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Abstract: Integrated circuit (IC) piracy and overproduction are serious issues that threaten the
security and integrity of a system. Logic locking is a type of hardware obfuscation technique where
additional key gates are inserted into the circuit. Only the correct key can unlock the functionality of
that circuit; otherwise, the system produces the wrong output. In an effort to hinder these threats on
ICs, we have developed a probability-based logic-locking technique to protect the design of a circuit.
Our proposed technique, called “ProbLock”, can be applied to both combinational and sequential
circuits through a critical selection process. We used a filtering process to select the best location
of key gates based on various constraints. Each step in the filtering process generates a subset of
nodes for each constraint. We also analyzed the correlation between each constraint and adjusted the
strength of the constraints before inserting key gates. We tested our algorithm on 40 benchmarks
from the ISCAS ’85 and ISCAS ’89 suites. We evaluated ProbLock against a SAT attack and measured
how long the attack took to successfully generate a key value. The SAT attack took longer for most
benchmarks using ProbLock which proves viable security in hardware obfuscation.

Keywords: hardware security; logic locking; hardware obfuscation

1. Introduction

The semiconductor industry is constantly changing from the production of ICs to
the complexity of their design. The industry has moved to a fabless model where most
of the fabrication for a chip is outsourced to a less secure and less trusted environment.
These environments include testing and fabrication facilities that are necessary for the
pipeline. While this model improves production costs and development, it has also led to
the consequence of piracy, overproduction, and cloning. The chips are also vulnerable to
various attacks [1] that attempt to extract the design of the chip or other information from
the device. Due to these security issues, researchers have developed techniques to counter
these attacks. One technique to improve the security of ICs is hardware obfuscation [2].
Hardware obfuscation is a technique that modifies the structure or description of a circuit in
order to make it harder for an attacker to reverse engineer the hardware. Some obfuscation
techniques modify the gate level structure of the circuit, while other techniques add gates
to protect the logic of the circuit. Logic locking is a technique that inserts additional gates
and logic components into a circuit, which then locks the circuit and produces an incorrect
output unless the proper key is provided to the circuit. The IC will be considered locked or
functionally incorrect until the correct key unlocks the additional gates. Using XOR and
XNOR components as key gates, the proper key value will make the gate act as a buffer and
have no effect on the rest of the logic. If the wrong key value is provided, the key gate will
produce a wrong value and make the circuit nonfunctional. Figure 1 shows an overview
of the logic locking technique. The original circuit’s netlist improves with additional key
gates and a key-value to unlock the circuit. Figure 2 shows an example of logic locking. A
key gate is added between logic gates with one input connected to the key bit value. The
addition of these key gates adds a small overhead to the overall circuit while increasing the
security of the device.
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Figure 1. Logic Locking Overview.
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Figure 2. An example of logic locking circuit.

Various techniques have been proposed by other researchers to protect the integrity
and privacy of integrated circuits. Logic cone analysis was used to develop a logic locking
technique in 2015 [3]. This technique used fan-in and fan-out metrics to insert key gates
into a netlist. Logic cone analysis was vulnerable to SAT attacks that were developed over
the next few years. SAT attacks probed the input and output patterns of the system to
determine the key to unlock a circuit. SAT attacks have proven to be very effective against
logic locking techniques. Strong logic locking (SLL) was another technique developed
that analyzed the relationship between inserted key gates in the form of a graph [4,5].
SLL was also vulnerable to SAT-based attacks. A new SAT resistant technique called
SARLock was later implemented with the main purpose of thwarting SAT attacks [6]. The
method made SAT attacks exponential in complexity and therefore ineffective. In 2019,
Tehranipoor et al. [7] explored the potential of employing a state-of-the-art deep RNN that
allows an attacker to derive the correct values of the key inputs (secret key) from logic
encryption hardware obfuscation techniques.

All of the logic-locking techniques discussed are effective in improving security for
an IC; however, they are still vulnerable to sensitization exploits and strong Oracle-based
attacks.

To overcome the aforementioned issues, in this paper we propose a very new logic-
locking technique that we call “ProbLock”. ProbLock is a probability-based technique
that inserts key gates into a circuit netlist where only the correct key value will unlock the
circuit to narrows down a set of best nodes to insert key gates. We used four constraints
to fit. In this paper, we propose this technique as a form of logic locking where each step
of the process narrows the best nodes and chooses the location of the inserted key gates.
A probability constraint is the main metric that we used to lock the circuits. We tested
our technique by obfuscating a set of circuit benchmarks from ISCAS ’85 and ISCAS ’89
suites [8,9]. These include a variety of combinations and sequential circuits. We analyzed
the relationship and correlation between constraints in our technique and found some
relationships that support the strength of our technique.
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Specifically, this paper makes the following contributions:

• We present a probability-based logic-locking (ProbLock) technique to lock a circuit
with low overhead using a filtering process.

