of each treetop point as the center
of the circle were not divided into the sets of points of the tree; the threshold value was
close to the average crown radius of the sample. From the top to the bottom of the tree,
the points in the threshold T1 were determined and segmented in turn. According to the
minimum distance rule, the points were divided into the sets of points generated by trees
with relatively close horizontal distances. To ensure the accuracy of the segmentation, the
shape index of the branches was added. According to this method, all of the points above
a certain height were determined and segmented from top to bottom, and the points of the
entire group were divided into several parts to achieve the goal of single-tree segmentation
in the study area.

The position information of the single field-measured trees in the seven samples was
used to assess the accuracy of the single-treetop information detected in the ULS data.
It was deemed correct when a detected tree was located within the crown of the field
inventory tree. The recall (r, represents the detection rate), the precision (p, represents the
precision of detected trees), and the overall accuracy (F, represents the overall accuracy,
taking both omission and inclusion into consideration) were the three indexes that reflected
the effects of individual tree segmentation:

r =
Nt

Nt + No
, (1)

p =
Nt

Nt + Nc
, (2)

F =
2(r× p)

r + p
, (3)

Among them, Nt is the number of detected treetops that existed in the field position,
No is the number of the trees that were omitted by the algorithm, and Nc is the number of
the detected trees that did not exist in the field.

After the point cloud data were segmented, they could be divided into different single
trees; the point cloud of the same single tree could have the same ID information, and the
highest point in each individual tree’s point cloud would be regarded as the top of the tree.
The average horizontal distance between all point clouds was divided for each single tree,
and the apex of the tree was regarded as its crown radius. Taking the top of the tree as the
circle’s center, the relative value of the vertical height from the ground of the point where
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the center of the circle was located was taken as the tree height information of the single
tree. In each sample, all accurately segmented single tree heights were retrieved, and the
corresponding IDs were created.

2.5. DBH Extraction with BLS Data

The algorithm for single-tree segmentation of the trunk was a clustering algorithm that
was directly based on the density of the point cloud. After the LiDAR point cloud data were
subjected to de-noising and preprocessing with normalization, the point cloud data were
horizontally sliced, and then a threshold value of the density of a point set was determined
to detect the presence of the trunk. In this study, a clustering algorithm—namely, density-
based spatial clustering of applications with noise (DBSCAN)—was adopted for trunk
segmentation because of its robustness to noise points and efficiency [37]. The method
comprised the following steps: slicing the normalized LiDAR data at a height of 1.3 m and
a vertical width of 10 cm and using the DBSCAN algorithm to detect the tree trunk. This
algorithm could automatically detect clusters of points of different shapes after setting the
minimum number of points (MinPts) for the trunk point set and the threshold radius (Eps)
of the points. The point set D was a set of points in the p-point threshold range; the q-point
belonged to the point set D, and the number of points of the set of points q (including the
p-point itself) was represented by NEps (p), i.e.,

NEps(p) = {q ∈ D/dist(p, q) ≤ Eps}. (4)

If there was a sufficient number of points in this neighborhood, i.e., |NEps(p)| ≥MinPts,
it was considered that a trunk was detected. Otherwise, the point q was considered as
a noise point. This step was repeated for each point in the point cloud after the slicing.
Finally, an analysis of the accuracy of the individual tree segmentation with the BLS was
performed by utilizing the position information of the single trees that were measured
in the seven samples. The segmentation accuracy was expressed by using the r, p, and F
indices in the upper section.

After performing tree trunk segmentation on the cloud data, a set was formed with
the point cloud of the same tree and was sliced at a distance of 1.3 m from the ground, the
distribution of the point cloud was fitted by using a circle, and the diameter of the circle
was considered as the detected breast diameter. The steps in the procedure were as follows:
calculating a gravity center of all points of a point set at a point at 1.3 m after slicing, taking
the average distance of all points in the point set from the center of gravity as a radius, and
calculating the DBH of the tree.

