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Abstract: Ultrasonic guided waves are sensitive to many different types of defects and have been
studied for defect recognition in rail. However, most fault recognition algorithms need to extract
features from the time domain, frequency domain, or time-frequency domain based on experience
or professional knowledge. This paper proposes a new method for identifying many different
types of rail defects. The segment principal components analysis (S-PCA) is developed to extract
characteristics from signals collected by sensors located at different positions. Then, the Support
Vector Machine (SVM) model is used to identify different defects depending on the features extracted.
Combining simulations and experiments of the rails with different kinds of defects are established to
verify the effectiveness of the proposed defect identification techniques, such as crack, corrosion, and
transverse crack under the shelling. There are nine channels of the excitation-reception to acquire
guided wave detection signals. The results show that the defect classification accuracy rates are
96.29% and 96.15% for combining multiple signals, such as the method of single-point excitation and
multi-point reception, or the method of multi-point excitation and reception at a single point.

Keywords: ultrasonic guided waves; principal component analysis; defect recognition; nondestruc-
tive testing; multi-signal combination

1. Introduction

As an infrastructure, the structural health of the rails has attracted much attention in
the fields of engineering and NDT. Because of the influence of the manufacturing process,
the operating situation, and the geographic conditions, rails are prone to various defects.
Based on the analysis of the operating situation, rolling contact is the main reason for the
rail surface crack. In the manufacturing process, the inclusion in the railhead can lead
to an area-shaped section within the rail, which will lead to the formation of transverse
cracks under the shelling. Moreover, the natural status, such as air pollution, natural
rainfall, and temperature change, provides favorable conditions for the generation of
corrosion. In the case of in-service rail, the expansion speed of defects will increase as
the size of the defect increases, and the expansion speed is different for different types
of defects [1–3]. Therefore, further research determining the type and size of rail defects
is necessary to ensure proper and effective maintenance and replacement. Attracted by
multi-mode and low attenuation, ultrasonic guided waves can perform nondestructive
testing of multiple types of defects in long-range rails [4–8]. For instance, the vertical
vibration mode is sensitive to cracks at the bottom of rail [9]; the SH mode can detect a
transverse defect in rail [8]; the flexural mode can measure axial stress to monitor rail
breakage [10]; Evans et al. [11] used ultrasonic guided waves to detect defects in rail
level crossings. Lee et al. [12] presented a hybrid analytical-FEM technique based on
the dispersion characteristics of the guided wave to design the sensor which can excite
specific modes and frequencies for identifying transverse cracking under the shelling.
Xing et al. [13] constructed a mathematical model composed of a modal vibration factor
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and a modal orthogonal factor to select the guided wave modal with the highest sensitivity
to detect rail cracks. According to the variation regularity of dispersion characteristics
along the longitudinal direction, a three-dimensional dispersion surface with cross-section
position information was proposed by Chen et al. [14] for damage detection in turnout
straight switch rail. Based on the Lamb wave, Deng et al. [15] proposed the method of
automatically searching defects to achieve defect location in the plate structure.

Influenced by the mode of vibration and wavelength, ultrasonic guided waves dis-
play different sensitivity to different rail defects. These will induce changes in signal
features [16–18]. Various signal processing techniques are used to extract signal features
from the time, frequency, or time-frequency domain in the field of NDT. Power Spectral
Density (PSD) is used to retrieve frequency domain information. The short-term Fourier
transformation (STFT) can reflect the characteristics of the time-frequency domain. Re-
searchers extracted various features, including maximum, peak power frequency (PPF),
median power frequency (MPF), and STFT coefficients from the original signals, and used
an SVM classifier to realize 4 kinds of corrosion defects recognition in the rail foot [19].
Jiang et al. [20] used laser ultrasound to detect defects of different depths on the rail surface.
The information generated by the wave-packet transformation, including time-frequency
coefficients, local entropy, and energy from the collected detection signals, are used for
identifying different defects. Zhou et al. [21] proposed that extracting features by data-
driven was used for recognizing defects. Furthermore, it is based on empirical analysis
that six features from different domains are extracted from the detection signal. According
to the experience, Li et al. [22] extracted six features from the time domain and frequency
domain of the guided wave detection signal to identify rail cracks. Torkamani et al. [23]
introduced an innovative time-domain damage index named Normalized Correlation Mo-
ment (NCM) for identifying laminated composites based on the guided wave. The result
was shown to have significant advantages over the signal difference coefficient (SDC),
including sensitivity to attenuation of the signal and decreased sensitivity to signal noise.
Luca et al. [24] calculated damage indexes (DI’s) to quantify the variations of the signal
amplitude caused by the induced damage and chose the DI’s for the Probability Ellipse (PE)
method to estimate the probability of the presence of the damage. All the above methods
can identify defects. However, these all require professional knowledge or experience to
extract the damage index reflecting the defect from the guided wave detection signal to
identify the defects.