• We implemented a design where the strength of the filtering process can be adjusted
for different situations.

• We analyzed the correlation between constraints and showed how the relationship
between constraints can strengthen the security process.

• We obfuscated 40 benchmarks from ISCAS ’85 and ISCAS ’89 using ProbLock.

Related Works

Many techniques of logic locking have already been proposed and tested against
certain attacks and on circuit benchmarks. One of the earliest logic-locking techniques
inserted key gates randomly into the circuit. This provided some security, but many attacks
were developed to break this method. Another obfuscation technique was developed using
logic-cone analysis in [3]. Sections of a circuit can be grouped into logic cones by calculating
the fan-in and fan-out values of a gate. Inserting key gates at certain logic cone areas will
increase the security of the system. Logic-cone analysis is good for countering logic-cone
attacks. Certain attacks will exploit these weak logic cones and try to discover the key to
unlock the circuit. Logic-cone analysis is vulnerable to other types of attacks such as SAT
and functional attacks.

Strong logic locking (SLL) is another obfuscation technique, but it is also vulnerable
to SAT attacks [4]. SLL is based on interference graphs that show how inserted key gates
interfere with each other. The interference graph shows the relationship between an
inserted key gate and its surrounding key gates and wires. The interference graph shows
if key gates are on a cascading path or parallel path, or if they do not interfere with each
other at all. The interference graph along with other information makes it harder for an
attacker to unlock the circuit even with SAT attack models. SLL was initially evaluated
with a hill-climbing attack where the bits of an initial random key guess is toggled to
minimize hamming distance between circuit outputs and test responses. If a key produces
a hamming distance of 0, the attack is considered successful. SLL was compared against
random logic locking and a fault-based technique. It was shown that the hill-climbing attack
was ineffective at determining the correct key value for all tested ISCAS ’85 benchmarks
while also being able to break some of the random locked circuits.

More recent techniques have been developed to counter SAT attacks and other related
schemes. The obfuscation technique needs to be strong enough to resist certain attacks;
otherwise the integrity of the IC would be compromised. The goal of an adversary during
an attack is to determine the secret key to unlock the circuit or gain other important
information from the system. SARLock was developed to make the SAT attack model
inefficient [6]. SARLock employs a small overhead strategy that exponentially increases
the number of distinguishing input patterns (DIPs) needed to unlock the circuit. SARLock
is very strong against SAT attacks since it uses the basis of the attack model to determine
where to insert key gates. The input pattern and corresponding key values can be analyzed
during the insertion process of the obfuscation technique. SarLock was evaluated using a
SAT attack and calculating the number of DIPs needed to determine the correct key value
to unlock a locked circuit. A subset of the ISCAS ’85 benchmarks were encrypted with
SarLock and SLL and then evaluated with a SAT attack. SarLock proved that it was more
effective against SAT attacks because it took a larger number of DIPs and more time to
break the circuit. The SAT algorithm would run for hours to break a SarLock circuit, but it
took less than a second for all SLL circuits.