2.6. Co-Registration of ULS and BLS Data

In this study, control of coordinate points was used to coarsely calibrate the ULS data
and BLS data. The method of controlling coordinate points was adopted for the rough
calibration of the two types of data. The UAV-LiDAR system had a global navigation
satellite system (GNSS) and an inertial navigation system (IMU), which recorded accurate
coordinate information in real time, so the point cloud in the ULS data had absolute
coordinates; while the working environment of the mobile backpack laser scanner was
below the forest canopy, even if equipped with GPS, the real-time coordinate information
obtained was also unreliable due to the canopy occlusion and weak GPS signal, so the BLS
data had only relative coordinates. The goal of coarse calibration was to roughly match the
two types of source data into one coordinate system in preparation for fine calibration. The
method was as follows: TrimbleNet R9 (Trimble, Sunnyvale, CA, USA) was used as the
base station, and the coordinate points of the base station used the coordinate points of the
ULS coordinate system to ensure that the coordinates of the mobile station were consistent
with the coordinate system in the ULS data; Trimble R4 (Trimble, Sunnyvale, CA, USA)
was used as a real-time kinematic (RTK) positioning system rover to receive the GNSS and
the differential signal of the base station. The coordinates of four reference poles (height of
2 m) were measured using this RTK positioning system (error ≤ 3 cm). The control points
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were the spatial coordinates of the top positions of the four poles on the sample edge, and
the approach of controlling coordinate points was used to coarsely register the BLS and
ULS point cloud data.

Polewski et al. [39] presented an object-oriented point-cloud-matching algorithm
based on relative position information between trees, which was applied in this study
for the fine co-registration of the ULS and BLS data. The algorithm was utilized for fine
co-registration using the positional relationship between the ULS-detected treetop point
and the BLS-detected tree trunk, and it required the position information of the treetop
point and the tree trunk. Geographic coordinates are required for point cloud data acquired
by BLS in common forest research [42]. Therefore, the completion of fine co-registration
of ULS and BLS data has become an essential process. Currently, the majority of point-
cloud-matching algorithms rely on the detection of identical points at the 3D level for the
transformation of the coordinate system [43,44]. Because finding the same feature point
clouds for ULS and BLS is difficult, this study used a complete automation algorithm based
on the location information of the treetops and tree trunks extracted from the point cloud
data; an algorithm for point cloud matching between trees was used to complete the fine
co-registration of the ULS and BLS in the forests.

2.7. Extraction of the Diameter of the Upper Part of the Trunk

The height of the BLS data obtained in the 30 × 30 m2 sample plots was limited due
to the scanning angle constraint of the BLS sensor and could only reach a height of roughly
9 m. In this study, BLS-derived trunks ranging from 1.3 to 8.3 m were sliced in height
intervals of 1 m. The diameters of the trunk at 1.3, 2.3, and 3.3 m up to 8.3 m were fitted,
and the diameter information at different heights above the DBH of each tree was obtained.
The different heights of each single tree were compiled with the same ID.

2.8. Construction of the Taper Equation

The tree species in this study were dawn redwood and poplar, and the trunks of
both are straight, so it was not necessary to segment the trunks. The following five taper
equations were chosen as alternative models by referring to previous studies—those of
Ormeod [45], Demaerschalk [46], Meng [47], Kozak [48], and Yan Ruohai [49]—and the
taper equations were all converted into the same form:

d2 = f (D, H, h), (5)

The following five alternative taper equations were used for fitting using the LiDAR-
derived structural parameters, such as tree height, DBH, and upper trunk diameter, and
finally, the group with the highest accuracy was selected as the taper equation model.

d2 = Da0+a1 H(H − h)a2+a3D/H, (6)

d2 = a0Da1
(H − h)a2

Ha3
, (7)

d2 = a0D
(

H − h
H − 1.3

)a1

, (8)

d2 = D2
(

H − h
H − 1.3

)a0

, (9)

d2 = D2
(

a0 + a1
H − h

h

)
, (10)

Here, D is the DBH, H is the tree height, h is the tree trunk height, d is the diameter
of the tree trunk at height h off the ground, and a0, a1, a2, and a3 represent parameters.
Through the co-registration of the ULS and BLS data, each tree in the seven plots had a
mapping relationship between the DBH and diameter of the upper part of the trunk derived
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from the BLS data and the height derived from the ULS data. These structural parameters
were input into five alternative taper equation models (Equations (6)–(10)); a multivariate
nonlinear regression analysis was carried out by using the Levenberg–Marquardt iteration
method, and the parameters of five taper models were obtained. The RMSE was used to
compare and analyze the diameters at different heights extracted from the LiDAR data
and the diameters at the same height in the taper equations, and it was used as an index to
evaluate the advantages and disadvantages of the taper equations. The diameter of the
upper part of the trunk extracted from the LiDAR point cloud data was used as the real
value, and the diameter of the upper part of the trunk fitted by the taper equations was
used as the observation value.

