
sensors

Article

An Efficient Group-Based Replica Placement Policy for
Large-Scale Geospatial 3D Raster Data on Hadoop

Zhipeng Liu , Weihua Hua, Xiuguo Liu * , Dong Liang, Yabo Zhao and Manxing Shi

����������
�������

Citation: Liu, Z.; Hua, W.; Liu, X.;

Liang, D.; Zhao, Y.; Shi, M. An

Efficient Group-Based Replica

Placement Policy for Large-Scale

Geospatial 3D Raster Data on

Hadoop. Sensors 2021, 21, 8132.

https://doi.org/10.3390/s21238132

Academic Editor: Thomas Udelhoven

Received: 29 September 2021

Accepted: 2 December 2021

Published: 5 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China;
liuzhipeng@cug.edu.cn (Z.L.); huaweihua@cug.edu.cn (W.H.); bomer2000@sina.com (D.L.);
zyaboedu@sina.com (Y.Z.); shimanxing@cug.edu.cn (M.S.)
* Correspondence: liuxiuguo@cug.edu.cn

Abstract: Geospatial three-dimensional (3D) raster data have been widely used for simple repre-
sentations and analysis, such as geological models, spatio-temporal satellite data, hyperspectral
images, and climate data. With the increasing requirements of resolution and accuracy, the amount of
geospatial 3D raster data has grown exponentially. In recent years, the processing of large raster data
using Hadoop has gained popularity. However, data uploaded to Hadoop are randomly distributed
onto datanodes without consideration of the spatial characteristics. As a result, the direct process-
ing of geospatial 3D raster data produces a massive network data exchange among the datanodes
and degrades the performance of the cluster. To address this problem, we propose an efficient
group-based replica placement policy for large-scale geospatial 3D raster data, aiming to optimize
the locations of the replicas in the cluster to reduce the network overhead. An overlapped group
scheme was designed for three replicas of each file. The data in each group were placed in the same
datanode, and different colocation patterns for three replicas were implemented to further reduce
the communication between groups. The experimental results show that our approach significantly
reduces the network overhead during data acquisition for 3D raster data in the Hadoop cluster, and
maintains the Hadoop replica placement requirements.

Keywords: 3D raster; distributed GIS; Hadoop Distributed File System; replica placement

1. Introduction

Three-dimensional raster data have long been used to model continuous 3D spatial
objects due to their simple representation and analysis [1,2]. With the rapid development
of remote sensing technology, the integration of spectral and temporal information with
spatial information helps to move from a 2D representation to 3D raster data structures [3].
The requirement for accuracy and resolution is increasing, evoking explosive growth in the
amount of data obtained from these fields, easily reaching gigabyte, terabyte, and even
petabyte scales [4]. It is difficult to analyze the increasing volume of geospatial 3D raster
data under the traditional management and processing architecture.

Processing large-scale geospatial data in a distributed computing environment is
becoming common practice [5,6]. Hadoop [7], an open-source big data framework applied
to clusters of commodity hardware, is gaining increasing popularity in geoscience appli-
cations. Although Hadoop hides the complex distributed details and provides simplified
parallel computing models, it is designed for general-purpose distributed storage and
computing. Optimizations from different levels are often required for different spatial
data analysis characteristics [4]. The rapidly increasing volume of 3D raster data needs
many cluster resources, which makes the optimization very important. Related works
for geospatial big data on Hadoop have mainly focused on parallel analysis and storage
based on the original Hadoop; the storage mechanisms of Hadoop Distributed File System
(HDFS) have not been modified; and the influence of data storage for spatial analysis is

Sensors 2021, 21, 8132. https://doi.org/10.3390/s21238132 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3611-0319
https://orcid.org/0000-0002-0045-9642
https://doi.org/10.3390/s21238132
https://doi.org/10.3390/s21238132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21238132
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21238132?type=check_update&version=2


Sensors 2021, 21, 8132 2 of 18

rarely considered. Optimizing Hadoop distributed storage for spatial data while satisfying
the distributed storage requirements is a challenge.

In distributed environments, data storage locations usually have a significant impact
on the performance of the parallel analysis of spatial data. Unfortunately, HDFS distributes
the uploaded data in the cluster without considering its spatial characteristics. As a result,
many distributed sub-tasks require data from multiple files placed on different datanodes.
Massive network overhead is produced and degrades the performance of the cluster during
the distributed analysis procedure. Network overheads often cause a bottleneck for parallel
computing. In our practice, when distributed spatial operations run directly on the 3D
raster data stored in the unmodified Hadoop environment, the remote data reading is the
most time-consuming process in the parallel analysis.

To better describe the influence of replica placement for 3D raster data, a possible
raster data distribution in the cluster through a simple division is depicted in Figure 1.
The raster data are split into multiple files, and every file is further divided into one or
more blocks, each of which has three replicas in the different datanodes. We assume each
file is smaller than the block size and corresponds to one block in Figure 1. There are no
datanodes for storing both File 2 and File 3. As a result, parallel sub-tasks requiring data
from both files cannot be processed directly without data communication between two
datanodes. This situation is common in large Hadoop clusters that store many files and
seriously degrades the performance of the cluster, particularly those running bandwidth-
sensitive applications. The data locality problem exists widely in distributed geospatial
raster data analysis applications, especially for 3D raster data or 2D raster data with a
large analysis range. In the analysis of 3D raster data, distributed analysis applications
relying on a moving window often require multiple file blocks in a task, such as spatial
filtering and resampling. For 2D raster data with a large analysis range, such as mapping
and visualization tasks for a region, massive remote reading cannot be avoided and more
cluster resources are required.

Figure 1. Possible raster data distribution on Hadoop cluster. The raster data are decomposed into
rows for clarity.