In 2017, TTLock was proposed, which resisted all known attacks including SAT and
sensitization attacks [10]. TTLock would invert the response to a logic cone to protect
the input pattern. The logic cone would be restored only if the correct key is provided.
The small change to the functionality of the circuit would maximize the efforts needed
for the SAT attacks. The generalized form of stripping away the functionality of logic
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cones and hiding it from attackers is known as stripped-functionality logic locking (SFLL).
However, the design of the TTLock did not account for the cost of tamper-proof memory,
which could lead to high overhead in the re-synthesis process [11,12]. Another group
automated the general process of TTLock to identify the parts of the design that needed
to be modified in an efficient way. They used ATPG tools to develop a scalable and more
efficient way of protecting these patterns from attackers. Overall, a 35% improvement in
overhead was achieved with the automated process. Later, a modified version of SFLL
was proposed based on the hamming distance of the key. This was referred to as SFLL-
hd [13]. The hamming distance metric was used to determine which pattern to modify in
the SFLL scheme. Depending on the type of attack, the hamming distance can be adjusted
accordingly. In 2019, the idea of exploring high-level synthesis (HLS) with logic locking
was proposed with SFLL-HLS [14]. SFLL-HLS was proposed to improve the system-wide
security of an IC. The design resulted in faster validation of design and higher levels of
abstraction. The HLS implementation in this technique was used to identify the functional
units and logic cones to be operated on with respect to SFLL. They observed low overhead
and power results from their analysis. The strength of SFLL was evaluated in [13] where a
SAT-based attack was developed against SFLL-HLS and other SFLL techniques. Similar
to most logic locking techniques, SFLL is vulnerable to strong SAT attacks. The group
used synthesized RTL circuits, which were smaller than public benchmark suits from
ISCAS ’85 and ISCAS ’89. The SAT attack was able to determine the correct key within
seconds for all of these benchmarks. Most recently in 2020, LoPher was developed as
another SAT-resistant obfuscation technique [15]. LoPher uses a block cipher to produce
the same behavior as a logic gate. The basic component for the block cipher is configurable
and allows many logic permutations to occur, which further increases the security of the
system.

In 2020, another group presented a scalable attack-resistant obfuscation logic locking
technique (SARO) [16]. SARO splits circuit benchmarks into smaller partitions and per-
forms a systematic truth table transformation (T3) for each partition. The T3 process is
highly randomized and leads to highly altered structural and graphical representation of
the circuit netlist. The first step of SARO is to partition the circuit into a smaller area and
analyze the fan in the cone as well as the logic depth of a partition. The fans in cones that
cover more inputs are more suitable for the functional transformation of the T3 process.
Similarly, a high logic depth allows for more random transformation in structural and
graphical representation. Depending on the type of logic gate, selected inputs, and key bit
inputs, the T3 process transforms the boolean logic of a gate to add functional obfuscation
to the design. The proper key value allows gate logic to function as normally designed.
SARO was evaluated against a SAT attack, and for all encrypted ISCAS ’85 benchmarks,
the SAT attack was unable to determine the correct key value. SARO is extremely effec-
tive against power attack schemes such as a SAT attack; however, it suffers from a high
complexity and large overhead. The T3 process has an exponential amount of functions to
evaluate, and complexity can vary with number of inputs and key size. The area overhead
of SARO is 23%, which is twice as large as most presented obfuscation techniques.

Many forms and variations of SAT attacks have been created in order to show the
weaknesses of various hardware obfuscation techniques. Algorithms have been developed
for SAT competitions, and the results can be used in a variety of applications including
hardware obfuscation [17]. These tools are used to evaluate the strength of logic locking
techniques and can be used to bypass the security of integrated circuits. As a result, an
anti-SAT unit was developed as a general solution to the SAT attack [18]. The anti-SAT
block consists of a low overhead unit that can be added to any obfuscation technique to
help counter the SAT attacks. The unit requires the key length for the locked circuit to
increase as inputs to the anti-SAT block. The number of DIPs and input patterns that
an adversary needs would grow exponentially due to this change. This would make the
complexity of the SAT attack exponential instead of linear and therefore inefficient. The
recent innovation in anti-SAT has inspired us to develop a technique that will be resistant
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to various SAT attacks. We designed constraints that should minimize the effects of SAT
attack algorithm.

2. Materials and Methods

ProbLock is based on filtering out nodes in a circuit to find the best location to insert
key gates. ProbLock is a logic-locking technique where the key gates are either XOR or
XNOR gates and a key is used to unlock the circuit. We used four constraints to determine
the best candidate nodes to insert our XOR or XNOR key gate; longest path, non-critical
path, low dependent nodes, and best probability nodes. The first three constraints find
the set of nodes that lie on the longest path and non-critical path and have low-dependence
wires. The last constraint uses probability to find the set of nodes equal to the key length
where the key gates will be inserted. We chose the longest path and non-critical path
constraint in order to avoid critical timing elements and to insert key gates on parts of the
circuit that were being used the most. We chose the low-dependence wires and probability
constraint to determine locations where the output would be changed the most. This would
make it harder for an attack to generate the golden circuit using an oracle-based attack.
Once we determine the location of the key nodes, we can insert key gates into the netlist
and re-synthesize the circuit. In Equation (1), the candidate nodes are determined from a
function of all four constraints. LP is the set of nodes on the longest paths, while NCP is
the set of nodes on non-critical paths. LD represents the set of low-dependence nodes, and
P are the set of probability nodes.