2.9. Compilation of a Standard Volume Table

The taper equation denotes the relationship between the diameter of a trunk and its
height. The taper equation can describe the trend of change in the trunk’s shape, and it
is the basic method for studying the outputs of trees. After the evaluation of the taper
model, the optimal taper equation was integrated, and the corresponding standard volume
equation could be obtained.

V = K
∫ H

0
d2dh = K

∫ H

0
f (h, H, D)2dh, (11)

where K = π/40,000, which is a function of diameter d at different heights of the trunk.
Based on the stand volume model obtained for the two tree species, the stand volume
of the corresponding tree height and DBH was calculated, and a standard volume table
suitable for the dawn redwood and poplar species in Dongtai Forest was compiled.

2.10. Volume Calculation

The method for determining the standing volume in this study was as follows: The
mean diameter (Dg) of the sample plot was calculated by using the DBH information
obtained from the BLS data, and the average tree height (Hg) in the sample area was
calculated by using the tree height information obtained with the ULS data. According to
the Dg (1 ± 5%) and Hg (1 ± 5%) in the sample area, we selected the multi-plant standard
tree and used the integral to obtain the volume of the material; then, we calculated the
volume of the sample plot and the cumulative stand volume per unit area (m3/ha).

M =
n

∑
i=1

Vi
G

∑n
i=1 gi

, (12)

where M is the volume of the sample plot, n is the number of standard trees, gi is the basal
area of standard tree i, Vi is the volume of standard tree i, and G is the total cross-area of
the sample plot.

3. Results
3.1. Single-Tree Segmentation Results
3.1.1. Single-Tree Segmentation with ULS Data and Accuracy Assessment

The individual tree segmentation with the ULS data was carried out with the distance-
discriminant clustering method oriented to point clouds (Table 2). The overall accuracy
(F) of the individual tree segmentation for dawn redwood was 0.90, and that for poplar
was 0.88. The ULS segmentation results are shown in Figure 2; the point clouds of different
colors are different single trees. It can be seen in Figure 2 that the crown information of
the ULS data was relatively complete, but the point cloud data below the forest canopy
were insufficient to show the vegetation information of the trunks and lower layer. The
gray point clouds in Figure 2 show the ground points. Poplar is a broad-leaf tree species
because of the large bifurcations of the crown branches, but the leaves are not as dense as
those of dawn redwood. Therefore, there were more ground points for the poplar plots.
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Table 2. Assessment of the accuracy of the ULS point cloud data segmentation. Nt: the number of treetops detected that
existed in the field position; No: the number of trees that were omitted by the algorithm; Nc: the number of detected trees
that did not exist in the field; r: detection rate; p: the precision of detected trees; F: overall accuracy.

Plots Tree Species Nt No Nc Recall (r) Precision (p) Plots Overall
Accuracy (F)

Species’ Overall
Accuracy (F)

a Dawn redwood 25 2 4 0.93 0.86 0.89
0.90b Dawn redwood 45 5 6 0.90 0.89 0.89

c Dawn redwood 54 3 5 0.95 0.92 0.93

d Poplar 15 3 2 0.83 0.88 0.85

0.88
e Poplar 19 3 2 0.88 0.90 0.89
f Poplar 19 2 3 0.90 0.87 0.88
g Poplar 38 3 7 0.92 0.85 0.88

Figure 2. Single-tree segmentation results with the ULS data; point clouds of the same color show
the same tree. (a) The segmentation results of a dawn redwood plot; (b) the segmentation results of a
poplar plot.

3.1.2. Single-Tree Segmentation with BLS Data and Accuracy Assessment

The results of the assessment of the accuracy of individual tree detection with the BLS
data are shown in Table 3. In comparison to poplar, dawn redwood resulted in a slightly
higher segmentation performance, as demonstrated in Table 3. In terms of overall accuracy,
three dawn redwood plots obtained a mean F value of 0.93, while the four poplar plots
had a mean F value of 0.92. In addition, we can see that other trees that did not exist in
the field might have been detected in the poplar plots, especially in Plots d (p = 0.89) and
g (p = 0.89).