This paper proposes a new method for identifying rail defects to get away from
the limitation of professional knowledge and experience. It can distinguish the defects
by combining multiple signals and extracting the features by the S-PCA. The process of
identifying rail weaknesses is shown in Figure 1. First, guided wave detection signals
are obtained through experiments and simulations of several single-excitation and single-
reception methods, as shown in the area enclosed by the round dash line. Then, the S-PCA
is used to extract features from the obtained signals, as shown in the area enclosed by the
round dotted line. Finally, the SVM classification model enables one to qualitatively and
quantitatively identify rail defects based on the extracted features. In signal processing, the
restriction of professional knowledge is avoided by dividing the guided wave detection
signal and extracting features from each segment. Compared with PCA, S-PCA can
dig more weak damage information from guided wave detection signals, which is more
conducive to defect identification.
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Figure 1. Flow chart of the segmented principal components analysis (S-PCA) for rail defect identification. The enclosed
area with the dashed line represents the process of acquiring data; the enclosed area with the dotted line represents the
process of extracting features by S-PCA, and the rest area represents the process of classification. Si is the ith sub-signal of
the origin signal. And W is the matrix of correlation coefficient obtained via PCA with the threshold θP.

2. Materials and Methods
2.1. Signal Dividing

The guided wave detection signal is a typical nonstationary time-series signal. The
existent defects may cause modal conversion and dispersion of the guided wave signal, and
the most intuitive effect is the change of the wave shape. The diverse defect information
may be retained in the local zone of the guided wave detection signal. Therefore, we
consider that extracting features from each local area realizes the feature extraction of the
detection signal. The dividing is an effective means that the feature extraction of the high-
dimensional signal is converted into the feature extraction of P low-dimensional signals.{

Tc = L
Vp

= K
f

P = floor( T
Tc
)

(1)

L is a parament in signal segmentation and is determined by both Lmin and N. The
special expression is L = N × Lmin, in which Lmin is the smallest size of the defect detected
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by the guided wave selected. N is a constant that needs to be determined experimentally.
The choice of N or L will be discussed in the following section. Tc, as shown in Equation (1),
is equal to the time interval between two adjacent dividing points. VP is the guided wave
group velocity. Figure 2 is a schematic diagram of dividing signals. The guided wave
detection signal of crack defect is divided by Tc (12.5 µs) or L (5 mm).
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Figure 2. Diagram of the signal divided by Tc (12.5 µs) or L (5 mm), in which the black boxes represent
the dividing points. Tc is the time interval between two adjacent dividing points. The vertical axis is
the signal amplitude. The horizontal axis is the sampling time of the signal.

2.2. Principal Component Analysis

PCA is a common method to reduce data dimensions. Its theme is to use low-
dimensional data to reflect the valuable information contained in high-dimensional data
based on the mapping. Gottumukka et al. [25] used a modular PCA method to improve
face recognition technology. Senneville B et al. [26] applied PCA to the motion estimation
of abdominal organs. Mazzeo et al. [27] combined wavelet transformed with PCA for the
preprocessing of bolts image.

The role of PCA for rail defect recognition is manifested in two aspects: removing
redundant information and extracting features. The specific implementation steps are
as follows:

• Construct a sample set X of the rail damage characteristics. Matrix A is composed of
guided wave detection signals of different defect types or the same type of defects with
different levels of damage. As shown in Equation (2), m is the number of detection
signals, and n is the number of features in each sample; am represents the mth detected
signal sample with n data, and am1 represents the first data in the mth sample.

A =


a1
a2
...

am


m×1

=


a11 a12
a21 a22

· · · a1n
· · · a2n

...
...

am1 am2

. . .
...

· · · amn


m×n

(2)

The set of samples X of the rail damage characteristic is obtained after centralized
processing A. The centralization is expressed in Equation (3), which A represents the
average value of each column in A.

X = A−A (3)

• Construct the damage covariance matrix C. The correlation coefficient in guided wave
detection signals can be used to characterize different defects. A covariance matrix is
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an efficient tool for characterizing the correlation coefficient. The covariance matrix C
is described by Equation (4).

C =
1

m− 1
XTX (4)

• Calculate the eigenvalues and eigenvectors of the damage covariance matrix C. Ac-
cording to the matrix decomposition method, the eigenvalues and corresponding
eigenvectors of matrix C are solved. Then the eigenvalues are ranked in descending
order, λ1 ≥ λ2 ≥ . . . ≥ λn, and the corresponding eigenvectors in sequential order,
x1 x2 . . . xn. Among them, each eigenvector represents a principal component.