selectedNodes ⊂ P ⊂ LD ⊂ NCP ⊂ LP (1)

For our obfuscation technique, we decided to lock a set of combinational and sequen-
tial circuit netlists using the ISCAS ’85 and ISCAS ’89 circuit benchmarks. We obfuscated a
total of 40 benchmarks using ProbLock. Each of the 40 benchmarks differ in size, so we
calculated an appropriate key size for each benchmark and ensured the overhead was less
than 10%. The key sizes were generated in powers of 2. We used 8-bit, 16-bit, 32-bit, 64-bit,
128-bit, and 256-bit randomly generated keys to lock differently sized benchmarks. Each
bit of a key corresponds to a key gate that adds some overhead to the circuit so that the key
size has to be less than 10% of the original circuit to maintain a low overhead. For some of
the constraints, we had to use an unrolling technique described in [19] to accurately filter
out nodes. This unrolling technique was only used in sequential circuits to simplify the
concepts of flip flops and other sequential logics. The sequential logic can be replaced by
the main stage and a k number of sub-stages depending on the number of times unrolled.
This results in a k-unrolled circuit that has the same functionality as the regular circuit.
For this process, we generated a set of unrolled ISCAS ’89 benchmarks, which we used
in some constraint algorithms. We unrolled these circuits once to prevent inaccuracies in
constraints such as the longest path and non-critical path.

The longest path constraint isolates a subset of nodes that lie on the longest paths in
a circuit netlist. The subset of nodes is different for each circuit and is a function of the
key length determined for each circuit. We represent the netlist of each benchmark as a
directed acyclic graph (DAG) and perform the longest path analysis on each DAG. Each
vertex in the DAG is a gate element from the netlist, and each vector represents the wire
connecting to the next gate element. Once the DAG is constructed for each benchmark, we
calculated the longest paths of the DAG using a depth first search (DFS) technique. We
then calculated the next longest path to generate a subset of nodes along the longest paths.
Each unique node in the longest path is added to a subset during each iteration until the
size of the subset is larger than two times the key length for that circuit. The structure of
this theory is shown in Algorithm 1, which uses the DFS in Algorithm 2. Figure 3 shows
the longest path for the circuit to be 3 since there are 3 gates between input A and output Y.
The next longest path would also be 3 from input B to output Y. All of the nodes along
both longest paths would be added to a subset of the longest path nodes. Once this subset
of longest path nodes is determined, that subset is used in the next filtering constraint.
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This subset can be adjusted to include more or fewer nodes depending on other filtering
constraints. If more nodes are needed, this constraint is the first to be modified.

We chose to use the longest path constraint in order to counter oracle-guided attacks.
Oracle-guided attacks will query the IC with various inputs and observe the output. This
gives the attacker information about how the circuit behaves, and the adversary can use
this information to determine the secret key. We want to insert key gates where most of
the logic and activity occur in the circuit. An oracle-guided attack will most likely pass
data through the longest paths of a circuit, so we want to protect these parts of the IC by
inserting key gates on the longest path.

Algorithm 1: Get Longest Path.
input :Circuit Graph and Key Length
output :List of nodes on the longest path
G← circuit graph;
V← source vertex of G;
overallNodes← [];
while true do

allPaths← DFS(G,V);
for p in allPaths do

if len(p) = maxLength then
maxPath← len(p);

end
end
for p in maxPath do

if p not in overallNodes then
overallNodes.append(p);

end
end
if len(overallNodes > keyLength * 3) then

return overallNodes;
end

end

Algorithm 2: Depth First Search.
input :Circuit Graph G and Vertex Source V
output :Longest path in Circuit
mark V as visited;
for all neighbors W of V do

if W is not visited then
DFS(G,W);

end
end

A

B

C

D

Y

Figure 3. Longest Path (in red).

The critical path constraint is similar to the longest path; however, rather than con-
sidering logic depth, we look at timing information. As shown in Figure 4, the critical
paths are shown in red. This constraint is essential, as adding gates on the critical path
could break the circuit functionality or change timing specifications. The nodes selected
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often overlapped with other constraints (e.g., the longest path was often the critical path),
though oftentimes the critical path would involve gates with large fan-out. Determining
the critical path is largely technology-specific; different PDKs will have different timing
information, which can affect which paths are critical paths. We removed any nodes that
were on the critical path from the set of nodes passed into this constraint. The resulting
subset results in nodes that are on the longest, non-critical path.