3.2. Accuracy Assessment of LiDAR-Derived Tree Height and DBH

Scatterplots between the field-measured and ULS-derived results for the tree height
are shown in Figure 3. Figure 4 shows scatterplots of the field-measured and ULS-derived
DBH results. The accuracy of the tree height and DBH retrieved from the LiDAR data is
shown in Table 4. According to Figure 3 and Table 4, the R2, RMSE, and rRMSE of the
height predicted for dawn redwood were 0.913, 0.849 m, and 3.00%, respectively. For
poplar, the R2, RMSE, and rRMSE of the predicted height were 0.934, 1.246 m, and 4.40%,
respectively. The R2, RMSE, and rRMSE of the DBH for dawn redwood and poplar were
0.945 and 0.97, 0.013 and 0.016 cm, and 4.5% and 4.9%, respectively.



Sensors 2021, 21, 8162 11 of 21

Table 3. Assessment of the accuracy of BLS point cloud data segmentation. Nt: the number of treetops detected that existed
in the field position; No: the number of trees that were omitted by the algorithm; Nc: the number of detected trees that did
not exist in the field; r: detection rate; p: the precision of the detected trees; F: overall accuracy.

Plots Tree Species Nt No Nc Recall (r) Precision (p) Plots Overall
Accuracy (F)

Spec’es’ Overall
Accuracy (F)

a Dawn redwood 26 1 2 0.96 0.92 0.94
0.93b Dawn redwood 48 2 6 0.97 0.89 0.92

c Dawn redwood 55 2 6 0.96 0.90 0.93

d Poplar 17 1 2 0.92 0.89 0.90

0.92
e Poplar 20 1 1 0.94 0.93 0.93
f Poplar 20 1 2 0.96 0.90 0.93
g Poplar 39 3 5 0.94 0.89 0.91

Figure 3. Scatterplots of ULS-derived and field-measured tree height. (a) Dawn redwood, (b) poplar.

Figure 4. Scatterplots of the BLS-derived and field-measured DBH. (a) Dawn redwood, (b) poplar.

Table 4. Assessment of the accuracy of the tree height and DBH extracted from LiDAR data.

Dawn Redwood Poplar

Parameters R2 MAE RMSE rRMSE (%) R2 MAE RMSE rRMSE (%)

Tree height 0.913 0.605 m 0.849 m 3.00 0.934 0.853 m 1.246 m 4.40
DBH 0.945 1.131 cm 1.300 cm 4.50 0.977 1.162 cm 1.600 cm 4.90

The error in the tree height detected with the ULS data was within an acceptable
range compared with the actual tree height, in which the error in the height detection
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for dawn redwood was lower than that for poplar, and the accuracy of the ULS-derived
tree height for the dawn redwood (rRMSE = 3.00%) was slightly better than that for
poplar (rRMSE = 4.40%). The RMSE of the DBH extracted from the BLS data (dawn
redwood: RMSE = 1.3 cm, poplar: RMSE = 1.6 cm) was below 2 cm, which could meet the
requirements of forestry research. In addition, the accuracy of the BLS-derived DBH of the
dawn redwood (rRMSE = 4.50%) was better than that of poplar (rRMSE = 4.90%). For the
dawn redwood and poplar species, the detection accuracy of the tree height was higher
than that of DBH.

3.3. Co-Registration of ULS and BLS Data

In this study, a co-registration of ULS and BLS data was performed in order to obtain
the relatively complete vertical structures of individual trees. Table 5 presents the effects
of matching with rough co-registration by measuring the horizontal distance between the
apex of a tree and the trunk point. The error distance for dawn redwood was less than 1 m,
and the coarse calibration error for high density was lower than that of for density; the
rough calibration error for Poplar was generally higher, and it reached more than 1 m.

Table 5. The distance error of the coarse co-registration of seven plots.

Plots Tree Species Stem Density Distance Error (cm)

a Dawn redwood Low 84
b Dawn redwood Medium 61
c Dawn redwood High 56
d Poplar Low 158
r Poplar Medium 138
f Poplar Medium 159
g Poplar High 146

For the two tree species, the matching precision for the dawn redwood was obviously
higher than that for the poplar, and the position error was lower than that for the poplar.
The reason for this may be due to the fact that the tree trunks of the dawn redwood were
basically vertical with respect to the ground, the horizontal coordinates of the trunk and the
top of the tree were not large, and the tree crown of the poplar was extended—the highest
point of the top of the tree could deviate from the tree trunk in the horizontal direction, so
the matching precision for poplar was not good.