• Determine the number of principal components K. The information percentage of a
principal component is an important reference when the number of principal compo-
nents is determined. The ratio of one eigenvalue to the sum of all eigenvalues is the
information percentage of this principal component, as shown in Equation (5).

θi =
λi

∑n
i=1 λi

(5)

Set a threshold θ (0 < θ < 1) and accumulate the information percentages of the prin-
cipal components sorted in sequence. When the cumulative sum of the information
percentages of the Kth principal component is greater than or equal to θ, there is
selected for the K principal components.

θ ≥ ∑K
i=1 λi

∑n
i=1 λi

(6)

• Extract features. The K principal components extracted from the covariance matrix
C are gathered to form a local weight matrix W. The process of feature extraction is
shown as Equation (7), where X’ is a feature set extracted.

X′ = XW (7)

2.3. Build S-PCA

Figure 3 is a schematic diagram of the S-PCA. There are two steps based on the S-PCA
to extract features. The first step is to divide. According to the time interval Tc, the detection
signal S is divided into P segments of equal length. Si represents the ith signal segment
(1 ≤ i ≤ P). The second step is feature extraction in two sub-steps. The first sub-step is
extracting features from each segment by PCA with a threshold θP (0 < θP < 1) to form a
feature set named F. The second sub-step is to get the final features from F by PCA with a
threshold θ (0 < θ < 1).

2.4. SVM Classification Model

SVM realizes classification by searching for the optimal hyperplane determined by a
certain number of support vectors. It is often used for solving linearly separable problems.
For nonlinear separable problems, the introduction of the kernel function maps the sample
data to a high-dimensional space, making it a linearly separable problem, which is then
solved by linear classification. The Gaussian radial basis function (RBF) has excellent
characteristics of nonlinearity and continuity, so it is often used as the kernel function of
SVM. Equation (8) is the expression of RBF, in which g is the kernel size of the RBF, and X
and Xi are feature vectors with the same dimension.

Kernel(X, Xi) = exp

(
‖X−Xi‖2

2g2

)
(8)
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Figure 3. Diagram of segmented principal component analysis of ultrasonic guided waves. S is the original signal; F is
a feature set that combines features from each segment. Si represents the ith subsection; Tc is the time interval used for
dividing S; θP is a threshold used for extracting features from each segment; θ is a threshold used for extracting features
from F. The grey chip represents a feature.

2.5. Classification Model Evaluation

Evaluating the performance of the model provides a basis for the credibility of the
model classification results. These are called respectively the precision rate and the recall
rate, which are usually used for evaluating the model performance. The precision rate
reflects the ability of the model to detect positive samples from the sample set, its expression
is shown in Equation (9). The recall rate reflects the ability of the model to detect the
number of correctly classified positive samples from all positive samples and is expressed
as Equation (10). This article also introduces the F1-score to balance the precision rate and
the recall rate to make the model evaluation more accurate, as shown in Equation (11).
All the equations above, True Positive (TP) is the number of samples whose labels and
the predictions are positive samples. False Positive (FP) is the number of samples where
the object labels are negative and the predicted labels inverted. True Negative (TN) is
the number of samples whose object labels are positive and the predicted labels inverse.
False Negative (FN) is the number of samples whose labels of the object and predicted are
negative samples.

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

F1 =
2× P× R

P + R
(11)

3. Experimental Setup

There are 7 different degrees of crack, 5 different degrees of transverse crack under
the shelling, and 4 different degrees of corrosion within the railhead. The detect signals of
the above defects are acquired by combining the experiments and the simulations.

3.1. Experimental Setup

The experimental system is shown in Figure 4. The experimental object is a 60 kg/m
rail with a length of 250 mm. Ceramic piezoelectric sheets (PZT-5H, diameter 14 mm,
thickness 1 mm, center frequency 200 kHz) are arranged symmetrically on the railhead and
marked in sequence as 1, 2, 3, A, B, C. The distance between the center of the piezoelectric
films and the rail end is 7 mm. The vertical distance between the rail tread and the center of
the piezoelectric films 1, 3, A, or C is 23.57 mm. The piezoelectric plates at positions 1, 2, and
3 are used to excite guided wave signals, and the piezoelectric plates at positions A, B, and
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C are used to receive detection signals. Any exciting sensors are paired with any receiving
sensors to form a signal acquisition channel. There are 9 channels for acquiring signals,
like 1TA, 1TB, 1TC, 2TA, 2TB, 2TC, 3TA, 3TB, 3TC. Figure 5 is a connection diagram of the
detection equipment. The arbitrary function generator (TektronixAFG3021B) can modulate
a sinusoid exciting signal of 200 kHz and 5 circles loaded alternately on piezoelectric slices 1,
2, or 3. The guided wave signal will propagate in the rail. The detection signals are collected
using piezoelectric slices A, B, or C. Both the excitation signal and the reception signal are
input into the oscilloscope (Tektronix DPO4054) with a specific sampling frequency.
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of the red box represents the location of the crack. The PZTs are located at the position of 1, 2, 3, A, B,
C, respectively. The distance between the center of PZT and the rail end is 7 mm.
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As shown in Figure 4, the location of the crack is indicated by the red square. The
crack is artificially cut in the fillet radius on one side of the railhead, located 125.5 mm
from the rail end. The crack depth gradually increases at an interval of 1 mm to reflect
the varying degrees of crack damage. In this study, 8 kinds of crack defects with different
damage levels, 0 mm, 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, are considered, and
the corresponding sample labels are 1, 2, 3, 4, 5, 6, 7, 8, respectively.