40ps

10ps
25ps

20ps

A

B

C

D

Y

Figure 4. Critical paths (in red).

The next constraint generates a subset of nodes that are connected to low-dependence
wires. The output wire of a gate is considered low dependence if the input wires to that
gate have little influence on the value of output. This idea is modified from a technique
called FANCI where suspicious wires can be detected in a Trojan-infected design [20]. A
functional truth table is created for each output wire of each gate in the circuit. The inputs
of the truth table correspond to the inputs of the gate being analyzed. For each input
column, the other columns are fixed and each row is tested with a 0 or 1 to determine the
output. This results in two functions when setting the value to either 0 or 1. The boolean
difference between these two functions results in a value between zero and one that can be
further analyzed. The value for each input gets stored as a list for each output wire. We
take the average value of the entire list to determine the dependency of an output wire.
The algorithm logic is shown in Figure 3. This analysis can determine if certain inputs are
low dependence or if they rarely affect the corresponding logic. Low-dependent wires
are weak spots in the circuit so this constraint isolates those locations in order to improve
security. We insert key gates next to low-dependence wires to fortify any weaknesses. The
filtering process passes the subset of nodes to the final constraint.

The probability constraint focuses on reducing the effectiveness of the SAT attacks. In
a SAT attack, a distinguishing input (DI) is chosen and the attacker runs through various
key values, eliminating any that yield an incorrect output. Thus, to reduce the effectiveness
of a SAT attack, the number of wrong keys produced for a given DI must decrease. This
can be done by bringing the probability of any given node being 1 closer to 0.5, since any
node that is biased towards 0 or 1 will propagate through to the output nodes, making
it easier for SAT attacks to eliminate key values. Since a two-input XOR/XNOR has an
output probability of 0.5, we can insert our key gates at nodes heavily biased towards 0 or
1 and “reset” the probability to 0.5.

The algorithm used to obtain the N nodes with the most biased probabilities is
shown in Algorithm 4. It is worth noting that while generating node probabilities for
combinational circuits is trivial, sequential circuits pose a potential problem because of
the D flip flops (DFFs). However, giving the DFF outputs a starting probability of 0.5 and
propagating running a few iterations (three is sufficient) will asymptotically approach the
correct probability for the DFF node.

An example of this is illustrated in Figure 5. Figure 5a shows a sample circuit with
each node annotated with the probability of that node being a logic 1. The output shown is
heavily biased toward logic 0, which makes it more susceptible to SAT attacks. Strategically
adding a key gate, as shown in Figure 5b, brings the output probability closer to 0.5,
reducing the effectiveness of the SAT attack.
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Algorithm 3: Find Low Dependent Wires.
input :Circuit Graph
output :List of low-dependent wires
G← circuit graph;
foreach gates in G do

foreach output wire w do
T← Truthtable(w);
L← empty list of control values;
foreach column c in T do

count← 0;
foreach row r in T do

x0 ← Value of w when input value = 0;
x1 ← Value of w when input value = 1;
if x0 != x1 then

count++;
end

end
L.append count

size(T) ;

end
avg← average(L));
if avg < 0.5 then

controlNodes.append(gate);
end

end
end

Algorithm 4: Find Biased Nodes.
input :Circuit Graph and Circuit Input Probabilities
output :List of N most biased nodes
for i← 1 to N do

DFF initial probability←0.5;
while any probability unknown do

foreach node with unknown probability do
if all node input probabilities known then

Compute node output probability;
end

end
end
Node← max(abs(circuitprobabilities− 0.5));
Add Node to output list;
Insert XOR/XNOR gate at Node in Circuit Graph;

end

0.25

0.75
0.1875

0.5

0.5

0.5

(a) Pre-Insertion Probabilities

0.25

0.75
0.375

0.5

0.5

0.5

0.5K

(b) Post-insertion probabilities
Figure 5. Key gate insertion probabilities.
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To obfuscate the benchmarks, we created a python script that implements this algo-
rithm. The script takes in a benchmark netlist in Verilog format and returns an obfuscated
netlist in the same format. The obfuscated netlist included the key gates inserted as well
as the key defined to unlock the circuit. We created a function to parse each netlist for
information. The information was organized into lists of inputs, outputs, and gate types.
We used this information to determine the key size relative to the number of gates in a
netlist. We also created functions for each constraint in our algorithm. A set of overall
nodes was passed through each function and then narrowed down to a set of best nodes for
key gate insertion. Another function was created to insert key gates from a data structure
into a new netlist. We specified the key inputs, key gates, and the key value in the header
of the new netlist for development purposes. Throughout the development process, we
ran tests to verify the intention of our script and to make sure each new netlist was correct.