3.4. Construction and Selection of Taper Equations

The diameters at different heights extracted from the LiDAR data and the diameters at
the same height that were fitted in the taper function models were compared and analyzed
with 1097 samples (786 samples of dawn redwood and 611 samples of poplar). The results
of the analysis are shown in Figure 5 and Table 6. As shown in Table 6, models 1©, 2©, 4©,
and 5© were suitable for the growth laws of dawn redwood and poplar, and model 2©,
the improved Schumacher model, had the greatest goodness-of-fit and higher accuracy.
From Figure 5c, we can see that the slope of the scatterplot of model 3© was not obviously
close to the 1:1 line, and the RMSE values for dawn redwood (RMSE = 2.8 cm) and poplar
(RMSE = 4.2 cm) in model 3© were obviously larger than those in the other four models;
the rRMSE values were also approximately 10%. For poplar, taper model 3© reached 13.6%
in comparison with the other models. Taper model 3© was not suitable for studying the
growth laws of dawn redwood and poplar. The performance of model 2© was the best, so
this model was selected for the study of the volumes and growth laws of dawn redwood
and poplar. Model 2©was an improved Schumacher model, which is often used to study
the growth laws of poplar stands [50]. In this study, single trees with the same tree height
were selected for dawn redwood and poplar. The diameters extracted with the LiDAR data
for these two tree species were compared with the results produced by model 2©, and the
results of the comparison are shown in Figure 6. It can be seen in Figure 6 that model 2©
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could roughly represent the trunk shapes of the two tree species, and the taper model of
dawn redwood in Figure 6a was more consistent with the LiDAR-produced results than
that of poplar.

Figure 5. Scatterplots of the upper diameter of the trunk and the upper diameter of the trunk extracted using the LiDAR
data for the five taper equation models for dawn redwood and poplar. (a–e) Dawn redwood, (f–j) poplar.

Table 6. Assessment of the accuracy of the five models of dawn redwood and poplar.

Dawn Redwood Poplar

Model
Id R2 MAE

(cm)
RMSE
(cm)

rRMSE
(%) R2 MAE

(cm)
RMSE
(cm)

rRMSE
(%)

1© 0.906 1.2 1.6 5.9 0.926 1.5 2.3 8.0
2© 0.910 1.1 1.5 5.7 0.936 1.3 2.2 7.5
3© 0.733 2.1 2.8 9.8 0.761 3.4 4.2 13.6
4© 0.907 1.1 1.6 5.8 0.932 1.4 2.2 7.7
5© 0.898 1.2 1.7 6.1 0.919 1.7 2.4 8.5

Figure 6. Comparison of the stem curves of dawn redwood and poplar acquired from taper model
and LiDAR data. (a) Dawn redwood, (b) poplar.

The coefficient parameters of the taper equations for dawn redwood and poplar
calculated according to the Levenberg–Marquardt iteration method were brought into
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the optimal taper equations, and the optimal taper equations of the two tree species were
obtained (Table 7). The optimal taper equation of dawn redwood is as follows:

d2 = 0.598D1.9 (H − h)1.417

H1.279 , (13)

Table 7. Parameters and analysis of the optimal taper function models of dawn redwood and poplar.

Dawn Redwood Poplar

Taper equation coefficients a0 a1 a2 a3 a0 a1 a2 a3
Estimates 0.598 1.900 1.417 1.279 1.501 1.901 1.724 1.854
Standard error 0.144 0.035 0.047 0.082 0.333 0.031 0.063 0.090
95% Confidence lower limit 0.315 1.830 1.325 1.119 0.847 1.839 1.600 1.677
95% Confidence upper limit 0.880 1.969 1.510 1.440 2.155 1.962 1.848 2.032

The optimal taper equation of poplar is as follows:

d2 = 1.501D1.901 (H − h)1.724

H1.854 , (14)

According to the results of the above analysis and evaluation, taper model 2©,

d2 = a0Da1 (H−h)a2

Ha3 , was chosen as the most suitable taper model for two tree species.

