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Abstract: Due to the complexity and danger of Mars’s environment, traditional Mars unmanned
ground vehicles cannot efficiently perform Mars exploration missions. To solve this problem, the
DeepLabV3+/Efficientnet hybrid network is proposed and applied to the scene area judgment for
the Mars unmanned vehicle system. Firstly, DeepLabV3+ is used to extract the feature information
of the Mars image due to its high accuracy. Then, the feature information is used as the input
for Efficientnet, and the categories of scene areas are obtained, including safe area, report area,
and dangerous area. Finally, according to three categories, the Mars unmanned vehicle system
performs three operations: pass, report, and send. Experimental results show the effectiveness of
the DeepLabV3+/Efficientnet hybrid network in the scene area judgment. Compared with the
Efficientnet network, the accuracy of the DeepLabV3+/Efficientnet hybrid network is improved by
approximately 18% and reaches 99.84%, which ensures the safety of the exploration mission for the
Mars unmanned vehicle system.

Keywords: hybrid neural network; UAV; feature extraction; scene area judgment

1. Introduction

In the solar system, Mars exploration is particularly important. However, the insuffi-
ciency of human knowledge on Mars seriously limits the technological development of
Mars exploration [1]. In the past 20 years, Mars exploration missions have been imple-
mented, such as the MESUR Pathfinder in 1996, the Mars Global Surveyor in 1996, the Mars
Odyssey in 2001, the Mars Exploration Rover in 2003, the Mars Reconnaissance Orbiter
in 2005, the Phoenix in 2007, and the Curiosity Mars detector in 2011. Three Mars rovers
were launched to Mars in the summer of 2020, including NASA’s Mars 2020 vehicle, the
European and the Russian Rosalind Franklin Mars vehicle, and the Chinese Mars vehicle
TianWen 1. On 15 May 2021, China’s Zhurong Mars unmanned vehicle successfully landed
on Mars. These Mars unmanned vehicle systems for Mars exploration have sent back
valuable data. Therefore, Mars exploration is an important means for human beings to
understand Mars and the universe [2].

Mars ground vehicles are used by all Mars landing projects [3]. It is worth noting that
NASA recently used a Mars unmanned aerial vehicle [4] for the first time. On 19 April
2021, NASA officially announced that the first Mars unmanned aerial vehicle successfully
completed its first flight in the Jezero impact crater of Mars. The Mars unmanned aerial
vehicle carries two cameras. The color camera at the bottom can take high-resolution
photos of 13 million pixels, while the navigation camera has a lower resolution of only
500,000 pixels. After the Mars unmanned aerial vehicle has landed [5], the aerial data are
transmitted back to Earth by the Mars unmanned ground vehicle. This is also the first time
that humans have completed a powered flight in the atmosphere outside the Earth [6]. In
this paper, the Mars unmanned vehicle system comprises an unmanned ground vehicle
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and an unmanned aerial vehicle. One of the major missions of the Mars unmanned vehicle
system is to inspect the surface of Mars.

Currently, Mars exploration is full of uncertainties, resulting in the failure of Mars
exploration missions. On 22 March 2011, the U.S. rover Spirit fell into quicksand while
exploring the surface of Mars. Judgment of the scene area is particularly critical in Mars
exploration missions. Therefore, in order to complete the Mars exploration mission, it is
necessary to judge the scene area efficiently for safety. Intelligent technology is an effective
method to enhance the autonomous ability of the unmanned vehicle system. Deep learning
is one such intelligent technology. Due to its high accuracy, deep learning is widely used in
unmanned automatic driving and scene area judgment [7,8].

This artificial intelligence technology is applied to Mars exploration missions and
improves their efficiency. Simonyan [9] proposed a VGG (Visual Geometry Group) network,
which solves the problem of deep network training. It is widely used in unmanned driving
and area recognition. However, the Resnet network affects network convergence when the
gradient explodes. Huang [10] proposed a Densenet network, which solves the problem
that feature information cannot be recycled through dense network layer connections.
Due to the large number of parameters in Resnet and Densenet, training takes a long
time. Chen [11] proposed an Addernet (Addition) network, which solves the problem of a
large amount of calculation. In recent years, researchers proposed lightweight networks
to solve the problem of large parameters and time consumption. Sandler [12] proposed
a lightweight MobilenetV2 network that solves the problems of multi-parameters and
long time consumption. Tan [13] proposed an Efficientnet network with fast reasoning
speed, high accuracy, and few parameters. In particular, this network has high accuracy
in unmanned fields, such as scene area judgment, classification, and it can also transmit
information well. Compared with Resnet, Densenet, Addernet, and MobilenetV2 networks,
the Efficientnet network has higher accuracy and fewer parameters. However, due to the
low number of Efficientnet parameters, when the amount of extracted feature information
is large, accuracy decreases. Therefore, Chen [14] proposed a DeepLabV3+ network to solve
the problem of extracting a large amount of feature information. DeepLabV3+ network
uses the method of hole convolution and enlargement of the receptive field to extract
images with a large amount of feature information, which ensures the effective acquisition
such information.

