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Abstract: Planetary soft landing has been studied extensively due to its promising application
prospects. In this paper, a soft landing control algorithm based on deep reinforcement learning (DRL)
with good convergence property is proposed. First, the soft landing problem of the powered descent
phase is formulated and the theoretical basis of Reinforcement Learning (RL) used in this paper is
introduced. Second, to make it easier to converge, a reward function is designed to include process
rewards like velocity tracking reward, solving the problem of sparse reward. Then, by including the
fuel consumption penalty and constraints violation penalty, the lander can learn to achieve velocity
tracking goal while saving fuel and keeping attitude angle within safe ranges. Then, simulations
of training are carried out under the frameworks of Deep deterministic policy gradient (DDPG),
Twin Delayed DDPG (TD3), and Soft Actor Critic (SAC), respectively, which are of the classical RL
frameworks, and all converged. Finally, the trained policy is deployed into velocity tracking and soft
landing experiments, results of which demonstrate the validity of the algorithm proposed.

Keywords: soft landing; velocity tracking; deep reinforcement learning (DRL)

1. Introduction

With the development of space technology, the scope of space exploration is constantly
expanding. To further explore and study planets such as the Moon and Mars, a large
number of planetary surface exploration missions have been carried out and many are in
planning [1,2]. In planetary surface exploration missions, the lander faces many challenges.
On the one hand, to avoid damaging onboard equipments, the landing velocity relative to
the planet’s surface must be kept under a threshold. In addition, the maneuvering ability of
the landing probe is limited, so the lander needs to have a high landing accuracy to explore
a specific area. Therefore, precise soft landing guidance technology is always one of the
key technologies of planetary exploration, which has been widely studied and achieved
many achievements [3–5].

At present, soft landing algorithms can be roughly divided into five categories: es-
tablishing lunar vertical line, gravity turn guidance, nominal trajectory guidance, explicit
guidance, and learning-based method.

The establishment of lunar vertical line is an open-loop guidance method, which
requires high accuracy of orbit entry and mid-course correction [6]. Gravity turn guidance
is a semi-open loop and semi-closed loop guidance method. In the main braking period,
the main goal is to reduce the speed of the lander. While the distance between the lander
and the lunar surface is shortened to a certain range, the closed-loop guidance works are
based on the feedback information of the sensor to improve the landing accuracy and
stability [7]. These two methods were generally only used in early lunar landings [8].
Nominal trajectory guidance consists of open-loop offline trajectory planning and closed-
loop online trajectory tracking. Before landing, the lander needs to plan an optimized
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landing trajectory. During the landing process, the deviation between the lander position
and velocity and the planned trajectory is constantly measured and eliminated, through
which the lander is controlled to land at the desired landing sites [9–12]. Explicit guidance
method solves the closed-loop guidance problem based on the explicit function of control
functional. To obtain the analytical expression of the optimal control problem of soft
landing, it is necessary to simplify the soft landing model when building the mathematical
model [13]. The work in [14] proposes a guidance method for the powered soft landing
of a launcher with non-cluster configured engines, for which it is difficult to maintain a
low thrust-to-weight ratio. The work in [15] deals with designing soft landing trajectory,
from lunar parking orbit to the surface of Moon and solve the optimization problem with
Differential Evolution (DE) which is superior in convergence speed.

In recent years, machine learning has made great breakthroughs and development.
Some researchers have studied soft landing based on intelligent learning algorithms such as
deep learning. In [16], the deep architectures’ ability to drive the onboard decision-making
system is investigated in detail. Under the assumption of perfect state information, deep
networks are trained to approximate the optimal control action in pinpoint landing experi-
ments and have the ability to cope with large sets of possible initial states. The work in [17]
proposes an autonomous lunar landing method based on deep learning that takes raw
images taken by onboard optimal cameras as input and directly outputs fuel-optimal con-
trol actions, in which the direct filters for state estimation is not necessary. Moreover, the
deep networks are trained by a supervised machine learning algorithm, and the training
datasets are generated by NLP solver software packages. Further, in [18], a recurrent neural
network architecture is proposed to predict the fuel-optimal thrust from a sequence of
states in the powered descent phase of planetary soft landing.