Some efforts have been implemented to process large-scale raster data in a distributed
environment. General parallel programming models for raster data based on the Message
Passing Interface (MPI) were designed in pRPL [8], which allows the raster analysis
algorithm to be easily scaled to operate in distributed computing architecture. A strategy
for raster-based geocomputation under CUDA, MPI and MPI/OpenMP was presented
in [9]. Compared to traditional distributed computing frameworks such as Message



Sensors 2021, 21, 8132 3 of 18

Passing Interface (MPI), Hadoop provides a distributed file system and hides the details
of the distributed availability and scalability. To provide efficient general remote sensing
processing on Hadoop, a strip-oriented parallel programming model was implemented
in [10]. A real-time big data analytical architecture for remote sensing data was proposed
from aspects of a data acquisition unit, processing unit, and analysis decision unit in [11].
To efficiently retrieve massive ocean RS images, [12] modified the mean-shift algorithm
for distributed processing in the Hadoop environment. In [13], a logical segmentation
indexing approach was proposed to realize the distributed index for metadata of satellite
images. A Spark-based parallel computing approach for the spatial neighboring analysis
of terrain data was employed in [14]. The geospatial raster data are usually managed in
accordance with their spatio-temporal dimension. To improve the query efficiency for three
or more dimensional raster data, [15] designed a MapReduce system for spatio-temporal
satellite data and, as such, a multi-resolution quad-tree based index structure was provided
for the application of queries and visualizations. A spatio-temporal indexing approach
was proposed for big climate data in [16]. A storage model for block-oriented HDFS and a
grid partition algorithm were designed for efficient parallel processing based on the index.
A hierarchical indexing strategy for Apache Spark with HDFS was implemented in [17]; a
global k-d tree index and local hash table were provided to efficiently query and process
the multi-dimensional raster data. Most of these works were built on the top of Hadoop
without the modification of Hadoop components. Although the data locality problem
has been alleviated through file organization in HDFS in some works, the default replica
placement policy was deployed. Data were randomly distributed in the cluster, which
may cause a large network overhead in the distributed analysis for 3D raster data. The
programs pRPL [8] and XHAMI [18] redundantly stored neighboring data of the file region
for every divided file, achieving low network overhead at the cost of disk storage space.
However, the disk overhead increased significantly if the analysis algorithm required a
large radius or multi-dimensional data were considered.

Besides the raster data distributed systems, general geospatial data processing frame-
works based on Hadoop, such as Hadoop-GIS [19] and SpatialHadoop [20], provided
multiple distributed spatial indexes and operations based on MapReduce. Based on Spatial-
Hadoop, ST-Hadoop [21] designed a temporal hierarchy index structure for spatio-temporal
queries, and injected spatio-temporal awareness inside each layer of SpatialHadoop. An
integrated GIS platform architecture for spatio-temporal big data was described in [22],
which contains the latest big data technologies based on cloud computing, 3D and virtual
reality, container technology, and GIS systems. Apache Spark [23] was introduced to com-
bine resilient distributed datasets (RDDs) [24] and Spark SQL [25] with spatial indexes to
implement distributed in-memory spatial queries in the cluster. To provide a SQL-style spa-
tial query framework, four categories of atomic grid transformations based on Apache Hive
were designed in [26], and a complex climate analysis could be conducted by integrating
these transformations. Some applications of spatial analysis in the Hadoop environment
have been proposed, such as 3D spatial query engines [27] and spatio-temporal vehicle
trajectory processing [28]. These studies on spatial data provide multiple implementations
for the processing of spatial data in a distributed environment. However, the replica
placements of spatial data were not considered, which may degrade the performance of
geospatial 3D raster data analysis with data locality problems.

Data replication is generally used to improve the I/O efficiency and availability in
distributed environments. It is usually necessary to design different replica placement
strategies for different applications. With the default replica placement policy, three
replicas are placed under two racks, finding a balance between writing efficiency and
reliability. In [29], data management and replication approaches were surveyed based
on the performance metrics of availability, scalability, fault tolerance, load balancing,
throughput, and consistency. Storage locations were optimized through a consistent
hashing-like algorithm in [30], and a parallel join query algorithm with a scheduling
strategy was designed. To improve the data locality problem caused by random replica



Sensors 2021, 21, 8132 4 of 18

placement, a lightweight extension of Hadoop was proposed to store related data on the
same datanode in [31]. Spatial relationships among uploaded files were ignored in these
studies. CoS-HDFS [32] colocated spatially related files based on minimum bounding
rectangles in the same datanode. However, all divided raster data files are contiguous and
related; thus, it is difficult to directly place all related data in a single datanode using these
methods. In the current research for data locality optimization on Hadoop, three replicas
of the colocated files have the same colocation patterns. Our method implements different
colocation patterns for three replicas through the overlapped group scheme; thus, the data
locality can be further improved.

There are usually two ways to handle the data locality problem. The first option is
to design more complex parallel operations to ensure that each sub-task receives only
the intermediate result from the remote datanodes instead of the original data. Should
the communication of the intermediate result be very small, as it usually is, the network
overhead can be significantly reduced. However, parallel operations need to be designed
according to different analysis methods, and the complex processes may lead to greater
programming difficulties and more potential errors. The second option is to optimize the
replica locations of HDFS, which allows the data required by each sub-task to be placed in
the same datanode as much as possible. We chose the latter option in this paper, which
facilitates the implementation of the parallel analysis and scales the traditional methods to
the distributed environment.

The data locality problem exists widely in distributed geospatial raster data analysis
applications, especially for multi-dimensional raster data or applications with a large analy-
sis radius. Related research improved the data locality at the cost of additional data storage,
and three replicas of HDFS were not considered to form different colocation patterns. To
the best of our knowledge, this is the first work that investigates the optimization of replica
placement for geospatial raster data on Hadoop. In this paper, we propose an efficient
static replica placement policy of HDFS optimized for large-scale geospatial 3D raster data,
mainly focusing on the problem of a large network overhead and load balancing in the
analysis of an entire region. An overlapped group scheme is designed and different coloca-
tion patterns for three replicas are implemented through the scheme. The data locality of
parallel tasks is obviously improved and the distributed storage requirements of HDFS are
also maintained. Our method is suitable for typical geospatial raster data analysis of batch
processing with the data locality problem, especially for 3D raster data or 2D raster data
with a large analysis range. Since most spatial parallel analysis sub-tasks can be performed
with less network overhead through our method, high concurrency scenarios without hot
regions are also applicable.

The rest of this paper is organized as follows. Section 2 describes the main methods of
our group-based data placement policy. The experiments and a discussion of the results
are provided in Sections 3 and 4. Finally, Section 5 provides some conclusions regarding
this study.

2. Materials and Methods
2.1. Group Method of 3D Raster Data

HDFS is a highly fault-tolerant distributed file system designed to run on commodity
hardware. Typically, a master server called namenode manages the metadata of the file
system and regulates access to files by clients, and many server machines called datanodes
are responsible for the data storage. When a file is uploaded onto HDFS, the file is split
into one or more blocks and stored in a set of datanodes. Each block of a file has multiple
replicas in different datanodes for fault tolerance and read efficiency. The number of
replicas is usually set to three, which is the number that is mainly utilized in our method,
although this can be set higher with few modifications.