In the experiment, uncertain physical factors are inevitable, such as the tightness of
coupling between the piezoelectric sheet and the surface of the rail. Hence the experiments
are repeated 10 times under each excitation-reception mode for each degree of crack to
reduce the effect of tightness. The detection signal is picked up at a sampling frequency of
100 MHz, and 10 samples are taken accordingly for each crack degree. 80 samples may be
obtained in each signal acquisition mode, and a total of 720 may be obtained from 9 signal
acquisition channels. Table 1 shows the types of cracks and the number of samples taken
through the experiments of 1TA.

Table 1. The types of cracks and the quantities of samples taken from the experiments of exciting at
position 1 and receiving the signal at position A.

Damage Degree Number of Samples Damage Degree Number of Samples

intact 10 4 mm 10
1 mm 10 5 mm 10
2 mm 10 6 mm 10
3 mm 10 7 mm 10

3.2. Numerical Simulation

The finite element simulation software ABAQUS is used to build a model consistent
with the experimental object. Table 2 shows the material parameters of the rail model. ρ
represents density, E represents the Elastic Modules, and υ represents Poisson’s ratio. The
rail model is divided by grid cells C3D8, and the grid size is 1.5 mm. The arrangement
of the piezoelectric sheets on the railhead is consistent with the experiment, as shown in
Figure 6. The total time to analyze the model is 2 ms, and the time step is 0.01 µs.
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Table 2. Configuring the rail model built by ABAQUS.

Model Length ρ E υ

60 kg/m 250 mm 7.85 × 10−9 2 × 105 0.29

Figure 7a is the model of rail defects made by ABAQUS, such as crack, corrosion.
The position of the black box corresponds to the location of the failure. The method of
fine-tuning the defect parameters is adopted to make the numerical simulation and the
experimental effect more consistent. Moreover, more detect signals are collected. For crack,
the depth of the defect is continuously adjusted with a deviation of 0.001 mm. Taking
a 1 mm sample as an example, the crack depth of 0.999 mm, 0.998 mm, 1.001 mm, and
1.002 mm, etc., and these defects are classed as 1 mm cracks. According to the above
method, 10 samples are expanded under each excitation-reception mode, there are a total
of 80 samples expanded for 8 damage categories. In practice, the depth of crack defect
is always irregular. The author uses rounding to make the mark of defects in integers.
For instance, the depth of crack less than 1.5 mm carries a 1 mm tag, and the depth of
crack which equals 1.5 mm or more carries a 2 mm tag. If the difference between the
marked value and the defect depth is within 0.2 mm, the defect depth is indicated with
the marked value. For example, the crack depth of 1.2 mm, 1.1 mm, 0.9 mm, and 0.8 mm
are all classified as 1 mm cracks. The type of sample expansion is only in the crack depth
of 1 mm and 7 mm in this study, and the total number of expanded samples is 58, as
shown in Table 3. With respect to corrosion, four defect models of different damage levels,
6 mm2, 12 mm2, 25 mm2 and 30 mm2, are constructed by ABAQUS. And the corresponding
samples are marked as 9, 10, 11, and 12, respectively. For each type of corrosion defect, the
corrosion size is modified by 0.004 mm2 to produce more samples. 80 samples are obtained
per the excitation-reception method. The transverse crack under shelling is also an area
defect. One rectangle is used to approximate the shape of the internal transverse crack.
Figure 7b is a rail model with a 6 mm × 7 mm transverse crack under the shelling defect
constructed by ABAQUS. 6 mm is the defect’s width, and 7 mm is the length of the defect.
The defect is located at a rail length of 125.5 mm and a depth of 12.5 mm from the rail tread.
Five transverse cracks under shelling models with different damage levels, 2 mm × 3 mm,
3 mm × 4 mm, 4 mm × 5 mm, 5 mm × 6 mm, 6 mm × 7 mm, are constructed through
numerical simulation. Moreover, sample labels corresponding to defect sizes are marked
as 13, 14, 15, 16, 17. Under each excitation-reception channel, 21 samples are collected
under each type of transverse crack under shelling by adjusting the length or width with
the deviation of 0.001 mm.