In future exploration missions, it is necessary to enable the lander with higher auton-
omy that can make real-time adjustments to landing trajectory according to the landing
condition, which is difficult for offline planning methods.

As an important branch of machine learning, DRL integrates the perception ability of
deep learning with the decision-making ability of RL. It is an end-to-end algorithm that
directly takes the environmental information as inputs and outputs the control efforts. It
is especially suitable for solving the decision-making and planning problems of complex
systems and has been widely studied and applied in the fields of games [19], autonomous
driving [20], and manipulator control [21].

In this paper, the problem of planetary soft landing of the powered descent phase
is studied. The soft landing problem of the powered descent phase is formulated, and
the theoretical basis of RL used in this paper is introduced. To make it easier for the
training process to converge, a reward function including process reward is designed to
solving the problem of sparse reward. In addition, the fuel consumption penalty and
constraints violation penalty are included to save fuel and keep the attitude angle within
constraints. The main contributions of this work are (i) a velocity tracking reward function
is designed with process reward, which makes it easier for the lander to learn to achieve
the goal of soft landing as well as enables it with a better generalization capability, and (ii)
the goals of keeping the attitude within constraints and reducing fuel consumption are
reached by including fuel consumption penalty and constraints violation penalty into the
reward function.

The remainder of this paper is organized as follows. Section 2 gives the preliminaries
about RL and formulates the soft landing as an RL problem. Section 3 describes the
details about soft landing control method based on DRL. Simulation results and necessary
discussions are given in Section 4. Finally, conclusions are presented in Section 5.

2. Preliminaries and Problem Formulation
2.1. Soft Landing Problem Formulation

The planetary surface fixed frame of reference is defined as Figure 1. The forces acting
on the lander in power descent include gravity, aerodynamic force, and engine thrust [22].
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As the powered descent begins at an altitude that is quite low compared to the planet’s
radius, and the distance between the lander and target landing sites varies slightly during
this phase, it is appropriate to assume that the planet’s gravity is a constant g.

When it comes to the power descent phase, the lander has already released the
parachute and the speed is on the order of 100 meters per second [22]. Compared with
planetary gravity, the acceleration caused by aerodynamic force was very small. Therefore,
the external force on the lander was dominated by gravity, and the aerodynamic force
caused by the wind field was added into the model as an environmental disturbance.

Figure 1. Navigation coordinates of planetary surface.

The lander is equipped with six thrusters deployed in body frame ObXbYbZb as
Figure 2.

Figure 2. Lander body frame and thrusters layout. The thrusters are deployed in regular hexagon.

The thrust of each engine is Ti, and meets constraint

Tmin ≤ Ti ≤ Tmax (1)

Let T =
[

T1 T2 T3 T4 T5 T6
]T be the vector composed of the thrusts of six

thrusters, and the thrust vector in body frame can be obtained according to the geometric relation

Tb =

 − sin φ − 1
2 sin φ 1

2 sin φ sin φ 1
2 sin φ − 1

2 sin φ

0 −
√

3
2 sin φ −

√
3

2 sin φ 0
√

3
2 sin φ

√
3

2 sin φ
− cos φ − cos φ − cos φ − cos φ − cos φ − cos φ

T (2)

Moreover, the same for the torque vector in body frame

Mb = L

 0 −
√

3
2 cos φ −

√
3

2 cos φ 0
√

3
2 cos φ

√
3

2 cos φ

cos φ 1
2 cos φ − 1

2 cos φ − cos φ − 1
2 cos φ 1

2 cos φ
0 0 0 0 0 0

T (3)
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The translation dynamics are expressed as

v̇b = Tb+Cb
e g

m + vb ×ωt

ṙ = Ce
bvb

(4)

where r =
[

x y z
]T is the translational vector of the lander, v is the velocity vector,

and vb =
[

u v w
]T and ωt =

[
p q r

]
are the velocity and angular velocity in the

body frame, respectively. Q =
[

q0 q1 q2 q3
]
is the quaternion. I and m are the inertia

matrix and mass of the lander, respectively. Ce
b is the direction cosine matrix from the body

frame to the surface fixed frame of reference.