For geospatial raster data, access to a sub-region of entire data is a common operation;
thus, it usually splits all the data into many files according to the spatial grid. Compared to
storing the entire data on Hadoop, splitting all the data into grid files is more efficient for



Sensors 2021, 21, 8132 5 of 18

sub-region data acquisition. With our method, geospatial 3D raster data are divided into
grid files and uploaded to the HDFS. Our designed replica placement policy chooses three
datanodes for every divided file, which is finally stored in these datanodes if no errors are
detected. The main idea of the group method is to divide the raster data into overlapped
groups, and one replica set of divided files in each group is placed in a datanode to reduce
the communication within the group. Communication among groups is further reduced
through the overlapping area of groups. For clarity, we describe the optimized group
method used for 2D raster data from a column-based group method to a grid-based group
method, and then extend the method to 3D raster data.

2.1.1. Column-Based Group Method for 2D Raster Data

Two-dimensional raster data are usually decomposed into rows, columns, or grids
for distributed processing. In our column-based group method, the grid files in every
several columns were assigned to a group (three columns in Figure 2), and one replica set
of these files was placed on a datanode. An overlapping column was set between every
two adjacent groups. To maintain the storage balance in the cluster, replicas that were not
assigned were distributed randomly with the consideration of the storage status of the
datanodes.

Figure 2. Example of the column-based group method for 2D raster data. Data are first divided into
many grid files, files in every three columns are assigned to a column group, and one replica set of
these files is placed on a datanode. “Col 1” in figure represents all grid files in the first column.

The spatial width corresponding to each divided file was usually greater than twice
the analysis radius. Therefore, the entire region could be processed without data communi-
cation between groups, and data locality could be guaranteed by two replicas. However,
the number of columns and groups was small in some cases, which made it difficult to
distribute the computations evenly to more nodes. The following grid-based group method
will show how this problem was solved.

2.1.2. Grid-Based Group Method for 2D Raster Data

Based on the column-based group method, we first grouped X × Y divided files (4 × 3
in Figure 3) instead of several columns. Groups in each row formed a row group, and the
internal processing of a row group was the same as the above column-based group method.
The grid files in each row group were assigned to overlapping normal groups such as
“group (1, 1)” and “group (1, 2)” in Figure 3. To avoid network communication among
the row groups, the boundary files of every two adjacent row groups were placed into a
new overlapping row group, which was used to analyze the boundary region between
every two row groups. With this method, the grid files were assigned to normal groups
and overlapping row groups, and one replica set of the files in each group was assigned to
a datanode.



Sensors 2021, 21, 8132 6 of 18

Figure 3. Example of grid-based group method for 2D raster data. The group method for every row
group is similar to the column-based group method. One replica set of files in every normal group
and overlapping row group is assigned to a datanode.

The number of files in the overlapping row group was often much larger than that of
the normal group, but only a small part of these files were used for processing, and the
problem of an imbalanced computing load did not occur in practice.

2.1.3. Extension to 3D Raster Data

For 3D raster data, each group consisted of X × Y × Z 3D grid files, and groups
with the same z-coordinate range were placed into a layer group and processed in the
same way as 2D raster data. Although it was difficult to avoid network overhead between
every two layers, the size of group Z could be set larger in order to limit the number
of layers, and the network communication would be much smaller than the previous
overhead. The horizontal range of geospatial 3D raster data was usually much larger than
the vertical range in geospatial applications, thus the number of layers in the z-direction
was generally small.

2.2. Parallel Analysis for Group Method

In the above data placement method, every group was assigned to a datanode, and a
set of replicas of the group were placed in the node. Analysis within each group could then
be independently processed by the corresponding datanode. Through an overlap of groups
in the row and column directions, data transfer between groups in the two directions
could be avoided. To minimize the data transmission overhead, the analysis area for each
datanode needed to be allocated according to the group placement.

Details of the analysis region for each group are shown in Figure 4. In every row
group, normal groups were assigned computing areas in order. Each column group was
responsible for an unallocated area that could be processed without data communication
with the other groups. In layer groups, areas between two adjacent row groups were
computed by overlapping row groups. As an overlapping row group consisted of more
files than the other groups, the computed height was set to 2 R to avoid an imbalanced
computing load. For multiple layer groups, a data transmission with a distance of R
in adjacent layers was difficult to avoid and produced the main network overhead in
our method.

2.3. Implementation of Group-Based Replica Placement Policy

To achieve storage based on the above policy, there are two methods for uploading
divided files to proper datanodes. The storage locations of all files can be scheduled
before the upload, and the HDFS uses the prescheduled information to place the data
block of every file directly [30]. Another method is to determine the storage location when
uploading files, in which the group information of previously uploaded files is recorded



Sensors 2021, 21, 8132 7 of 18

in a table (called a group placement table) and used for dynamically determining the
placement of the current uploading file. The latter method is used in this study owing
to its ability to obtain the replica placement dynamically according to the latest status of
the datanode.

Figure 4. Assignment of analysis region for every group based on optimized data placement. In
row groups, each normal group is responsible for the region that can be analyzed within the group
data. For each layer group, regions that are not allocated by the normal groups are assigned to the
overlapping row groups.

The 3D raster data are first divided into regular 3D grid files. BlockPlacementPolicy is
a component of HDFS for controlling the placement of replicas. The default Hadoop block
placement policy is optimized for the 3D raster data based on the group-based method.
The divided 3D grid files are uploaded in x-order. For every divided file, the core method
chooseTarget is invoked and returns the appropriate data storage information according
to the group placement and cluster status. The optimized method of chooseTarget is
illustrated by the flowchart in Figure 5, which includes the following steps:

STEP 1: Input the grid position of the current file.
STEP 2: Calculate the group information for the current uploading divided file based on
the grid position (the file may belong to multiple groups).
STEP 3: Querying the group placement table to obtain the storage information of each group.
STEP 4: If no group record is queried, then choose a random datanode from the cluster by
considering the storage status of the datanodes and the position of the previous replicas,
adding the chosen datanode to the replica result, and writing the storage information into
the group placement table.
STEP 5: If the storage information is queried, then add the datanode in the query to the
replica result.
STEP 6: If the number of replica results is less than the replica factor (default 3), then choose
the remaining datanode(s) randomly from the cluster by considering the storage status.
STEP 7: Return the chosen results for the storage locations of the current input file.



Sensors 2021, 21, 8132 8 of 18

Figure 5. Flowchart for optimized method of chooseTarget. Storage locations of divided grid files are
chosen considering the group information and storage status of cluster.

Some details are worth consideration if we are to improve the storage performance.
Regarding the write efficiency and data reliability, the HDFS rack policy is applied to place
three replicas of each file into two racks (in Step 5). To maintain the storage and computing
balance of the cluster, information in the group placement table is further considered to
distribute groups evenly into the cluster when selecting a random datanode for the group
(in Step 3). The number of blocks stored in each datanode is also recorded to maintain the
storage balance by controlling the random datanode selection for the file (in Step 5).