Table 3. The type of crack and the quantity of samples collected in a simulation of exciting at position 1 and receiving the
signal at position A.

Defection Type Defection Category (mm) Total Number of Samples Actual Damage (mm) Number of Samples

intact intact 10 0 10

crack

1 30
1.0 10
1.1 10
1.2 10

2 30
1.8 10
1.9 10
2.0 10

3 10 3.0 10
4 10 4.0 10
5 10 5 10
6 10 6 10

7 28

6.9 6
7 10

7.1 6
7.2 6
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Figure 7. Rail defect model diagram. (a) describes the position of the crack and corrosion defect model where the black
sequence is the position of the defect, such as corrosion and crack; (b) describes the position of the transverse crack under
the shelling model.

Table 4 shows that the total number of samples obtained by experiments and simu-
lations under the channel of 1TA, and the sample labels corresponding to defects. Subse-
quently, all samples obtained by 1TA are made into a dataset including samples and the
sample labels. Moreover, the dataset is divided into two parts, which randomly take 80%
of the dataset as the training set, the remaining 20% as the testing set. The classify model is
trained and tested by training set and testing set, respectively. The data obtained from the
remaining 8 signal acquisition methods are processed by the same method with 1TA for
subsequent rail defect identification.

Table 4. Sample type and the total number of samples collected by exciting at the position of 1 and receiving the signal at
position A.

Defection Type Sample Label Defection Category Number of Samples Total Number of Samples

intact 1 - 20

403

Crack defect

2 1 mm 40
3 2 mm 40
4 3 mm 20
5 4 mm 20
6 5 mm 20
7 6 mm 20
8 7 mm 38

Corrosion defect

9 6 mm2 20
10 12 mm2 20
11 25 mm2 20
12 30 mm2 20

Internal nuclear defect

13 2 mm × 3 mm 21
14 3 mm × 4 mm 21
15 4 mm × 5 mm 21
16 5 mm × 6 mm 21
17 6 mm × 7 mm 21
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4. Feature Extraction
4.1. Signal Analysis

Figure 8 shows the waveform diagram of the crack detection signal obtained at the
time range of 0–0.002 s by 2TA in the experiment, and the cracks’ depth is 2 mm, 4 mm,
6 mm, 7 mm, respectively. Based on the guided wave theory, the guided wave group
velocity is about 3845 m/s in the experiment. And the speed in the simulation is 3850 m/s,
approximately like the result of the experiment. In addition, the experimental signal
waveform is like the simulated signal waveform, under different degrees of defect damage.
Thus, the simulated signals are used for the expansion of defect samples.
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of damage.

Figures 8–10 show the signal waveforms of crack defects, transverse cracks under the
shelling, and corrosion defects at different damage levels, respectively. We find that the
waveforms of detection signals caused by different damage degrees of defects at the same
position are generally similar. According to the elastic wave theory, the corresponding
wave packet will cause amplitude changes and overlap due to some factors such as defects.
However, the existing method is difficult to distinguish the specific defects by the time
domain waveform. In this paper, the amplitude corresponding to each time point on the
detection signal is regarded as a feature value in each sample. The statistical analysis and
machine learning algorithms are used to find the features between the sample data of
defects and correspondence defect types and eliminate redundant features.

4.2. Feature Extraction

Feature extraction is a significant part of structural health monitoring (SHM). Redun-
dant features are removed from the detection signal through feature extraction, and several
important features are retained to achieve accurate and rapid identification of defects.

Tc is an important parameter to achieve feature extraction by S-PCA. And the selection
of Tc depends on parament L and the group velocity VP of the guided wave signal. In this
study, the guided wave group velocity VP is 3850 m/s. The L participating in the discussion
is shown in Table 5. KP is the number of data points in each segment. The influence of
different Tc on defect identification is stated in Section 6.



Sensors 2021, 21, 8108 12 of 18

Sensors 2021, 21, x FOR PEER REVIEW 12 of 18 
 

Figure 8. Comparison of experimental signals waveforms of four types of different crack defects with different degrees 
of damage. 