Ce
b =

(
Cb

e

)T

Cb
e = Cx(ϕ)Cy(θ)Cz(ψ)

(5)

Attitude dynamics are express as

ω̇t = I−1 ·ωt ×
(

I ·ωt) (6)

ϕ̇ = p + tan θ(q sin ϕ + r cos ϕ)
θ̇ = q cos ϕ− r sin ϕ
ψ̇ = (q sin ϕ + r cos ϕ)/ cos θ

(7)

During soft landing, the mass of the lander will gradually decrease with the fuel
consumption, i.e.,

ṁ = − 1
Isp

∑
i

Ti(t) (8)

where Isp is the specific impulse of the engine, and the inertia matrix will also gradually
decrease as the mass decreases. The shape of the lander is a cuboid of sides of length
a× b× c with uniform mass distribution

I =

 Ixx 0 0
0 Iyy 0
0 0 Izz


Ixx=

m
12 (b

2 + c2)
Iyy = m

12 (a2 + c2)
Izz =

m
12 (a2 + b2)

(9)

The soft landing problem is described as a fuel optimization problem as

min
Ti(t)

J =
∫ t f

t0

1
Isp

∑
i

Ti(t)dt (10)

2.2. RL Basis

RL is a data-driven algorithm, which is different from supervised learning. RL obtains
training data(experience) through interaction with the environment, as shown in Figure 3.
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Figure 3. Interaction between agent and environment.

At time step t, the agent gets an observation St = s from the environment, then takes
an action At = a according to the policy π(At = at|St = s), the environment transfers to
the next state s′ based on the model P(St+1 = s′|St = s, At = at) and returns a reward
Rt+1. Define the accumulated return of an episode as

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...= ∑
k=1

γk−1Rt+k (11)

where γ ∈ [0, 1] is the discount factor. When γ→ 0, the agent only cares about the most
recent rewards. While γ → 1, the agent has a longer horizon and cares more about the
future reward. Moreover, the target is to update policy to maximize Gt.

DDPG, TD3, and SAC are three of the most successful and popular RL algorithms, so
we chose them as the framework in this paper.

(1) DDPG

DDPG is a deterministic policy RL framework that outputs a deterministic action, and
it is the result of the deep Q network (DQN) extended to continuous control space. DDPG
has been extensively researched and applied to the field of continuous control. It learns
both a value function and a policy. First, it approximates the value function via the Bellman
equation with offline experience through gradient descent. Then, the policy is updated by
maximizing the approximated value function.

DDPG is one of the standard algorithms that training a deep neural network to
approximate Q function. It makes use of the past experience through the trick of replay
buffer. When it is time to update, it randomly samples from the buffer. In order to stabilize
the training process, the size of the replay buffer should be properly chosen. If it is too
small, it can only store recent experiences, which makes the policy brittle. However, if it is
too large, the possibility of sampling a good experience will decrease, and it takes more
episodes for the training process to converge.

As shown in Algorithm 1, the whole learning process consists of two parts: Q-learning
and policy learning.

According to Bellman equation, optimal Q function under optimal policy satisfies

Q∗(s, a) = E
s′∼P

[
r(s, a) + γ max

a′
Q∗
(
s′, a′

)]
(12)

where P is the environment model. Given the experience (s, a, r, s′, d), value function Qπθ

under the policy πθ can be represented as

Qπθ
(s, a) = E

(s,a,r,s′ ,d)∼D

[
r(s, a) + γ max

a′
Qπθ

(
s′, a′

)]
(13)
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Algorithm 1: DDPG based soft landing
Initialize policy network parameters θ, value function network parameters φ and
replay buffer D

Initialize target parameters equal to main parameters θ → θtarg,φ→ φtarg
for episode = 1,2,. . . , do