After the data are uploaded, the data placement may be affected by the failure of the
datanode or the balancer utility, and the locations of the groups need to be considered in the
data movement. The group records of the unreachable datanode in the group placement
table are reassigned first when the abnormal node is detected, and the new datanode is
chosen using a similar block placement policy. In the balancing process, blocks of 3D raster
data are moved individually considering existing groups, and the groups are reorganized
according to the requirements of analysis.

3. Results

This section describes an extensive experimental study conducted to evaluate the per-
formance and data reliability of the above algorithm. Our group-based replica placement
policy places as many adjacent data in the same datanode as possible, thereby obtaining
better data locality compared to the default data placement policy in theory. Three exper-
iments were conducted to prove its efficiency. In these experiments, the impact on the
default features of HDFS was first verified. The IO efficiency of our method was then com-
pared with the colocation-based replica placement policy extended from CoS-HDFS [31]
and the default replica placement policy. The effect of different group parameters was
finally analyzed.



Sensors 2021, 21, 8132 9 of 18

3.1. Experimental Setup
3.1.1. Experiment Environment

Cluster Setup. We evaluated our system by running experiments on a cluster of
11 KVM (Kernel-based Virtual Machine) machines that consisted of one namenode and
ten datanodes. Each node had three cores (at 2.2 GHz), 16 GB of memory, and a 100 GB
hard drive. All nodes ran CentOS 7.2, Java 8, Hadoop 2.7, and Spark 2.1. In the HDFS
configurations, the default block size was set to 128 MB, and three racks were simulated
for four, three, and three datanodes in each rack, respectively.

Datasets. We employed a 3D raster geological model of the Huangtupo slope built
from boreholes, sections, detailed geological maps, and a digital elevation model to assist
the geological hazard analysis, located on the south bank of the Yangtze River in Badong,
Hubei, China. The model contains 1600 × 2400 × 800 voxels, and each voxel contains
properties of stratum type (1 byte), lithology (1 byte), moisture content (1 float), uncertainty
indicator (1 float), and hazard indicator (1 float) for a total of approximately 40.1 GB. All
data were divided into 8 × 12 × 4 files and then uploaded to the cluster, and the properties
of the voxels in each file were stored in binary format without compression. The size of
each divided file was less than the block size of HDFS, thus avoiding further division of
the files into multiple blocks by HDFS.

Although the experiment employed the data and application from our geological
project, common storage format and analysis operations were employed and can be ex-
tended to other 3D raster applications.

3.1.2. Description of Parallel Analysis of Comparative Methods

To improve the data locality of raster data analysis, rRPL [8] and XMIDI [18] redun-
dantly store neighboring data of the file region for every divided file. The two models
achieved a low network overhead at the cost of disk storage space, which is hard to com-
pare with our optimized method. To the best of our knowledge, there are no studies
directly optimizing replica placement for raster data on Hadoop. Therefore, we extended
the colocation-based idea of CoS-HDFS in the manuscript to 3D raster data as a compar-
ative approach for IO efficiency. Additionally, the default replica placement policy of
Hadoop was also used as another comparative method. Different parallel approaches
can be used for the replica placements. In this experiment, we designed three parallel
analytical strategies for the data uploaded through the two comparative methods and our
group-based approach.

For the default replica placement policy, the region of every divided file is treated as a
computing unit, which reads data from the region and surrounding area within a certain
radius. Parallel analysis for every computing unit is conducted after the data reading. The
implementation extends Hadoop’s InputFormat class to create computing units. Every
computing unit is assigned to an InputSplit, which stores the spatial information of the
corresponding region. A datanode that stores more data in the region is chosen for the
computation. RecordReader generates a key-value pair for each InputSplit, in which the
key represents the ID of the unit, and the value represents the data required for analysis.

The colocation-based method colocates the group files based on CoS-HDFS. All 3D
raster data are divided into contiguous groups, and files in every group are colocated and
have the same replica placement through the extension of CoS-HDFS. Unlike our method,
every 2 × 3 × 2 files are grouped, and there is no overlap between these groups. The same
group size as our method is used for comparison. Every group with its surrounding area is
assigned to a computing unit, in which data are divided into key-value pairs for parallel
analysis by Apache Spark.

Our group-based policy uses a similar approach for parallel analysis. The main
difference is that our group method divides the entire data into overlapped groups, which
reduces the network overhead among groups. Every group is treated as a computing unit
instead of a file region, and the datanode placing the group is chosen for analysis.



Sensors 2021, 21, 8132 10 of 18

It is worth noting that some implementations can achieve a higher efficiency, but these
methods are more complex and may cause higher difficulty in programming as well as
possible errors. The bandwidth efficiency does not improve significantly as the data locality
is not changed.

Parallel processing can be achieved through MapReduce and Apache Spark, the latter
of which was chosen for our experiment, owing to its efficient in-memory computing
model. A parallel analysis of each InputSplit was conducted through a map procedure,
and the results were merged during the reduce procedure.

3.2. Impact on Default Features of HDFS

The purpose of the default rack-aware replica placement policy is to improve data reli-
ability, availability, and network bandwidth utilization. Considering the writing efficiency
and reliability of the data, three blocks of each file should be placed in three datanodes
under two racks. In addition, the computational load of every datanode is approximately
proportional to the number of groups, and the storage load is proportional to the number
of file blocks. Therefore, blocks and groups should be distributed evenly in the cluster to
maintain the load balance.

Three-dimensional raster data divided into 8 × 12 × 4 files (for a total of 384) were
uploaded 10 times through the HDFS API, the statistical information of which (such as
the max/min/average of the data distribution information mentioned above) is shown in
Table 1.

Table 1. Statistical information of 3D raster data distribution in ten uploads.

Min Max Average

Number of files placed in one rack 2 12 6.8
Number of files placed in three racks 30 48 37.0

Number of files breaking the rack rule 32 60 46.4
Number of groups in datanodes 6 7 6.2
Number of blocks in datanodes 113 117 115.1

For the rack rule of HDFS, 46.4 files on average were not distributed under two racks,
with the number varying between 32 and 60. All of these files were in the overlap area of
three groups (two normal groups and one overlapping row group). These files were still
distributed on three datanodes, and most of them were placed in three racks, which had
little effect on the performance of the upload or the reliability of the data.

Through data balance optimization of the uploaded files and groups, all groups and
files were allocated to ten datanodes evenly. The difference between the group number of
every two datanodes was less than two. Limited by the rack rule of files, some datanodes
had up to four more placed blocks than the other datanodes.