We used Synopsys Design Compiler to synthesize and view the netlists before and
after obfuscation [21]. The Synopsys tool allowed us to see the gate-level representation of
each benchmark during the analysis process. We were able to see the location of the logic
components as well as the inserted key gate after the obfuscation process occurred. We
also used the Design Compiler for critical path analysis in our second constraint. The tool
allowed for timing analysis between different logic components of the netlist. We used
this to calculate the critical paths for our constraint and removed any nodes that lie on this
critical path. We integrated the results from Synopsys by passing them through a text file
that gets parsed in the main script.

3. Experimental Results

During the development process of ProbLock, we analyzed the correlation and rela-
tionship between constraints. We documented this relationship to show how each con-
straint impacted the overall strength of the technique. We chose two constraints based on
path elements and two constraints based on nodes and wires. Due to this design, we were
able to analyze the correlation between constraints and adjust the strength of the filtering
process based on this analysis. Overall, we wanted the correlation between constraints to
be large enough to remove any nodes that did not belong in both sets. This would allow
the filtering process from each constraint to generate a subset of nodes each time until
only the best candidate nodes remained to be inserted. The strength of the correlation
varies between benchmarks because of the shape and functionality of each circuit. Each
subsequent constraint filtered out a set of nodes based on the relationship between the
constraint and the overall set of nodes. Tables 1–4 show the experimental correlations for
ISCAS ’85 and ’89 benchmarks. We only show some of the results in the table as all 40
benchmarks are not included. The longest path (LP) length and critical path (CP) count are
based on the path constraints. The rest of the categories including non-critical path (NCP),
low depending wires (LD), and biased probabilities (Prob) are based on nodes.

Table 1. ISCAS ’85 Node Count.

ISCAS 85 Key Size LP Length CP Count

c432 16 18 7
c499 16 12 32
c1355 32 25 32
c1908 64 39 25
c2670 64 31 100
c3540 128 42 22
c5315 128 47 100
c7552 256 35 100
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Table 2. ISCAS ’85 Constraint Correlation.

ISCAS 85 Total Nodes LP Subset NCP Subset LD Subset Prob Subset

c432 160 88 60 33 16
c499 202 186 104 99 16
c1355 546 485 253 53 32
c1908 880 205 145 129 64
c2670 1269 217 200 75 64
c3540 1669 260 173 151 128
c5315 2307 411 226 180 128
c7552 3513 532 341 278 256

Table 3. ISCAS ’89 Node Count.

ISCAS 89 Key Size LP Length CP Count

s298 8 10 6
s344 8 21 11
s382 8 10 6
s386 8 12 7
s400 8 10 6
s444 8 12 6
s526 8 10 6
s641 8 75 24
s713 8 75 23
s838 16 18 1
s1238a 32 23 14
s1488 32 18 19
s5378a 64 15 46
s9234a 128 19 37
s13207a 256 28 100
s15850a 256 22 100
s38584 256 15 100

Table 4. ISCAS ’89 Constraint Correlation.

ISCAS 89 Total Nodes LP Subset NCP subset LD Subset Prob Subset

s298 75 26 26 18 8
s344 101 21 19 19 8
s382 99 29 29 21 8
s386 118 49 32 24 8
s400 106 30 30 22 8
s444 119 38 38 30 8
s526 141 26 26 18 8
s641 107 80 53 51 8
s713 139 84 61 56 8
s838 288 45 29 26 16
s1238a 428 132 76 64 32
s1488 550 89 60 48 32
s5378a 1004 134 96 92 64
s9234a 2027 264 261 213 128
s13207a 2573 573 521 482 256
s15850a 3448 553 544 506 256
s38584 11,448 717 716 571 256