Observe landing state s and select thrust action
a = clip

(
µθ(s) + ε, aLow , aHigh

)
, where ε ∼ N(0, σ) is a mean-zero Gaussian

noise
Execute a in the environment and observe next state s′, reward r, and done
signal d that indicates whether s′ is terminal Store (s, a, r, s′, d) in replay
buffer D

if the episode is terminated then
reset environment

end
while it’s time to update do

Sample a batch of transitions B = {(s, a, r, s′, d)} from D
compute targets:

y(r, s′, d) = r + γ(1− d)Qφtarg(s
′, µθtarg(s

′))
update value function through gradient ascent:

∇φi
1
|B| ∑

(s,a,r,s′ ,d)∈B

(
Qφ(s, a)− y(r, s′, d)

)2

update policy through gradient ascent:
∇θ

1
|B| ∑

s∈B
Qφ(s, µθ(s))

update target parameterst:
φtarg ← ρφtarg + (1− ρ)φ
θtarg ← ρθtarg + (1− ρ)θ

end
end

Setup a mean-squared Bellman error function as

L(φ, D) = E
(s,a,r,s!d)∼D

[(
Qφ(s, a)−

(
r + γ(1− d)max

a′
Qφ

(
s′, a′

)))2
]

(14)

where r+γ(1− d)max
a′

Qφ(s′, a′) is the value function target. In the condition of continuous

action space, it is difficult to compute action a′ which maximizes Qφ(s′, a′). Therefore,
DDPG uses target network to solve this problem

max
a′

Qφ(s′, a′) = Qφtarg(s
′, µθtarg(s

′)) (15)

where a′ is obtained via target policy µθtarg . With the training process going on, policy and value
function will gradually converge to optimal policy and optimal value function respectively.

(2) TD3

TD3 is modified from DDPG. DDPG can perform well sometimes but it highly depends
on the choice of hyperparameters. TD3 takes three critical tricks to make the training
process more stable.

• Clipped Double-Q Learning. TD3 learns two value function networks at the same time.
When calculating the target, and are input to the two target value function networks at
the same time after obtaining. When the value function network is updated, the smaller
one is selected to compute the loss function of the error of the Bellman equation.

y(r, s′, d) = r + γ(1− d) min
i=1,2

Qφt arg,i (s
′, ã′(s)) (16)
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• Target Policy Smoothing. The value function learning method of TD3 and DDPG is
the same. When the value function network is updated, noise is added to the action
output of the target policy network to avoid overexploitation of the value function

max
a′

Qφ(s′, a′) = Qφtarg(s
′, πθtarg(s

′) + ε) (17)

where ε∼N(0, σ) is a mean-zero Gaussian noise, and θtarg is the parameters of the
target strategy network. Adding noise to the output action of the strategy network
serves as regularization, which avoids the overexploitation of value function and
stabilizes the training process.

• Delayed Policy Updates. As the output of the target strategy network is used to
compute the target of the value function, the agent can be brittle because of frequent
strategy updates, so TD3 adopts the Delayed Policy Updates trick. When updating
the strategy network, the update frequency of the strategy network is lower than that
of the value function network. This helps to suppress the training fluctuation and
makes the learning process more stable.

(3) SAC

SAC is an RL framework that maximizes cross-entropy. It applies the learning tech-
niques of DDPG to the learning of random strategies and optimizes random strategies in
an offline learning mode.