In this paper, in order to improve accuracy, the DeepLabV3+ network is combined with
the Efficientnet network. A DeepLabV3+/Efficientnet hybrid network is proposed for scene
area judgment. The scene areas are divided into three categories, including safe area, report
area, and dangerous area. The categories are notified to the Mars unmanned vehicle system,
and the Mars unmanned vehicle system performs three operations: (1) safe area, the Mars
unmanned ground vehicle continues to explore; (2) report area, DeepLabV3+/Efficientnet
hybrid network saves the results, and the Mars unmanned ground vehicle performs
deceleration; and (3) dangerous area, the Mars unmanned vehicle system sends the Mars
unmanned aerial vehicle exploring.

This paper is organized into five sections. After the introduction, Section 2 describes
the process of the overall framework for the Mars unmanned vehicle system. In Section 3,
the DeepLabV3+/Efficientnet hybrid network is proposed. In Section 4, experimental
results are shown. Conclusions are drawn in Section 5.

2. Description

In Section 2, the Mars unmanned vehicle system and the overall process framework
are introduced as follows:

1. Mars unmanned vehicle system. Due to the restriction of the harsh environment of
Mars, the Mars unmanned ground vehicle is unable to reach the designated position.
Therefore, the Mars unmanned vehicle system is conceived. The Mars unmanned
vehicle system is composed of two parts: the Mars unmanned ground vehicle and
the Mars unmanned aerial vehicle. The Mars unmanned vehicle system is equipped
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with artificial intelligence algorithms. The schematic of the Mars unmanned vehicle
system is shown in Figure 1. When the Mars unmanned ground vehicle encounters
obstacles, it cannot pass through them, thus failing to move forward. At this time,
the Mars unmanned vehicle system launches the Mars unmanned aerial vehicle to
bypass obstacles and discover interesting objects.
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Figure 1. Schematic of the Mars unmanned vehicle system.

2. Feature extraction. The image taken by the camera is entered into the DeepLabV3+
network to extract image features. The feature is used as the input of the Efficientnet
network to judge the scene area.

3. Scene area judgment. The output of the Efficientnet network is divided into three
categories: safe area, report area, and dangerous area. Correspondingly, the Mars
unmanned vehicle system performs pass, report, and send, respectively.

The process of the overall framework is shown in Figure 2.
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Figure 2. Process of the overall framework.

3. DeepLabV3+/Efficientnet Hybrid Network

In Sections 3.1 and 3.2, the DeepLabV3+ network and the Efficientnet network are
introduced. In Section 3.3, the process of the DeepLabV3+/Efficientnet hybrid network
is given.
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3.1. DeepLabV3+
3.1.1. Structure Network Model of DeepLabV3+

Semantic segmentation is an important technical method for feature extraction [15].
In particular, DeepLab models are widely used in feature extraction. They can extract
each pixel point in the image and obtain the feature information of the target. Since
2014, Chen [16–18] successively proposed DeepLabV1, DeepLabV2, DeepLabV3, and
DeepLabV3+ models. The DeepLabV3+ network model introduces a common encoder–
decoder form of semantic segmentation, and it uses the decoder to obtain the information
of the encoder. The decoder restores the structure and spatial dimensions of the target
image. The encoder uses hole convolution [19] to balance accuracy and time loss.

Compared with PSPnet (Pyramid Scene Parsing Network) [20], FCNnet (Fully Convo-
lutional Network) [21], and Unet [22], the advantage of the DeepLabV3+ network is that it
uses hole convolution, which enlarges the receptive field of feature information without a
loss of information. On Mars, feature information is extremely critical. In order to allow the
DeepLabV3+ network to obtain as much feature information as possible, spatial pyramid
pooling [23] is used to achieve multi-scale feature information extraction. Low-level feature
information is fused with high-level feature information to restore the key information of
the target image.

The main network model structure of DeepLabV3+ is shown in Figure 3. Its base
network and the hole convolutional space pyramid module together constitute the encoder.
The image of Mars is entered into the encoder. The encoder obtains high-level feature infor-
mation. In addition, high-level feature information is up-sampled four times in the decoder
and fused with low-level feature information to obtain the whole feature information of
the Mars image. The whole feature information passes through the Softmax classification
layer to obtain the segmentation image corresponding to the original image. The basic
networks of DeepLabV3+ include Drn (Network of Dual Regression) [24], Resnet (Network
of Residual) [25], and Mobilenet (Convolutional Neural Networks for Mobile) [26]. The
basic network diagram of DeepLabV3+ is shown in Figure 4.
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3.1.2. Implementation Process of DeepLabV3+

The whole implementation process of the DeepLabV3+ network has four steps:

1. The Mars unmanned vehicle system takes an original Mars image and extracts the
original Mars image features through the mainstream deep convolutional neural
network [27,28] (DCNN, which also adds a hollow convolution) and obtains high-
level and low-level semantic features.