Figures 8–10 show the signal waveforms of crack defects, transverse cracks under 
the shelling, and corrosion defects at different damage levels, respectively. We find that 
the waveforms of detection signals caused by different damage degrees of defects at the 
same position are generally similar. According to the elastic wave theory, the corre-
sponding wave packet will cause amplitude changes and overlap due to some factors 
such as defects. However, the existing method is difficult to distinguish the specific de-
fects by the time domain waveform. In this paper, the amplitude corresponding to each 
time point on the detection signal is regarded as a feature value in each sample. The sta-
tistical analysis and machine learning algorithms are used to find the features between 
the sample data of defects and correspondence defect types and eliminate redundant 
features. 

 
Figure 9. Comparison of the detection signal waveforms of four different corrosion defects with different degrees of 
damage. 

 
Figure 10. Comparison of five transverse cracks under shelling detection signal waveforms with different levels of dam-
age. 

Figure 9. Comparison of the detection signal waveforms of four different corrosion defects with different degrees of damage.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 18 
 

Figure 8. Comparison of experimental signals waveforms of four types of different crack defects with different degrees 
of damage. 

Figures 8–10 show the signal waveforms of crack defects, transverse cracks under 
the shelling, and corrosion defects at different damage levels, respectively. We find that 
the waveforms of detection signals caused by different damage degrees of defects at the 
same position are generally similar. According to the elastic wave theory, the corre-
sponding wave packet will cause amplitude changes and overlap due to some factors 
such as defects. However, the existing method is difficult to distinguish the specific de-
fects by the time domain waveform. In this paper, the amplitude corresponding to each 
time point on the detection signal is regarded as a feature value in each sample. The sta-
tistical analysis and machine learning algorithms are used to find the features between 
the sample data of defects and correspondence defect types and eliminate redundant 
features. 

 
Figure 9. Comparison of the detection signal waveforms of four different corrosion defects with different degrees of 
damage. 

 
Figure 10. Comparison of five transverse cracks under shelling detection signal waveforms with different levels of dam-
age. 
Figure 10. Comparison of five transverse cracks under shelling detection signal waveforms with different levels of damage.

Table 5. Selection of the parameter L and time interval Tc.

N L(mm) Tc (µs) Kp P

2 0.2 0.5 50 400
10 1.0 2.5 250 80
20 2.0 5.0 500 40
30 3.0 7.5 750 27
40 4.0 10.0 1000 20
50 5.0 12.5 1250 16

PCA is a means of globally reducing data dimensions. Selecting an adequate number
of principal components is critical when the PCA algorithm filters the feature. In the
process of extracting features from detection signals with S-PCA, θP is a threshold to extract
principal components from sub-signal segments using PCA. θ is a threshold for extracting
the principal components from feature set F. The influences of these two parameters on rail
defect identification are outlined in Section 6, respectively.
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5. Model Parameter Adjustment

The number of support vectors in the SVM classification model is an essential factor
influencing the model performance [28]. The number of support vectors for nonlinear
SVM is modified by adjusting the penalty coefficient C and the kernel radius g. There are
always optimal C and g values for different datasets to achieve accurate classification of
the samples. It is considered that the method of grid search automatically finds suitable C
and g within the range of [−3, 20], and [−25, 0], for nine datasets.

6. Experiment Results and Discuss
6.1. Influence of Tc on the Defect Recognition

The guided wave detection signals are divided into P sub-signal segments with a time
interval Tc. To select a suitable Tc, we assume that both θP and θ are equal to 99%. When
Tc is equal to 0.5 µs, 2.5 µs, 5 µs, 7.5 µs, 10 µs, and 12.5 µs, the accuracy of SVM varies in
shown in Table 6.

Table 6. The influence of Tc on the accuracy of defect classifications, in which the red number is the
best-classified result in this dataset.

0.5 µs 2.5 µs 5.0 µs 7.5 µs 10.0 µs 12.5 µs

1TA 86.21 86.21 87.36 86.21 86.21 86.21
1TB 94.25 95.40 95.40 90.80 91.95 90.80
1TC 77.01 77.01 79.31 78.16 79.31 78.16
2TA 94.25 95.40 95.40 95.40 95.40 93.10
2TB 90.80 90.80 93.10 91.95 89.66 88.51
2TC 88.51 88.51 88.51 89.66 89.66 88.51
3TA 72.41 74.71 75.86 73.56 72.41 72.41
3TB 89.66 89.66 90.80 89.66 89.66 88.51
3TC 90.81 91.95 91.95 93.10 90.81 91.95

In Table 6, the red number represents the maximum classification accuracy attained
by the classifier based on the selected parameters in each dataset. When Tc is 5 µs, seven
datasets, such as 1TA, 1TB, 1TC, 2TA, 2TB, 3TA, and 3TB, reach the maximum classifica-
tion accuracy rate. When Tc is equal to 7.5 µs, both 2TC and 3TC reach the maximum
classification accuracy rate. But when Tc is 5 µs, the classification results of 2TC and 3TC
are not much different from the optimal result maintaining a relatively high classification
level. According to the content above, most of the nine datasets may achieve the best
classification effect when Tc is equal to 5 µs. So 5 µs is selected as the optimal parament of
Tc for subsequent analysis.