The agent starts from the initial state s0∼p(s0), samples from policy distribution
at∼π(· | st), and gets an action at acting on the environment. Then, the environment
returns a reward r(st, at) and transfers to a new state st+1∼p(· | st, at) according to the
environmental model. Repeating the interacting process and the trajectory of the state,
τ = (s0, a0, s1, a1, ...) can be obtained. The probability distribution of the trajectory τ
regarding the strategy π is expressed as

ρπ(τ) = p(s0)∏
t

π(at|st)p(st+1|st, at) (18)

The maximum cross-entropy RL optimizes the cumulative return and cross-entropy
of the strategy. For Markov decision processes (MDPs) with infinite loss rewards, the
optimization objective can be expressed as

J(π) =
∞

∑
t=0

Eτ∼ρx

[
∞

∑
t=0

γt[r(st, at)− α log π(at | st)]

]
(19)

Moreover, the optimal policy is represented as

π∗ = arg max
π

Eτ∼ρx

[
∞

∑
t=0

γt[r(st, at)− α log π(at | st)]

]
(20)

where log πt(at|st) is the cross-entropy of strategy distribution, which can be added into
the optimization target to encourage agents to explore the environment in training, and
to improve the robustness of training results. α is the temperature coefficient, which
is used to adjust the importance of cross-entropy, and thus plays a role in regulating
the randomness of the optimal strategy. A large α encourages the agent to explore the
environment. Therefore, the larger the α is, the more stochastic the strategy will be. While
the smaller alpha is, it is more likely that the policy falls into a local optimal point. When
α → 0, maximizing cross-entropy RL degenerates into conventional RL that maximizes
cumulative reward.



Sensors 2021, 21, 8161 8 of 16

Based on the optimization objective above, the state value function is defined as

Vπ(s) = Eτ∼ρx

[
∞

∑
t=0

γt[r(st, at)− α log π(· | st)] | s0 = s

]
(21)

Moreover, the value function

Qπ(s, a) = E
τ∼ρπ

s0=s,a0=a

[
∑∞

t=0 γtr(st, at)− α ∑∞
t=1 γt log π(· | st)

]
(22)

Vπ(s) = Ea∼π [Qπ(s, a)]− α log π(· | s) (23)

Then, according to the Bellman equation,

Qπ(s, a) = E
s′∼p

[
r(s, a) + γVπ

(
s′
)]

= E
s′∼p
a′∼π

[
r(s, a) + γ

(
Qπ
(
s′, a′

)
− α log π

(
· | s′

))] (24)

SAC makes use of “Clipped Double Q-learning” and the Q-learning is similar to TD3
except for the compute of the target value function

y
(
r, s′, d

)
= r + (1− d)

(
min
j=1,2

Qφueg,j
(
s′, a′

)
− α log πθ

(
a′ | s′

))
(25)

According to Equation (24), then

maxθ Vπθ (s) = maxθ E
a∼πθ

[Qπθ (s, a)− α log(πθ(a | s))]

= maxθ E
ξ∼N

[Qπθ (s, ãθ(s, ξ))− α log(πθ(ãθ(s, ξ) | s))] (26)

The updating of the policy network makes use of the re-parameterization trick

a = ãθ(s, ξ) = tanh(µθ(s) + σθ(s)� ξ) ξ ∼ N(0, 1) (27)

where the action distribution is Gaussian; µθ(s) and σθ(s) are the mean value and variance
of the Gaussian distribution, respectively; and ξ is the standard Gaussian distribution.
After sampling from the distribution, the action output is restricted to the constrained
range through the Tanh activation function.

Besides, SAC makes use of the Clipped Q trick when updating its strategy

Qπθ (s, a) = min
j=1,2

Qφj(s, ãθ(s, ξ)) (28)

The strategy optimization objective is finally represented as

max
θ

E
s∼D

[
min
j∼∼

Qφj(s, ãθ(s, ξ))− α log(πθ(ãθ(s, ξ) | s))
]

(29)

Because of the inherent stochasticity, SAC can effectively avoid the overexploitation of
value function.

3. Soft Landing with DRL

Based on the dynamic model established above, in this section we will design an
algorithm based on RL according to the characteristics of soft landing problems, including
the selection of observation values and the design of reward function and other settings
concerning how the agent interacts the environment.
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3.1. Reward Setting

The reward function is an index to evaluate the behavior of agents, which is directly
related to the training result.