3.5. Construction of Standard Volume Models and Validation and Compilation of Standard
Volume Tables

The equation of the correlation of the two factors of the tree height and DBH with the
tree volume is called a standard volume equation. By integrating the above-mentioned
model of the taper equation, the standard volume equation of the tree volume V with
respect to the DBH and the tree height can be obtained. The model is integrated and the
following general form of the standard volume model is obtained:

V =
Ka0Da1

(a2 + 1)Ha3
Ha2+1, (15)

where K = 1/40,000; V represents the tree volume, D represents the DBH derived from
the BLS data, and H represents the tree height derived from the ULS data. According to
the parameters of the optimal taper model of the dawn redwood and poplar, the standard
volume model for the dawn redwood can be obtained as follows:

V =
K·0.598·D1.9

(1.417 + 1)H1.279 H1.417+1, (16)

The standard volume model for poplar is as follows:

V =
K·1.501·D1.901

(1.724 + 1)H1.854 H1.724+1, (17)

To verify the accuracy of the tree volume equations obtained, the tree volumes of
validation samples (59 dawn redwood trees and 47 poplar trees) were calculated with
Jiangsu Province’s existing single-entry volume table, and the results were compared with
the corresponding volumes from the standard volume models for the two species. The tree
volume, which was found with the volume table as the real value and the volume from the
LiDAR-generated standard volume equation, was used as the observation value, and the
results were analyzed and compared by means of the R2, RMSE, and rRMSE. The results of
the comparison of the tree volumes obtained from the local single-entry volume table and
the LiDAR-generated standard volume models for dawn redwood and poplar are shown in
Table 8. In the comparison results, the standard volume model for dawn redwood returned
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values of R2, RMSE, and rRMSE of 0.868, 0.058 m3, and 11.2%, respectively. The standard
volume model for Poplar returned values of R2, RMSE, and rRMSE of 0.97, 0.022 m3, and
3.3%, respectively. The results showed that the standard volume equations could be used
as the bases for the estimation of the standing volumes of dawn redwood and poplar to a
certain extent. As shown in Figure 7, the tree volumes calculated with the standard volume
equations for the two species in this study had a slight tendency toward the tree volumes
found in the existing single-entry volume table. In terms of the RMSE and rRMSE, it can be
seen that the RMSE of the poplar was smaller and the rRMSE was lower, so the standard
volume equation was more suitable for the poplar than for the dawn redwood.

Table 8. Analysis of the accuracy of the standard volume equations of dawn redwood and poplar.

Dawn Redwood Poplar

R2 RMSE (m3) rRMSE (%) R2 RMSE (m3) rRMSE (%)

Tree volume 0.868 0.058 11.2 0.970 0.022 3.3

Figure 7. Tree volumes calculated with the LiDAR-derived standard volume equations of dawn
redwood and poplar vs. tree volumes obtained by finding them in the local single-entry volume
table. (a) Dawn redwood, (b) poplar.

According to the standard volume equations obtained in this study, the local standard
volume tables for dawn redwood and poplar could be calculated. Tables S1 and S2 (in
the Supplementary Materials) are the standard volume tables of dawn redwood and
poplar, respectively.

3.6. Stand Volume Calculation

As indicated in Table 9, the plot volumes of the dawn redwood from low stem density
to high stem density were 19.15, 33.42, and 16.39 m3. The plot volumes of the poplar from
low stem density to high stem density were 10.46, 21.75, 24.33, and 10.42 m3. The stand
volumes of the three dawn redwood plots from low stem density to high stem density were
212.78, 371.33, and 182.11 m3/ha, respectively. The stand volumes of the four poplar plots
were 116.22, 241.67, 270.33, and 115.78 m3/ha, respectively.
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Table 9. Summary of the volumes calculated with Equation (11) and stand volumes calculated with Equation (12) by plot.

Plots Tree Species LiDAR-Derived Tree
Height (m)

LiDAR-Derived
DBH (cm)

LiDAR-Derived Plot
Volume (m3)

LiDAR-Derived
Stand Volume

(m3/ha)

a Dawn redwood 25.16 30.39 19.15 212.78
b Dawn redwood 27.13 31.76 33.42 371.33
c Dawn redwood 23.17 27.42 16.39 182.11
d Poplar 27.09 34.15 10.46 116.22
e Poplar 32.05 34.30 21.75 241.67
f Poplar 33.44 36.93 24.33 270.33
g Poplar 23.39 22.93 10.42 115.78