3.3. Evaluation of Network IO Performance

Resampling is a typical data-intensive 3D raster analysis operation. A distributed
resampling method for the uploaded 3D raster data was first employed to evaluate the
network read performance. Then, a geological analysis based on resampling was performed
to prove the applicability. In the resampling method, the new value of a cell was determined
based on the surrounding voxels within a radius, and three radii (7, 10, and 13) were used in
the resampling experiments. A group size of 2 × 3 × 2 was used in the optimized method.

We focused on the network overhead caused by a 3D raster of the data read procedure
during the experiment, which can be obtained from the IO statistics of HdfsDataInput-
Stream in RecordReader. The read network overhead was used as the major indicator that
directly reflects the locality of the data, which determines the efficiency of bandwidth-
intensive jobs and is less influenced by the analysis method and hardware performance
of the cluster. The running time increased with an increase in the read network overhead
in our experiments. As the overlapped area of the computing units may be read multiple



Sensors 2021, 21, 8132 11 of 18

times in different datanodes, the read overhead of the disk is also listed as a comparative
indicator of efficiency.

Figure 6 shows the read statistics of the resampling algorithm for the three replica
placement policies. The results show that our group-based method produces a significant
reduction in the network read overhead. For the same resampling radius, the amount
of network read for data uploaded by our method is approximately 10% of the default
replica placement policy and approximately 25% of the colocation-based approach. There
was a small decrease in disk data read compared to the default replica placement policy,
indicating that the repeated disk read overhead for the overlapped area is relatively small.
For the overlap between groups in our method, more groups were generated than the
colocation-based method; thus, the disk overhead was slightly higher.

Figure 6. IO performance of the group-based method, the colocation-based method, and the default Hadoop replica
placement policy. Network and disk read overheads are compared among these methods.

To evaluate the performance in a more complex distributed environment, different
numbers of cluster nodes were employed in the experiment. With the group size of
2 × 3 × 2 and the radius of 7, the number of cluster nodes was set to 3, 4, 6, 8 and 10.
Figure 7 shows the read statistics of different numbers of the datanodes in the cluster.
When the cluster consisted of only three datanodes, every datanode stored the replicas
of all divided files, and all parallel tasks could obtain the required data locally and the
network read overhead of data reading could be ignored. The network read overhead
increased with the increase in the number of cluster nodes. The amount of network read for
data uploaded by our method is approximately 10% of that of the default replica placement
policy and 20% to 30% of that of the colocation-based approach. The optimization of our
methods became more obvious with the increase in cluster nodes.



Sensors 2021, 21, 8132 12 of 18

Figure 7. IO performance of the group-based method, the colocation-based method, and the default
Hadoop replica placement policy with different numbers of the cluster nodes.

Hadoop is designed to run on clusters of commodity hardware, and the datanode
failure is common in the large cluster. Therefore, the performance of datanode failure
was evaluated. When the simulated datanode failure was detected by the namenode, the
distributed resampling job was submitted to the resource manager. The radius of the
resampling was set to 7, and the group size was set to 2 × 3 × 2. In this situation, tasks
that should be operated on the failed datanode were migrated to other datanodes, with
the most essential data stored. The network read overhead of the group-based method
was increased from 0.53 GB to 1.02 GB, which was 19% of the default replica placement
policy and approximately 47% of the colocation-based approach, and operated without
failure. The disk read overhead was the same as that of the previous job that operated
without failure. After the replicas of the failed datanode were recovered from the remaining
datanodes, the new submitted job achieved a similar result to those of the cluster with
9 nodes.

3.4. Effect of Group Size

The group size determines the size of every storage and analysis unit in our method,
which is the main parameter of this algorithm. For a radius of 7, we recorded the read
overhead of the group sizes of 2 × 3 × 2, 3 × 2 × 2, 2 × 2 × 2, 2 × 3 × 1, and 3 × 2 × 1
(Figure 8). For convenience, we used length × width × height to represent the group size
in the x-, y-, and z-directions.

The network and disk overheads produced by group sizes of 2 × 3 × 1, 2 × 2 × 1,
and 3 × 2 × 1 during the reading procedure were significantly greater than those in the
other groups, and the impact of the network overhead was greater than that of the disk.
With our method, which is limited to the number of replicas in the HDFS, the remote data
reading of every group in the z-direction is difficult to avoid through the overlapping of
groups. The increase in the group number in the z-direction will directly lead to a larger
data exchange among groups in different z layers.

When the group height was the same, the group length and width had a lower impact
on the read overhead. This is due to the fact that the required data for every computing
unit in the x- and y-directions were placed in the same datanode, and thus the influence of
the network read was mainly caused by a data exchange in the z-direction.



Sensors 2021, 21, 8132 13 of 18

Figure 8. Statistics of read overhead for different group sizes in the group-based method. Overhead
was significantly greater when group height was 1. With the same group height, group length and
width had less impact on read overhead.

3.5. Case Study: Geological 3D Raster Data Analysis

Our method provides an optimization of replica storage locations in the cluster, most
applications with data locality problems can benefit from our approach. To prove the
applicability, a typical 3D raster data analysis scenario from the geological hazard analysis
application is introduced. By analyzing the geometric and geological information contained
in the 3D raster model, a hazard probability model was obtained to find the region requiring
more attention for disaster prevention or further geological surveys. In order to obtain
higher analysis accuracy and shorter analysis time, Hadoop was introduced to process
the large-scale 3D raster data instead of the traditional non-distributed method. When
default replica placement policy was applied in the analysis, data acquisition was the
most time-consuming process and had a serious impact on the IO performance of other
applications running on the cluster.

To make our experimental results applicable to other applications, we chose a typical 3D
raster data analysis scenario from the geological hazard analysis application. For commonly
used parallel raster analysis, the main difference in our case is that the hazard analysis
was performed in each task. The parallel analysis procedure is shown in Figure 9. The 3D
raster data is first split into multiple groups according to our optimized replica placement
policy. Hazard analysis in each group is performed simultaneously in the corresponding
datanodes, which can be replaced with other applications. In every region of 10 × 10 × 5,
the probability of hazard is calculated from the geometric shape of the surrounding stratum
type and lithology. A weighted sum of the probability and the uncertainty indicator is
computed as the result of the region. After the parallel analysis through Spark RDD, the
results are collected from the RDD of the worker nodes in the cluster. Then, the 3D raster
result model is transferred to the client computer for further analysis and visualization.
Since every 10 × 10 × 5 region corresponds to a new voxel value in the result 3D raster
model, the resulting model is small enough for direct processing in the client.