• Goal achieving reward: When the altitude of the lander is less than 0, the speed
is downward, the speed is less than the upper limit of soft landing speed, and the
attitude angle and angular rate is within the limited range, the lander is considered to
have achieved soft landing, and gets the reward

rgoal = λ(h < 0 and vz < 0 and ‖v‖ < vlim and
φ < φlim and θ < θlim and ψ < ψlim and
‖ω‖ < ωlim)

(30)

where λ is a large positive constant serving as a soft landing bonus. φlim, θlim, ψlim are
upper bounds of Euler angle of the lander, and ωlim is the upper bounds of angular rate.

• Velocity tracking reward: At the beginning of the phase of powered descent, the lander
is several kilometers away from the landing zone, and the initial velocity is around
100 m/s. If the agent is rewarded only when it achieves a soft landing at the target
area, the state space is so sparse that it’s nearly impossible to converge. Therefore, we
transfer the soft landing problem into a velocity tracking problem. The process reward
is introduced in the landing process, that is, a reference velocity is given according to
the real-time relative position between the lander and target landing area

vre f =

{
− r−r1

kv1
h ≥ h1

− r−r2
kv2

0 ≤ h < h1
(31)

where kv1 and kv2 are constant coefficients that determine the mapping relationship
between position and reference velocity, and large coefficients lead to smaller reference
velocity in the powered descent process. Moreover, the reward is given according to
the deviation between the real velocity and the reference velocity of the lander

rvel = β
∥∥∥v− vre f

∥∥∥ (32)

where β is the reward coefficient of velocity tracking error.
• Crash penalty: To avoid the crash of the lander, a penalty is included in the reward.

When the attitude angle or speed deviation exceeds the threshold, the episode termi-
nates and the environment returns a large negative reward as a penalty

rcrash = η(φ > φlim or θ > θlim or ψ > ψlim) (33)

where η is the penalty of attitude crash.
• Fuel consumption penalty: In planetary exploration missions, the fuel carried by the

lander is limited, so the fuel consumption should be minimized. A reward regarding
fuel consumption is defined as

r f uel = α
1

Isp

6

∑
i=1

Ti (34)

where α weights a term penalizing fuel consumption. The fuel consumption coefficient
α and velocity tracking error coefficient β explicitly control the trade-off between fuel
consumption and velocity tracking. With higher |α| and lower |β|, fuel consumption
weights more in the reward and the lander will exchange some velocity tracking
performance for less fuel consumption.

• Constant reward: Notice that the rewards rvel , rcrash, r f uel are all negative. To encourage
the agent to explore more, a positive constant reward needs to be introduced into
the reward.
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rconstant = κ (35)

Therefore, the overall reward format is as follows:

r = r f uel + rvel + rcrash + rconstant + rgoal (36)

3.2. Observation Space

To improve the landing performance, it is necessary to include position, velocity,
attitude, and angular rate into the observation st. Based on the analysis of reward setting,
the absolute velocity in st is replaced by the velocity deviation in the lander body frame.

δvb = Cb
e(v− vre f ) (37)

Tracking velocity deviation rather than direct position can improve the generalization
ability of the trained agent.

Each attitude Angle is input into the observation vector in the form of sine value and
cosine value, and the quaternion is observed simultaneously.

s = [δvbx, δvby, δvbz, sin(φ), cos(φ), sin(θ), cos(θ),
sin(ψ), cos(ψ), p, q, r, q0, q1, q2, q3]

(38)

3.3. Action Space

The lander’s action is the thrusts of the engines, which are bounded in a specific
range. After going through the Tanh activation function, the output of the policy network
is bounded to ai ∈ [−1, 1]. Then, the actual thrust is got through a linear mapping

Ti =
Tmax − Tmin

2
ai +

Tmax + Tmin

2
(39)

where Tmin and Tmax are the lower and upper bounds of the thrust, respectively.

3.4. Network Architecture

We use the deep learning framework PyTorch to build the neural networks. The
hyperparameters such as network learning rates and noise variance are defined Section 4.

DDPG, TD3, and SAC all contain value function networks and policy networks. In
this paper, all the networks of value functions have the same structure as Figure 4a. We
employ three hidden layers to process the vector concatenated of observation and action.
All the hidden layers contain 200 nonlinear units and the activation function is ReLU.