4. Discussion

In this study, the distance judgment clustering algorithm directly oriented toward
point clouds was employed to segment crowns in ULS data, and the overall segmentation
performance was better (F of dawn redwood = 0.90; F of poplar = 0.88). This segmenta-
tion was also implemented by Gao et al. [51], where the single-tree segmentation of five
plantation species was carried out in Yushan Forest, Changshu, Jiangsu Province; their
detection rate was 85.7%, the accuracy rate was 96%, and the overall accuracy was 90.9%.
Point cloud data can directly reflect the structural information of a forest canopy, but
traditional individual tree segmentation based on remote sensing images cannot obtain
the full structural information of a forest, so the segmentation accuracy of individual tree
segmentation using LiDAR point cloud data is usually higher than that of traditional
remote sensing image extraction. Shen et al. [52] extracted the crowns and crown widths
of single trees from a subtropical secondary forest with high-resolution remote sensing
images, and their detection rate was 77.3%, the accuracy rate was 85.9%, and the overall
accuracy was 81.4%. In this study, the density clustering algorithm directly oriented toward
point clouds was used to segment trunks in BLS data, and the segmentation accuracy was
high (F of dawn redwood = 0.93; F of poplar = 0.92). When a clustering algorithm based
on point cloud density was used for individual tree segmentation, it was necessary to
reasonably set the threshold of point density. If the threshold was too large, part of the
trunk would not be recognized. If the threshold was too low, the phenomenon of tree trunk
misclassification would occur, and many irrigated grasses with a height of 1.3 m would
be mistakenly classified as trunks. As a result, it was necessary to adjust the threshold in
the trunk segmentation process on a regular basis to achieve a better segmentation effect.
In this study, the BLS collection route was “S”-shaped, and the planting rules (e.g., same
space, etc.) were regular. The design of this route could completely cover the trunks of all
of the trees standing in the sample plot, resulting in a more complete trunk point cloud
and more accurate DBH data.

For the coarse co-registration of the ULS and BLS data, the method of controlling
coordinate points was adopted. This method does not need to find the points with the same
name in the two types of data to perform matching. In the experimental design, considering
the data fusion of the two sources in the later stage, the coordinate information of the RTK
base station was kept while a UAV positioning base station was set up, which could have
caused the two groups of RTK data (one set of UAV data and one set of handheld data)
have the same real-time coordinate system. Because it is usually difficult for GPS signals in
a forest to penetrate the crown, it is difficult to locate single trees directly. In this study, the
GPS signals were accepted through forest gaps for high-precision positioning, and then
the coordinate information of each individual tree and marking rod was measured with
the coordinate transformation method. The lengths of poles inserted into soil were also
taken into account when calculating their coordinates, which also ensured the accuracy of
the rough calibration. In the process of fine matching of the two types of source data, an
object-oriented matching method based on the relative positions of the trees was used in
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this study. The matching accuracy and distance error could be improved by 20% and 13%
in our study area, which was reported by Polewski et al. [39].

The traditional method of studying taper equations and standard volumes requires
cutting down some standard trees, which is time-consuming and labor-intensive; it will
also ruin the forest to a certain extent, and the taper model and the estimation of the
growth conditions will be delayed. Therefore, this study proposed a non-destructive
approach to constructing LiDAR-derived taper equations, which can effectively avoid the
disadvantages of traditional methods. Using LiDAR point cloud data to obtain the tree
volume models of planted forests can result in quickly obtaining tree volumes and stand
volumes without causing damage to forests, and the error and accuracy of the volumes
will also be within the acceptable range of error for forestry research work. The error of
the predicted volume of dawn redwood was more than 0.05 m3, while that for poplar was
only 0.02 m3. It was found that the volume equation was more suitable for the poplar. The
growth of poplar in Dongtai Forest Farm is normal, which is in accordance with the growth
law of poplar in Jiangsu Province. The LiDAR-derived standard volume model of dawn
redwood was lower than the volume calculated with the Jiangsu single-entry volume table,
and the Dongtai Forest Farm may be located on a coastal alluvial plain. Compared with
the other areas of Jiangsu that are not coastal alluvial plains, the saline–alkali content in
soils is higher, and the effect of inhibition on the growth of dawn redwood in the Dongtai
Forest Farm is also affected.