Volume rendering through the Visualization Toolkit (VTK v9.1.0, https://vtk.org/
accessed on 20 September 2021) was used to visualize the result 3D raster data. The
rendering image is shown in Figure 10. The voxel value represents the hazard probability
of the corresponding location according to the analysis method. Through the resulting
model, we could identify the regions which required more attention as being hazardous.
The red areas in the figure were marked as warning areas, which were inferred by the
unstable geological structure or lack of survey data. The origin model and geological survey
data in these areas were further analyzed, and an interactive analysis was conducted to
determine if disaster prevention or further geological survey was required.

https://vtk.org/


Sensors 2021, 21, 8132 14 of 18

Figure 9. Workflow of a parallel geological analysis for 3D raster data through the group-based
method. In the colocation-based and the default Hadoop replica placement, corresponding data
splitting methods are used instead of the group-based division.

Figure 10. Rendering images of geological hazard analysis result model. The red areas in the
figure indicate a high probability of hazard in our analysis method, further analysis in these areas
were required.

After uploading the 3D raster data, there are two large-scale analysis requirements:
parallel analysis for the entire region of the raster data, and analysis jobs for parts of
the raster data submitted from multiple clients. In the parallel analysis of the entire
region, ignoring the overhead of the collect and transfer procedure, similar results were
acquired as in previous experiments. The remote network read was reduced to 11% of the
default replica placement policy. The average job running times through the group-based,
colocation-based and default replica placement policy were 15 min, 24 min, and 31 min,
respectively. The main reason for the long run times of the two comparative methods is
the relatively low remote read efficiency of HDFS. HDFS short-circuit local reads were
configured in the cluster, allowing the client to read local data directly and boost the
read performance. Therefore, tasks with better data locality showed better performance.
The remote read overhead of the comparative methods can be alleviated through a more
complex design of RDD iteration. However, these methods lead to great difficulty in
programming, and extra efforts for the parallel procedure are required for different analysis
methods of 3D raster data.

Owing to the optimization of replica placement in the datanodes, our method also
showed a similar performance improvement in multiple analysis jobs for parts of the raster
data. Each sub-task read the most required data locally if the analysis jobs were evenly
distributed throughout the entire region. The load balance problem occurred when a hot
region existed in the analysis jobs, which could not be solved by our method and the
compared methods. Further optimizations such as tuning the locations, caches, and replica
numbers, would improve the performance.



Sensors 2021, 21, 8132 15 of 18

4. Discussion

To ensure availability and writing efficiency, HDFS places three replicas of each file
under two racks. In our method, each overlapping row group overlaps with many normal
groups, and it is difficult to make all the files belonging to the three groups meet the rack
condition. Only 8–16% of the data files broke the default rack rule of HDFS, and most of
these files were placed under three racks, which had little effect on the writing efficiency.
Few files were placed on three datanodes of the same rack, increasing the risk of data
reliability from rack failures. However, this slight influence can be avoided by further
optimizing block placement.

Specific replica placement strategies should be designed for different applications. Our
method is designed for the 3D raster data of batch processing and concurrency scenarios
without hot regions, and it is important to maintain the load balance in the distributed
analysis of an entire region. Every group corresponded to a computing unit in our method,
and the groups were placed evenly across the datanodes in the experiment; thus, tasks ran
locally with load balance in the distributed analysis. To ensure the efficiency of parallel
analysis, when the data in the cluster were unevenly distributed, the datanodes with less
usage were not given priority to store the groups. Instead, we improved the load balance
of storage by optimizing the locations of the replicas that did not affect the locality of
the groups. The storage load balance was sacrificed to improve the efficiency of batch
processing in the entire region.

In the experiment, we compared the network IO performance of three replica place-
ment policies. With the default replica placement policy, the network read overhead is
mainly produced by the remote reading of the surrounding data that are not stored on the
current computing node. Divided files are randomly distributed in the cluster, resulting
in a large amount of data exchange among the datanodes. The colocation-based replica
placement policy reduces network communication by simply placing the replicas of ad-
jacent files on the same datanode. However, network overhead between groups cannot
be avoided. Our method uses a group overlap scheme to decompose the analysis of a
group layer into some local tasks, and the network overhead is mainly produced in data
acquisition from different group layers.

In a Hadoop cluster, the namenode periodically receives a heartbeat from each datan-
ode to obtain the storage information. A datanode is considered a failure after the heartbeats
are lost in a set period (over ten minutes by default). When this occurs, the block manager
of the namenode instructs the remaining datanodes to create additional replicas for the
lost blocks. The block recovery procedure in the block manager can be modified for the
group-based replica placement, and the blocks of each group in the failed datanode are
created in the same datanode. After the recovery procedure, the storage state of groups is
similar to that of the cluster with one less node.

Generally, the more data a single task processes, the less extra cost it incurs. However,
processing a large amount of data in a single task reduces the degree of parallelism, making
it difficult to take full advantage of large-scale computing resources and may also lead to
problems such as the load balance of long tasks and insufficient memory resources for a
single task. In our practice, network overhead is mainly produced between layer groups;
thus, a larger group height can be used for better IO performance. The group length and
width can be set according to the degree of parallelism. If the group length and width are
set to smaller values, more computing units and greater IO overhead will be produced.
When the computing resources provided by the cluster are insufficient for there to be a
high degree of parallelism, the group height can be set to equal the number of divided
files in the z-direction, which is degraded to a 2D grid-based group method, and data
communication among the computing units can be avoided.

A geological analysis application was introduced to prove the applicability of our
method, and a similar result was obtained. Our method is an optimization for the storage
layer on Hadoop. Neighborhood-based parallel analyses such as resampling and spatial
filtering perform a similar data read procedure. Therefore, the data locality problem in



Sensors 2021, 21, 8132 16 of 18

different applications can be alleviated through our optimized replica placement policy.
Since our method distributes the 3D raster data evenly in the cluster, the load balance
problem may occur when a hot region exists in the analysis jobs. Under these circumstances,
further optimizations for data storage and caches according to the hot region are required.

Based on our optimized replica placement, different parallel analysis methods can be
designed. The experiments showed an example of typical parallel 3D raster data analysis
through Apache Spark. First, the optimized replica placement policy was implemented
on Hadoop, which allowed the raster data to be placed as the optimized group-based
method. Next, parallel task partitioning for the optimized storage was implemented. In
Apache Spark, the task partitioning was realized through the implementation of Hadoop’s
InputFormat class. Then, traditional non-distributed 3D geospatial analysis methods were
applied in each task simultaneously. Finally, the results of the tasks were collected, which
could be transferred to the client to perform further analysis through traditional 3D raster
analysis software, or used for additional parallel analysis. In addition to the improvement
of data locality, the parallel analyses can be simplified by our parallel task partitioning
model, which allows the non-distributed geospatial raster analysis method to be easily
migrated to each task and run concurrently.