6.2. Influence of θP on The Rail Defects Identification

θP controls the number of principal components extracted from each sub-signal. Differ-
ent θP can extract different numbers of principal components from the sub-signal segments
and affects the classification results of the classification model. It is the initial step that Tc is
equal to 5 µs and θ is equal to 99%. Table 7 shows the variation of the classification results
in the nine datasets with θP selected in turn from 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,
90%, and 99%.

Table 7. The effect of θP on classification accuracy, in which the red number is the best classification
result in this dataset.

10% 20% 30% 40% 50% 60% 70% 80% 90% 99%

1TA 89.66 89.66 89.66 89.66 90.80 91.95 90.80 89.66 89.66 88.51
1TB 88.51 88.51 88.51 88.51 94.25 94.25 89.66 90.80 88.51 87.36
1TC 79.31 79.31 79.31 79.31 79.31 77.01 70.11 78.16 75.86 78.16
2TA 95.40 95.40 95.40 95.40 96.55 93.10 94.25 93.10 94.25 90.80
2TB 94.25 94.25 94.25 94.25 96.55 96.55 95.40 95.40 95.40 94.25
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Table 7. Cont.

10% 20% 30% 40% 50% 60% 70% 80% 90% 99%

2TC 90.80 90.80 90.80 90.80 90.80 88.51 88.51 88.51 88.51 83.91
3TA 72.41 72.41 72.41 72.41 73.56 68.97 68.97 67.82 68.97 67.82
3TB 81.61 81.61 81.61 81.61 89.66 94.25 91.95 87.36 83.91 87.36
3TC 86.21 86.21 86.21 86.21 90.80 89.66 87.36 88.51 89.66 86.21

As shown in Table 7, when θP equals 50%, any one of 1TB, 1TC, 2TA, 2TB, 2TC, 3TA,
and 3TC reaches the maximum classification accuracy. For 1TB, when θP is equal to 60%,
the classification accuracy is the same as the optimal classification result. However, when
θP equals 50%, the number of the features used to classify defects is 5. When θP equals
60%, the number is 7. Thus 50% is taken at 1TB to reduce the loss of computation. When
θP equals 60%, 1TA and 3TB reach the best classification outcomes at 91.95% and 94.25%,
respectively. For 1TC and 2TC, when θP equals 10%, they attain the maximum classification
accuracy. Moreover, when θP is equal to 20%, 30%, 40%, and 50%, in turn, the classification
accuracy keeps the same classification result equaled to the optimal result. However, when
θP equals 10%, 20%, 30%, and 40%, in turn, the 13th category cannot be identified in 3TB, as
shown in Table 8. The reason is that the value of θP is too low to extract enough principal
components. When θP equals 50%, all categories can be recognized, and when θP equals
60%, the classification accuracy rate is 94.25% that is the best-classified outcome for 3TB.
According to the analysis above, most of the nine datasets can maintain a relatively high
classification accuracy when θP equals 50%. Thus 50% is selected as the optimal parament
of θP for subsequent research.

Table 8. 3TB’s confusion matrix when θP equals 10%, Tc equals 5 µs, and θ equals 99%.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

precision 1.00 0.75 0.75 1.00 1.00 1.00 0.75 0.90 0.75 1.00 0.75 1.00 0 1.00 0.80 0.60 1.00
recall 1.00 0.67 0.75 1.00 1.00 1.00 1.00 0.90 0.75 0.80 1.00 1.00 0 1.00 0.80 0.50 0.71

F1-score 1.00 0.71 0.75 1.00 1.00 1.00 0.86 0.90 0.75 0.89 0.86 1.00 - 1.00 0.80 0.55 0.83

6.3. Influence of θ on the Rail Defect Identification

θ is an important parameter to extract features from F which are final features. Table 9
shows that when Tc equals 5 µs and θP equals 50%, the classification results of the nine
datasets vary with θ changed from 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and
99%. According to Table 9, the classification accuracy rates of the nine datasets show an
increasing trend as the θ value increases. Therefore, 99% is chosen as a fixed parameter of θ
for follow-up research.

Table 9. The influence of θ on classification accuracy in which the red circle is the best classification
result in this dataset.