Multisensorial approaches are capable of improving the full characterization of forest
structures [25]. Bazezew et al. [53] attempted an integrative use of ALS and TLS to estimate
AGB and carbon stock by integrating ALS- and TLS-derived forest parameters in the
Ayer Hitam tropical rainforest of Malaysia. Their results showed that the integrative
use of ALS and TLS was able to enhance the estimation of AGB (or carbon stock) in
the tropical forests. The feasibility of combining ALS and TLS to obtain more complete
descriptions of forest structures has been demonstrated in other studies [53–56]. However,
such combinations of ALS and TLS still have some limitations [25,57,58]. The range of data
acquired with ALS usually covers the entire study area. However, due to the complexity
of forest conditions, the range of TLS data is often limited in terms of the sizes of specific
plots, which necessitates a large amount of work when selecting plots in a study to ensure
that the selected plots are representative of the entire forest stand. If the situation in a
forest is extremely complicated and TLS is difficult to operate, it will be preferable to
derive the information in the situation under and inside the treetops by using ALS with
a high density and level of penetration in order to obtain the parameters of the relatively
complete forest canopy structure. Based on existing knowledge, it is known that ULS and
BLS data are usually obtained with higher flexibility and at a lower cost and can provide
higher point density compared to traditional ALS and TLS, and their combinations have
a greater potential to achieve a more complete description of a forest structure in detail.
Notably, despite the envisioned advantages of the synergetic usage of the two types of
LiDAR data, there is still considerable uncertainty regarding multiple factors, which mainly
include tree detection, trunk diameter and tree height extraction, and the variations in stem
density and the terrain of forest areas. How the final estimation results are determined
while considering these factors, as well as the sensitivity of these factors to estimations of
individual trees’ structures (and volume table construction), should be examined, and the
propagation of these errors could be assessed in the future.

According to the BLS data used in this study, only one horizontal-scanning laser
scanner was used, so the height of the scanned point cloud could only reach about 9 m, and
the point cloud information was difficult to obtain for the parts of trunks below crowns at
9 m or more, so the diameter information of the upper parts of the tree trunks was limited.
In future research, a BLS with two laser sensors will be used to obtain more complete point
cloud data for the forest in order to obtain a greater tree trunk diameter, which will be more
accurate when constructing the taper equations. In addition, the standard tree volume
model and the standard volume table obtained with the research method were strong with



Sensors 2021, 21, 8162 18 of 21

respect to a specific research area. Our approach was non-destructive, and the growth
conditions of the tree species in the state-operated Dongtai Forest Farm were reflected
with high precision. However, the applicability and transferability of our approach to
individual tree segmentation and the construction of taper models of dawn redwood and
poplar tree species in other regions need to be verified. In the future, field data samples
will be collected in the whole province, and a standard volume model for planted forests
with stronger applicability will be established.

5. Conclusions

This study used near-surface LiDAR data (i.e., ULS and BLS) to systematically derive
forest structural parameters (tree height, DBH, upper trunk diameter) and to construct
standard volume models and corresponding volume tables of two tree species, i.e., dawn
redwood and poplar, in a subtropical coastal plantation in Jiangsu Province, China. The
fusion of ULS and BLS data provides an advanced technical means and a better approach
in order to support forest investigations, since forest structural parameters can be extracted
quickly and efficiently without destroying the forest’s trees. In this study, the stem curves
of forest stands were obtained directly and quickly, the optimal taper equations were found,
and the standard volume equations and stand volumes were further obtained once the
structural parameters were accurately derived from LiDAR data. It was found that the
individual tree segmentation with ULS and BLS data using a direct point-cloud-oriented
clustering segmentation algorithm achieved better segmentation results. At the same time,
the extraction of parameters of individual tree structure based on LiDAR data was more
accurate. The object-oriented point-cloud-matching algorithm had high accuracy for ULS
and BLS point cloud matching. The average error of the location for the dawn redwood
plots was 27–36 cm, and the average error of the location for the poplar plots was 54–67 cm.
The modified Schumacher model fit the taper equation well. At the same time, the standard
volume equation could be used to calculate the standing tree volume more accurately.
This study provided new ideas about non-destructive measurement of individual trees’
structural parameters and the construction of volume tables, which could make significant
contributions to precision silviculture and sustainable forest management.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21238162/s1, Table S1: Dawn redwood standard volume table compiled with the standard
volume equation, Table S2: Poplar standard volume table compiled with the standard volume
equation.
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