For each constraint, a smaller set of nodes is generated until the final set is determined,
which corresponds to the location of inserted key gates. In the ISCAS ’85 benchmark suite,
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the correlation between nodes on the longest path and the original set of nodes was 36%
on average. Between nodes on the non-critical path and nodes on the longest path, the
correlation was about 63% on average. The correlation between low-dependence nodes
and nodes on the non-critical path was about 73% and the final correlation between biased
probabilities and low-dependence nodes was about 65%. For the ISCAS ’89 benchmark
suite, the correlation between the longest path and overall nodes is 27%. The correlation
between the critical path and the longest path is 84%. The correlation between low-
dependence nodes and the non-critical path is 85%, and the final correlation between
biased probabilities and low-dependence nodes is 45%. The numbers that we analyzed
were ideal for the filtering process. Enough nodes were removed with each subset until the
final set of best candidates was discovered. For the final biased probabilities constraint,
the final set of nodes was equal to the size of the key. For the other constraints, we
adjusted the filtering threshold accordingly. Depending on the situation, the strength of the
constraints can be adjusted, which allows flexibility in our algorithm. After re-synthesizing
the obfuscated netlists, we used Synopsys to verify the behavior of the locked circuits [21].
The critical path of the netlists remained the same, and the timing analysis remained
consistent for all benchmarks. The non-critical path constraint was important to ensure
that the timing components of the circuit were not affected. We also used Synopsys to
verify that the overhead of netlist was no greater than 10%. Most of the circuits had an
overhead around 7%, but the larger benchmarks had less than 5% overhead due to 256-bit
key being the largest key size for benchmarks with thousands of gates.

We tested ProbLock against other encryption techniques from similar logic-locking
papers. We measured the decryption time against a SAT attack algorithm and compared the
metric to evaluate security effectiveness. The SAT algorithm from [22] performs a basic SAT
attack on locked logic circuits. The attack is successful if the correct key can be determined
in an appropriate amount of time. If a key value can be determined, the length of the attack
is measured for analysis. The longer decryption time correlates to stronger security for the
encryption technique. The first two techniques we tested were toc13xor and dac12 [22],
which are standard XOR/XNOR insertion techniques based on maximizing hamming
distance and minimizing the effectiveness of a fault analysis attack. The set of benchmarks
available included ISCAS ’85 combinational benchmarks. The next technique we included
in the study was a logic cone key gate insertion technique (LCSB) [12]. Finally, we tested
the effectiveness of ProbLock by comparing the decryption time from a SAT attack for
all four encryption techniques. Toc13xor and dac12 were provided with an encryption
script so we could generate a set of locked circuits with different key values. The LCSB
algorithm was implemented separately since it was an easy algorithm to use. For each
benchmark, ten locked circuits were generated for each encryption technique and evaluated
using a SAT solver. The average encryption times were recorded in Tables 5 and 6. The
results show that ProbLock is more secure than the other techniques for the majority of
the combinational benchmarks. The overhead is also comparable for all circuits evaluated.
Each technique that we used to lock a circuit, including ProbLock, had less than 10% area
overhead. We also encrypted the ISCAS ’89 benchmarks with ProbLock and evaluated the
circuits against the same SAT attack. Since we did not have access to ISCAS ’89 netlists
using other obfuscation techniques, we could not properly compare and analyze our results
with an appropriate baseline.
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Table 5. ISCAS ’85 SAT Attack Results.

ISCAS 85 Encryption Decryption Time (s) Encryption Decryption Time (s)

c17 toc13xor n/a dac12 n/a
c432 toc13xor 0.057259 dac12 0.051281
c499 toc13xor 0.1015 dac12 0.115953
c880a toc13xor 0.144556 dac12 0.157413
c1355 toc13xor 0.188653 dac12 0.393672
c1908 toc13xor 3.93094 dac12 0.673176
c2670 toc13xor 0.285035 dac12 unbreakable
c3540 toc13xor 1.20809 dac12 3.51718
c5315 toc13xor 0.947552 dac12 9.74864
c6288 toc13xor n/a dac12 n/a
c7552 toc13xor 1.51212 dac12 28.5707

Table 6. ISCAS ’85 SAT Attack Results.

ISCAS 85 Encryption Decryption Time (s) Encryption Decryption Time (s)

c17 LCSB 0.015533 ProbLock 0.005433
c432 LCSB 0.05647 ProbLock 0.10256
c499 LCSB 0.116477 ProbLock 0.2273
c880a LCSB 0.178235 ProbLock 1.6596
c1355 LCSB 0.05869 ProbLock unbreakable
c1908 LCSB 2.66502 ProbLock 2.0384
c2670 LCSB 2.2984 ProbLock 145.8
c3540 LCSB 1.51982 ProbLock 8.291
c5315 LCSB 4.65455 ProbLock 94.024
c6288 LCSB 6.01653 ProbLock 1.2284
c7552 LCSB 3.08791 ProbLock 674.5