5. Conclusions

Geospatial 3D raster data have been widely used for continuous 3D objects and 2D
satellite images with spectral and temporal dimensions. The spatial information of the
uploaded files is not considered in the replica placement of Hadoop, and this results in
high communication overhead and significantly influences the cluster performance. In this
study, we proposed a novel group-based replica placement policy for the batch processing
of geospatial 3D raster data, intending to reduce the network overhead caused by files of
adjacent regions randomly placed on multiple nodes.

The geospatial 3D raster files were first arranged into overlapped groups, in which
the divided files were placed in the same datanode. The storage locations of the replicas
were further optimized to reduce the communication between groups through an overlap.
The experimental results show that our algorithm has little effect on the writing efficiency
and reliability of the HDFS; the storage and computing load balances are well maintained;
and network overhead during data acquisition is significantly reduced. Comparative
experiments of different group sizes were provided to better adjust the degree of parallelism
according to the actual situation.

In a future study, we plan to further investigate the job scheduling method for different
types of geospatial data analysis based on the current method. Moreover, the study of
a data placement strategy for unevenly distributed vector data and complex data access
schemes would be of interest.

Author Contributions: Conceptualization, Z.L. and X.L.; methodology, Z.L.; software, Z.L., W.H.
and Y.Z.; validation D.L.; formal analysis, Z.L. and Y.Z.; investigation, Z.L. and X.L.; resources, X.L.
and W.H.; data curation, X.L. and W.H.; writing—original draft preparation, Z.L.; writing—review
and editing, D.L., Y.Z. and M.S.; visualization, Z.L. and M.S.; supervision, X.L.; project administration,
X.L. and W.H.; funding acquisition X.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Key Research and Development Program of China,
grant number 2019YFC0605102.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2021, 21, 8132 17 of 18

References
1. Zlatanova, S.; Nourian, P.; Goncalves, R.; Vo, A.V. Towards 3D Raster GIS: On Developing a Raster Engine for Spatial DBMS. In

Proceedings of the ISPRS WG IV/2 Workshop, Novosibirsk, Russia, 21 April 2016; pp. 45–60.
2. Nguyen-Gia, T.-A.; Dao, M.-S.; Mai-Van, C. A Comparative Survey of 3D GIS Models. In Proceedings of the 2017 4th NAFOSTED

Conference on Information and Computer Science, Hanoi, Vietnam, 24–25 November 2017; pp. 126–131.
3. Ghamisi, P.; Rasti, B.; Yokoya, N.; Wang, Q.; Hofle, B.; Bruzzone, L.; Bovolo, F.; Chi, M.; Anders, K.; Gloaguen, R.; et al. Multisource

and Multitemporal Data Fusion in Remote Sensing: A Comprehensive Review of the State of the Art. IEEE Geosci. Remote Sens.
Mag. 2019, 7, 6–39. [CrossRef]

4. Chi, M.; Plaza, A.; Benediktsson, J.A.; Sun, Z.; Shen, J.; Zhu, Y. Big Data for Remote Sensing: Challenges and Opportunities. Proc.
IEEE 2016, 104, 2207–2219. [CrossRef]

5. Zhao, L.; Chen, L.; Ranjan, R.; Choo, K.-K.R.; He, J. Geographical Information System Parallelization for Spatial Big Data
Processing: A Review. Cluster Comput. 2016, 19, 139–152. [CrossRef]

6. Li, S.; Dragicevic, S.; Castro, F.A.; Sester, M.; Winter, S.; Coltekin, A.; Pettit, C.; Jiang, B.; Haworth, J.; Stein, A.; et al. Geospatial
Big Data Handling Theory and Methods: A Review and Research Challenges. ISPRS J. Photogram 2016, 115, 119–133. [CrossRef]

7. Apache. Apache Hadoop. Available online: http://hadoop.apache.org (accessed on 20 September 2021).
8. Guan, Q. PRPL: An Open-Source General-Purpose Parallel Raster Processing Programming Library. SIGSPATIAL Spec. 2009, 1,

57–62. [CrossRef]
9. Qin, C.-Z.; Zhan, L.-J.; Zhu, A.-X.; Zhou, C.-H. A Strategy for Raster-Based Geocomputation under Different Parallel Computing

Platforms. Int. J. Geogr. Inf. Sci. 2014, 28, 2127–2144. [CrossRef]
10. Huang, W.; Meng, L.; Zhang, D.; Zhang, W. In-Memory Parallel Processing of Massive Remotely Sensed Data Using an Apache

Spark on Hadoop YARN Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2017, 10, 3–19. [CrossRef]
11. Rathore, M.M.U.; Paul, A.; Ahmad, A.; Chen, B.; Huang, B.; Ji, W. Real-Time Big Data Analytical Architecture for Remote Sensing

Application. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2015, 8, 4610–4621. [CrossRef]
12. Yang, M.; Song, W.; Mei, H. Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm.

Sensors 2017, 17, 1693. [CrossRef]
13. Fan, J.; Yan, J.; Ma, Y.; Wang, L. Big Data Integration in Remote Sensing across a Distributed Metadata-Based Spatial Infrastructure.

Remote Sens. 2018, 10, 7. [CrossRef]
14. Zhang, J.; Ye, Z.; Zheng, K. A Parallel Computing Approach to Spatial Neighboring Analysis of Large Amounts of Terrain Data

Using Spark. Sensors 2021, 21, 365. [CrossRef] [PubMed]
15. Eldawy, A.; Mokbel, M.F.; Alharthi, S.; Alzaidy, A.; Tarek, K.; Ghani, S. SHAHED: A MapReduce-Based System for Querying

and Visualizing Spatio-Temporal Satellite Data. In Proceedings of the 2015 IEEE 31st ICDE, Seoul, Korea, 13–17 April 2015;
pp. 1585–1596.