2. High-level semantic features are separately convolved and pooled in the hole con-
volution pyramid module. The module obtains five feature images and connects
the five features obtained. The module uses a 1 × 1 convolutional layer to perform
convolution operations for a single high-level semantic feature.

3. Low-level semantic features are obtained by the hole convolutional layer. Further-
more, in the decoder, the semantic feature information is operated by the deep
convolutional network layer. Low-level and high-level semantic features have the
same resolution.

4. Low-level and high-level semantic features are combined and refined through a 3 × 3
convolutional layer. The refined result adopts bilinear up-sampling four times to
obtain the image of the feature extraction.

3.2. Efficientnet
3.2.1. Structure Network Model of Efficientnet

Traditional convolutional neural networks generally expand the network by adjusting
the resolution of the input image, network depth, and the number of convolution channels,
while EfficientNet uses the model composite scaling method to perform network expansion.
The specific method is to specify the composite co-efficiency while constraining the image
resolution, network width, and depth.

The main backbone network is constructed by using modules in the MobileNet net-
work. The network flowchart is shown in Figure 5.
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The network structure is divided into nine stages in total. The first stage is a normal
convolutional layer (including activation function) with a convolution kernel size of 3 × 3.
Stage 2~Stage 8 are all repeatedly stacking MBConv (Mobilenet Convolution) structures
(the layers in the last column indicate how many times the stage repeats). Stage 9 consists
of a common 1 × 1 convolutional layer (including activation function), an average pooling
layer, and a fully connected layer. Each MBConv in Figure 5 is followed by a number 1 or
6, where 1 or 6 is the magnification factor.

3.2.2. Implementation Process of Efficientnet

The whole implementation process of the Efficientnet network has three steps:

1. The image is extracted by a 3 × 3 convolutional layer and is entered by multiple block
structures to further extract feature information.

2. In order to enhance the ability to express features in high-dimensional space, and
avoid the gradient disappearance during model training, ReLU (Rectified Linear Unit)
function is used as the activation function of the network. ReLU activation function
can accelerate the network convergence and reduce the value of the loss.
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3. Efficientnet uses the convolution-pooling-full connection operation to replace the
classifier and the Softmax regression function to normalize the full connection layer.
Efficientnet realizes the recognition of feature images and classification.

3.3. DeepLabV3+/Efficientnet Hybrid Network for Scene Area Judgment

Mars roads are mainly composed of rocks, quicksand, and other ravines. Therefore,
the feature information of Mars includes rocks and quicksand. Mars road image extracts by
the DeepLabV3+ model are shown in Figure 6. The feature information is shown in Table 1.
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Table 1. Types of feature information.

Feature
Information Rock Quicksand Background

Type 2 1 0

The feature image is entered into scene area judgment, and the output comes from the
Efficientnet network. The process of the hybrid network for scene area judgment is shown
in Figure 7.
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4. Experiments

Firstly, the Mars32K dataset is introduced in Section 4.1, and then the experimental
process is described in Section 4.2. Finally, experimental results are given in Section 4.3.
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4.1. Dataset

The Mars32K dataset (Mars32K, https://dominikschmidt.xyz/mars32k/ accessed
on 26 November 2018) is obtained by NASA Curiosity on the surface of Mars. NASA
Curiosity photographed the dataset and brought it back. The availability of the dataset is
reliable. This dataset is used to verify the DeepLabV3+/Efficientnet hybrid network. This
dataset is processed from the actual environment of Mars.

This dataset comes from NASA Curiosity. The main feature information of this
dataset includes rocks and quicksand. The dataset is manually annotated in order to
prevent the model jitter problem caused by the training process. Therefore, the dataset is
randomly selected and divided into 480 training sets and 130 validation sets. The process
of randomly assigning the dataset can make the model fit well. The dataset distribution is
shown in Table 2.

Table 2. Image dataset.

Dataset Training Set Validation Set Total

Number 480 130 610

Due to the small number of samples in the dataset, it has the effect of underfitting.
Therefore, in order to solve the problem of underfitting, we perform data augmentation [29]
processing on the dataset. Data augmentation processing includes the following eight
methods: (1) flip transform; (2) random crop; (3) color jittering; (4) translation shift; (5) scale;
(6) contrast; (7) noise disturbance; (8) rotation and reflection.

The dataset of data augmentation is shown in Table 3.

Table 3. Dataset of data augmentation.