The policy network structure of DDPG and TD3 is the same, as shown in Figure 4b.
The network includes three hidden layers, of which the activation function is ReLU, and
the activation function of the output layer is Tanh, through which the action is normalized
to [−1, 1].

Different from the deterministic policy of DDPG and TD3, SAC is a stochastic strategy
and the structure of the policy network is shown in Figure 4c. The strategy network consists
of two paths of networks. Both of them have the same structure, which outputs the mean
value and variance of the Gaussian distribution, respectively. Then, the network output is
obtained by sampling and activation functions in turn.
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(a) (b) (c)

Figure 4. Network architecture. (a) Value function network. (b) Policy network of DDPG and TD3. (c) Policy network
of SAC.

4. Simulation Results and Discussion

In this section, the simulation experiments are carried out and the results and related
discussions are proposed.

4.1. Simulation Settings

We train the lander velocity controller in a 6DOF environment established in Section 2.
The environmental parameters settings are shown in Table 1.

Table 1. Parameter settings of environment.

Parameters Values

m0 1700 kg
a× b× c 3 m× 3 m× 1 m

Isp 225 s
Tmax 2880 N
Tmin 1080 N

L 2 m
φ 27°
Ts 0.2 s
Tf 50 s
kv1 20
kv2 20

δvbx0 [−3, 3] m/s
δvby0 [−3, 3] m/s
δvbz0 [−12, 5] m/s

The hyper parameter settings of DDPG, TD3, and SAC algorithms are shown in
Tables 2–4, respectively. The training of DDPG is unstable and the learning rate of its value
function is lower than TD3.



Sensors 2021, 21, 8161 12 of 16

Table 2. Parameter settings of DDPG.

Parameters Values

σ 0.02
|D| 106

ρ 0.998
Learning rate of policy networks 10−3

Learning rate of value function networks 5× 10−4

Table 3. Parameter settings of TD3.

Parameters Values

σ1 0.02
σ2 0.02
c 0.02
|D| 106

ρ 0.995
Learning rate of policy networks 10−3

Learning rate of value function networks 10−3

Table 4. Parameter settings of SAC.

Parameters Values

|D| 106

ρ 0.995
α 0.05

Learning rate of policy networks 10−3

Learning rate of value function networks 10−3

4.2. Simulation Results

We deployed training algorithms according to the setting of environment and algo-
rithm parameters listed above, and the reward change curves of DDPG, TD3, and SAC in
the training process are shown in Figure 5.

The dark red curve is the average reward. From Figure 5a, the episode reward starts
to rise at around episode 10,000 and continues to increase until episode 20,000. Though the
curve of average reward looks stable, the episode reward fluctuates between 100 and 400,
which is very unstable.

(a) (b) (c)

Figure 5. The curves of accumulative reward for each training episode. (a) DDPG. (b) TD3. (c) SAC.

It is obvious from the reward curve that the performance of the TD3 agent improves
significantly after 700 episodes of training. After 5000 episodes of training, the average
reward converges at 450. Compared with DDPG, the learning speed of TD3 is faster and
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the performance is more stable, which is the result of the three tricks of “Clipped Double-Q
Learning”, “Target Policy Smoothing”, and “Delayed Policy Updates”.

The training of the SAC agent experienced a significant improvement at around
episode 3000 and 5000, respectively, and finally stabilized and the reward converged to
500. Due to the introduction of the “Clipped Double-Q Learning” like TD3, plus the
inherent smoothing characteristics of the stochastic strategy, the training process of SAC
fluctuates within a very small range, and the exploration of the environment is sufficient.
The accumulated rewards of some episodes are close to 600, which is higher than DDPG
and SAC.

The reference velocity is set as vd =
[

0 0 0
]
m/s, and the policy obtained from

training is used to control the speed. With the initial velocity v0
b =

[
−2.0 2.0 10.0

]
m/s,

the curves of the velocity deviation are shown in Figure 6.
All of the trained controllers can keep the velocity deviation within a certain range.