16. Li, Z.; Hu, F.; Schnase, J.L.; Duffy, D.Q.; Lee, T.; Bowen, M.K.; Yang, C. A Spatiotemporal Indexing Approach for Efficient
Processing of Big Array-Based Climate Data with MapReduce. Int. J. Geogr. Inf. Sci. 2016, 31, 17–35. [CrossRef]

17. Hu, F.; Yang, C.; Jiang, Y.; Li, Y.; Song, W.; Duffy, D.Q.; Schnase, J.L.; Lee, T. A Hierarchical Indexing Strategy for Optimizing
Apache Spark with HDFS to Efficiently Query Big Geospatial Raster Data. Int. J. Digit. Earth 2020, 13, 410–428. [CrossRef]

18. Kune, R.; Konugurthi, P.K.; Agarwal, A.; Chillarige, R.R.; Buyya, R. XHAMI—Extended HDFS and MapReduce Interface for Big
Data Image Processing Applications in Cloud Computing Environments. Softw. Pract. Exper. 2017, 47, 455–472. [CrossRef]

19. Aji, A.; Wang, F.; Vo, H.; Lee, R.; Liu, Q.; Zhang, X.; Saltz, J. Hadoop GIS: A High Performance Spatial Data Warehousing System
over Mapreduce. Proc. VLDB Endow. 2013, 6, 1009–1020. [CrossRef]

20. Eldawy, A.; Mokbel, M.F. SpatialHadoop: A MapReduce Framework for Spatial Data. In Proceedings of the 2015 IEEE 31st ICDE,
Seoul, Korea, 13–17 April 2015; pp. 1352–1363.

21. Alarabi, L.; Mokbel, M.F.; Musleh, M. ST-Hadoop: A MapReduce Framework for Spatio-Temporal Data. Geoinformatica 2018, 22,
785–813. [CrossRef]

22. Wang, S.; Zhong, Y.; Wang, E. An Integrated GIS Platform Architecture for Spatiotemporal Big Data. Future Gener. Comput. Syst.
2019, 94, 160–172. [CrossRef]

23. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J.; et al.
Apache Spark: A Unified Engine for Big Data Processing. Commun. ACM 2016, 59, 56–65. [CrossRef]

24. Yu, J.; Zhang, Z.; Sarwat, M. Spatial Data Management in Apache Spark: The GeoSpark Perspective and Beyond. Geoinformatica
2019, 23, 37–78. [CrossRef]

25. Huang, Z.; Chen, Y.; Wan, L.; Peng, X. GeoSpark SQL: An Effective Framework Enabling Spatial Queries on Spark. ISPRS Int.
Geo-Inf. 2017, 6, 285. [CrossRef]

26. Li, Z.; Huang, Q.; Carbone, G.J.; Hu, F. A High Performance Query Analytical Framework for Supporting Data-Intensive Climate
Studies. Comput. Environ. Urban Syst. 2017, 62, 210–221. [CrossRef]

27. Liang, Y.; Vo, H.; Kong, J.; Wang, F. ISPEED: An Efficient In-Memory Based Spatial Query System for Large-Scale 3D Data
with Complex Structures. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, Redondo Beach, CA, USA, 7–10 November 2017; ACM: New York, NY, USA, 2017; pp. 1–10.

28. Zhou, L.; Li, Q.; Tu, W. An Efficient Access Model of Massive Spatiotemporal Vehicle Trajectory Data in Smart City. IEEE Access
2020, 8, 52452–52465. [CrossRef]

http://doi.org/10.1109/MGRS.2018.2890023
http://doi.org/10.1109/JPROC.2016.2598228
http://doi.org/10.1007/s10586-015-0512-2
http://doi.org/10.1016/j.isprsjprs.2015.10.012
http://hadoop.apache.org
http://doi.org/10.1145/1517463.1517471
http://doi.org/10.1080/13658816.2014.911300
http://doi.org/10.1109/JSTARS.2016.2547020
http://doi.org/10.1109/JSTARS.2015.2424683
http://doi.org/10.3390/s17071693
http://doi.org/10.3390/rs10010007
http://doi.org/10.3390/s21020365
http://www.ncbi.nlm.nih.gov/pubmed/33430375
http://doi.org/10.1080/13658816.2015.1131830
http://doi.org/10.1080/17538947.2018.1523957
http://doi.org/10.1002/spe.2425
http://doi.org/10.14778/2536222.2536227
http://doi.org/10.1007/s10707-018-0325-6
http://doi.org/10.1016/j.future.2018.10.034
http://doi.org/10.1145/2934664
http://doi.org/10.1007/s10707-018-0330-9
http://doi.org/10.3390/ijgi6090285
http://doi.org/10.1016/j.compenvurbsys.2016.12.003
http://doi.org/10.1109/ACCESS.2020.2979597


Sensors 2021, 21, 8132 18 of 18

29. Malik, S.U.R.; Khan, S.U.; Ewen, S.J.; Tziritas, N.; Kolodziej, J.; Zomaya, A.Y.; Madani, S.A.; Min-Allah, N.; Wang, L.;
Xu, C.-Z.; et al. Performance Analysis of Data Intensive Cloud Systems Based on Data Management and Replication: A Survey.
Distrib. Parallel Dat. 2016, 34, 179–215. [CrossRef]

30. Zhao, Y.; Wang, W.; Meng, D.; Yang, X.; Zhang, S.; Li, J.; Guan, G. A Data Locality Optimization Algorithm for Large-Scale Data
Processing in Hadoop. Proceedings of 2012 IEEE Symposium on Computers and Communications (ISCC), Cappadocia, Turkey,
1–4 July 2012; pp. 000655–000661.

31. Eltabakh, M.Y.; Tian, Y.; Özcan, F.; Gemulla, R.; Krettek, A.; McPherson, J. CoHadoop: Flexible Data Placement and Its
Exploitation in Hadoop. In Proceedings of the 37th International Conference on Very Large Data Bases (PVLDB), Seattle, WA, USA,
29 August–3 September 2011; pp. 575–585.

32. Fahmy, M.M.; Elghandour, I.; Nagi, M. CoS-HDFS: Co-Locating Geo-Distributed Spatial Data in Hadoop Distributed File System.
In Proceedings of the 2016 IEEE/ACM 3rd International Conference on Big Data Computing Applications and Technologies
(BDCAT), Shanghai, China, 6–9 December 2016; pp. 123–132.

http://doi.org/10.1007/s10619-015-7173-2

	Introduction 
	Materials and Methods 
	Group Method of 3D Raster Data 
	Column-Based Group Method for 2D Raster Data 
	Grid-Based Group Method for 2D Raster Data 
	Extension to 3D Raster Data 

	Parallel Analysis for Group Method 
	Implementation of Group-Based Replica Placement Policy 

	Results 
	Experimental Setup 
	Experiment Environment 
	Description of Parallel Analysis of Comparative Methods 

	Impact on Default Features of HDFS 
	Evaluation of Network IO Performance 
	Effect of Group Size 
	Case Study: Geological 3D Raster Data Analysis 

	Discussion 
	Conclusions 
	References