Data Augmentation Training Set Validation Set Total

Number 4800 1300 6100

The dataset after data augmentation adapts to our model. Data augmentation im-
proves the accuracy of the model.

As mentioned in Section 3.3, the feature information of the Mars image is extracted,
and the samples of feature information images are shown in Figure 8.
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4.2. Experiment Procedures

A scene area judgment based on the DeepLabV3+/Efficientnet hybrid network method
is proposed for the Mars unmanned vehicle system. It extracts feature information obtained
by the DeepLabV3+ algorithm and obtains the output provided by the Efficientnet network.
The Mars unmanned vehicle system is based on intelligent algorithm to control the next
exploration of the Mars unmanned ground vehicle and the Mars unmanned aerial vehicle.
The DeepLabV3+ network is trained, the corresponding training model is saved, and the
output of the scene area judgment is obtained.

In the experimental process, the training round is set to 500 epochs of the DeepLabV3+ al-
gorithm model, and the training round is set to 100 epochs of the Efficientnet algorithm model.

4.3. Results

In Sections 4.3.1– 4.3.3, the experimental results of feature extraction, MIOU, FWIOU,
and the scene area judgment are given, respectively. In Section 4.3.4, the comparison result
of Efficientnet is given.

4.3.1. Feature Extraction

Three base networks are used for feature extraction. Figure 9 shows the feature
extraction accuracy curve diagrams using three base networks. On the test set, three base
networks are compared, and the Drn base network works best. The accuracy on the test set
is 97.3%.
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With the same conditions, feature information of types (rocks and quicksand) is
trained. The type of feature extraction result curve is shown in Figure 10. On the test set,
three base networks are compared, and the Drn base network works best. The accuracy on
the test set is 93.1%.
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4.3.2. MIOU and FWIOU

In feature extraction, there are some other indicators, such as MIOU (Mean Intersection
Over Union) and FWIOU (Frequency Weighted Intersection Over Union). MIOU represents
the ratio of intersection and union of predicted values. FWIOU stands for setting the weight
according to the frequency of occurrence of each category. The accuracy of MIOU and
FWIOU is shown in Figure 11a,b, respectively.
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The accuracy rate of MIOU is 87.5% on the test set, and FWIOU is 93.4%. This also
reflects the high efficiency of feature extraction.

4.3.3. Hybrid Network for Scene Area Judgment

The DeepLabV3+/Efficientnet hybrid network is used to train the model and is tested
on the test set. The accuracy of the training set is 99.8%, and that of the test set is 97.1%.
The training results and loss curve are shown in Figure 12a,b. The model trains 100 epochs.
From Figure 12a,b, it can be seen that, although the number of training times is small, the
model converges rapidly, and the training set and the validation set have good effects. The
confusion matrix of the test set is shown in Figure 13. From Figure 13, we can see that the
possibility of a dangerous area being incorrectly judged as a report area is 4%, and the
possibility of a report area being incorrectly judged as a safe area is 2%. In addition, we
fully consider the impact of judgment errors in the most dangerous case and classify all
of these 4% errors as judgment errors. Compared with the traditional method, the hybrid
network method reduces the rate of judgment error better and proves the robustness of the
hybrid network.
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4.3.4. Comparison

The Efficientnet network is only used to judge the scene area. The experimental results
are shown in Figure 14a,b. It can be seen that the number of training rounds is 100 epochs,
the network converges quickly, and the accuracy of the training and validation is in good
agreement. The trained model is performed on the test set, with an accuracy of 81% and a
loss value of 0.51. Experimental results show that, compared with the Efficientnet network,
the hybrid network is more effective.
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5. Conclusions

In order to avoid the dangers of the Mars environment, the impact of road conditions on
the Mars unmanned ground vehicle is considered. In this paper, the DeepLabV3+/Efficientnet
hybrid network is proposed and is applied to the scene area judgment for the Mars un-
manned vehicle system. This paper has three innovations: (1) the Mars unmanned vehicle
system is conceived, with the impact of road conditions on the Mars unmanned ground
vehicle solved; (2) an artificial intelligence algorithm is applied to the Mars unmanned
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vehicle system. The artificial intelligence algorithm improves the exploration accuracy
of the Mars unmanned vehicle system; (3) the DeepLabV3+ network is used to extract
features, with the problem of insufficient feature extraction capabilities of the Efficientnet
network solved.

The DeepLabV3+/Efficientnet hybrid network has two advantages: (1) compared
with the Efficientnet network, the accuracy of the hybrid network is improved by 18%;
(2) compared with the Efficientnet network, the hybrid network can extract features bet-
ter and has a smaller loss value. Experimental results show the effectiveness of the
DeepLabV3+/Efficientnet hybrid network in the judgment of scene area, which ensures
that the Mars unmanned vehicle system completes the Mars exploration mission.
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