But there is a continuous oscillation in the velocity control by DDPG agent. The agent
trained by SAC algorithm performs the best, which gets the velocity error converges to 0
and keeps it stable.

(a) (b) (c)

Figure 6. The curves of velocity deviation in velocity tracking experiments. (a) DDPG. (b) TD3. (c) SAC.

Besides velocity tracking experiments, we validate the trained policy of each algorithm
by soft landing tests. Through 100 shooting experiments, landing statistics are shown
in Table 5. Among the three, SAC has the highest landing success rate of 96%, while
DDPG terminates 26 times due to attitude over constraint, which is caused by continuous
oscillation when tracking reference velocity. In the soft landing process, the reference
velocity changes dynamically, causing the oscillation more serious and leading to a higher
failure rate.

Table 5. Landing success rate.

Parameters DDPG TD3 SAC

Number of experiments 100 100 100
Success rate of soft landing 74% 92% 96%

Taking the target landing site as the origin, the landing trajectory and landing point
distribution of the three controllers are shown in Figures 7 and 8, respectively. By analyzing
the distribution of landing points, DDPG and SAC have nearly the same accuracy of
100 m in successful landing cases, while some landing points of SAC distance 200 m from
the origin.
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(a) (b) (c)

Figure 7. Landing trajectories of lander under the control of the trained velocity controller. (a) DDPG. (b) TD3. (c) SAC.

(a) (b) (c)

Figure 8. 2D distribution of landing points. (a) DDPG. (b) TD3. (c) SAC.

5. Conclusions

This paper presents an end-to-end soft landing control algorithm based on RL. First,
the 6DOF soft landing dynamics model is established and the soft landing problem of the
powered descent phase is formulated. The theoretical basis of RL is briefly introduced.
Then, to solve the problem of sparse reward, which makes it hard for the policy to converge,
the reward function including process reward is designed. Besides, the fuel consumption
penalty and constraints violation penalty are included in the reward function to optimize
fuel consumption and keep attitude angle within constraints. Moreover, the networks
architecture of the RL algorithms used is designed. The value functions of DDPG, TD3,
and SAC are approximated by deep neural networks that have the same architecture.
Both DDPG and TD3 have a policy network that outputs deterministic action, while the
action output of SAC is sampled according to a Gaussian distribution characterized by the
output of its policy network. Finally, simulations of training are carried out to evaluate the
algorithm proposed. The results show that the performance varies between different RL
frameworks, and the agent trained by SAC tracks the reference velocity best. In addition,
the trained policy is deployed to soft landing experiments, results of which demonstrate
the validity of the algorithm proposed. Future work will focus on the stability guarantee
of RL-based soft landing algorithm, which is of great importance in space exploration
missions to ensure success.
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Abbreviations
The following abbreviations are used in this manuscript:

DRL Deep reinforcement learning
DDPG Deep deterministic policy gradient
TD3 Twin Delayed DDPG
SAC Soft Actor Critic
6DOF 6 Degree of Freedom
NLP Nonlinear Programming
g planet gravity
Ti thrust of each engine
Tmin minimum thrust of each engine
Tmax maximum thrust of each engine
φ cant angle for the engines
T thrust vector composed of each engine
Tb thrust vector in lander body frame
Mb torque vector in lander body frame
r surface relative lander position vector
vb velocity vector
Ce

b, Cb
e direction cosine matrix between

lander body frame and planet surface frame
ωt angular rate vector in lander body frame
Q attitude quaterion
m lander mass
I inertia matrix of the lander
Isp specific impulse for thrusters
a, b, c lander sides of length
J optimization target
Gt agent accumulated return in an episode
vlim, ϕlim, ψlim, θlim, ωlim limited range for velocity, attitude angle and angular rate to

achieve soft landing
vre f reference velocity
λ, α, β, η, κ reward coefficients
Ts simulation sample time
Tf maximum simulation time in one episode
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