4. Discussion

As shown by the results, ProbLock is a good logic-locking encryption technique. The
probability constraint presented by ProbLock is a novel metric used to develop a new logic
locking technique. For most of the combinational benchmarks, ProbLock has a longer
decryption time and better security. The experiment can be improved and ProbLock itself
can be optimized for better results. Some of the encryption benchmarks provided to us from
previous studies had missing circuits so we could not compare them in the experiment. We
also only tested combinational circuits even though ProbLock could be used on sequential
circuits. Since toc13xor, dac12, and LCSB did not work on sequential circuits, we did not
have enough data to compare against ProbLock. This will be a focus point for further
exploration while we improve ProbLock. The area overhead of ProbLock also proves the
simplicity of the algorithm. Only one additional logic gate is required for each bit of the key
to lock a circuit. This allows for a very small overhead while gaining maximum security
with the obfuscation technique. A low overhead also allows for future combination of other
methods along with ProbLock. For example, encryption-independent anti-SAT blocks
can be integrated with ProbLock to improve security while continuing to have a low area
overhead [18].

Some of the limitations of ProbLock include the high complexity and lack of exper-
imental data needed for comparison. For each iteration of adding a new key gate, the
probability metric of each gate changes. The algorithm for the probability constraint is
performed k times for each bit of the key. This adds a large amount of computation time
that can be improved and optimized in later efforts. Most of the algorithms used to sup-
port ProbLock can also be optimized for a lower algorithmic complexity. Another way
to improve this study is to use the data set used by other similar studies. The ISCAS ’85
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dataset is a publicly available combinational circuit benchmark that has been used by many
studies in the field of hardware security. The ISCAS ’89 suite is a similar set of sequential
benchmarks but it is harder to work with due to the sequential logic. We did not do a
conclusive study on the sequential circuits because there were not enough prior data to do
a comparison.

Compared to other logic-locking studies, ProbLock uses the same approach and
evaluation methods. We encrypted a set of publicly available benchmarks using our
technique and evaluated the strength of the obfuscation using an attack algorithm to
determine the correct key value needed to unlock the circuit. Similar to other studies, we
used ISCAS ’85 and ISCAS ’89 as our benchmark data. Other studies used less available
benchmarks along with the combination suite of ISCAS ’85, which is why our results are
only valid for ISCAS ’85 and not ISCAS ’89. Other studies also rarely evaluated their
technique against a SAT solver. SAT solvers are extremely powerful and often can break
simple hardware obfuscation techniques. For studies that are effective against SAT attacks
such as [16], higher overhead and complexity are needed to make the encryption stronger.
For obfuscation techniques that employ the same level of overhead and complexity such as
SLL and LCSB [4,12], ProbLock had better results against a stronger attack.

5. Conclusions and Future Works

In this paper, we propose the ProbLock method that is a probability-based logic
locking technique and uses a filtering process to determine the location of inserted key
gates. ProbLock uses four constraints to narrow the set of nodes in a netlist to be used for
insertion. We obfuscated 40 different sequential and combinational benchmarks from the
ISCAS ’85 and ISCAS ’89 suite. After obfuscating the circuits, we analyzed the correlation
between constraints and implemented the capability to adjust these constraints depending
on the situation. In the future, we intend to test the obfuscated benchmarks against
known attacks and compare them to other logic locking techniques. We will implement
logic locking attacks such as SAT attacks and sensitization attacks. Each attack will be
executed against benchmarks obfuscated with ProbLock. We will then run the same attacks
on locking schemes such as SLL [4], logic cone locking [3], and SARLock [6]. We will
evaluate how well each benchmark performs by measuring the overhead of the obfuscation
technique, complexity of the technique, and execution time of the attack. After running
each attack scheme, we can compare and evaluate the true strength of ProbLock compared
to other published logic-locking techniques.

We also plan on strengthening ProbLock against SAT attacks by integrating SAT-
resistant logic near the key gate locations. This would increase overhead, but we would
also try to optimize this in our experiment. After an initial analysis of integrating an
anti-SAT block into ProbLock, we determined that we can reuse some of the key gates
from ProbLock into building an anti-SAT block to further thwart the effectiveness of a SAT
attack. We would use existing key gates along with additional logic to a build a module
that would exponentially increase the number of iterations in the SAT attack algorithm.
Currently, the overhead for this extension is less than 18%. We would conduct a similar
experiment with the new integration of the anti-SAT block and evaluate the execution time
against the same SAT solver.
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