10% 20% 30% 40% 50% 60% 70% 80% 90% 99%

1TA 49.43 49.43 49.43 49.43 74.71 74.71 74.71 77.01 80.46 90.80
1TB 42.53 42.53 42.53 63.22 63.22 63.22 73.56 73.56 85.06 94.25
1TC 50.57 50.57 50.57 66.67 66.67 66.67 66.67 66.67 71.26 78.16
2TA 54.02 54.02 54.02 75.86 75.86 75.86 83.91 89.66 89.66 96.55
2TB 58.62 58.62 58.62 58.62 82.76 82.76 90.80 90.80 93.10 95.40
2TC 48.28 48.28 48.28 48.28 73.56 73.56 73.56 83.91 89.66 88.51
3TA 42.53 42.53 42.53 42.53 55.17 55.17 55.17 59.77 64.37 73.56
3TB 58.62 58.62 58.62 58.62 81.61 81.61 81.61 85.06 87.36 94.25
3TC 50.57 50.57 50.57 70.11 70.11 74.71 74.71 80.46 78.16 90.80

In summary, 5 µs, 50%, and 99% are selected, respectively, as the optimal parameters,
which are the fixed values of Tc, θP, θ.
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6.4. Classification Result of Single-Channel Acquisition Signal

The signals collected by different signal acquisition channels are turned into cor-
responding datasets. Once each dataset is normalized, the S-PCA model with selected
paraments is utilized to extract features. The dataset is split into the training set and the
testing set. The outcome of the classification is the average of the 10 results of the classifica-
tion. The variance S represents the standard deviation of 10 classification results, which is
used for evaluating the stability of the classification. And the results of nine datasets are
presented in Table 10.

Table 10. The SVM’s classification results of single-channel acquisition signal.

Accuracy S Precision Recall F1-Score

1TA 90.99% 0.03 91.20% 90.13% 89.83%
1TB 90.22% 0.02 91.95% 90.07% 90.19%
1TC 76.15% 0.04 82.01% 73.76% 74.43%
2TA 93.63% 0.02 94.12% 93.54% 93.32%
2TB 92.75% 0.02 94.68% 92.36% 92.05%
2TC 90.11% 0.03 90.79% 89.26% 89.06%
3TA 76.53% 0.03 83.10% 79.71% 76.89%
3TB 90.77% 0.02 91.80% 90.26% 90.29%
3TC 88.02% 0.03 89.90% 87.88% 87.43%

Table 10 shows that among the 9 signal acquisition methods, the accuracy rates of
the SVM classification model exceed 76% that is a medium score. In 1TA, 1TB, 2TA, 2TB,
2TC, and 3TB, the SVM classification accuracy rates reach nearly or more than 90%, which
is a good score. Both 2TA and 2TB have excellent classification because the sensor at
position 2 can be smoothly attached to the track surface, making the defect information
in the collected detection signal more obvious. For 3TB, the distance between the sensor
and the defect is relatively close, which makes the difference of the defect signals more
prominent, which is conducive to the identification of the defect. Both 1TA and 1TB have
higher classification accuracy because the signal reflected by the defect can be received by
the A and B sensors, which is conducive to the recognition defect. In addition, the S-PCA
is an effective method of extracting features and can extract the local differences in the
detection signal, which is useful for the classifier to make the correct distinction. Similarly,
the distance between the exciting sensor and the receiving sensor is relatively long, so the
classification results of 1TC and 3TA are 76.15% and 76.53%, respectively, lower than the
signals collected by other signal acquisition methods.

6.5. Classification Result of Multi-Channel Signal Combination

The above research shows that a single channel collecting signal can identify different
types and degrees of defects damage on the railhead. Based on theoretical analysis, a single-
channel acquisition signal can only reflect part of the characteristics of the defect. Thus,
1TC and 3TA classification accuracy rates are lower. The two types of combination methods
are comprehensively analyzed to explore the influence of multi-channel signals on rail
defect recognition, such as multi-point excitation and single-point reception or single-point
excitation and multi-point reception. The types of combinations and the corresponding
classification results are indicated in Tables 11 and 12.

Table 11 shows the results of the classification of the combined methods of single-
point excitation and multi-points reception signals. With the number of combined signals
increasing, it is found that the classification accuracy rate shows an increasing trend,
such as 1TAC, 1TBC, and 1TABC; 2TAB, 2TAC, 2TBC, and 2TABC; 3TAB, 3TAC, 3TBC,
and 3TABC. Moreover, compared to the classification of signals collected by one single
channel, the standard deviation S of the classification is slightly reduced after multiple
signal combinations. The above results show that the accuracy of the classification can
be effectively enhanced by the combination method. Since the propagation path of each
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signal is different, the effective combination can more widely reflect the health status of the
detected object. The same results can also be found in Table 12.

Table 11. The SVM’s classification results of feature combinations method of single-point excitation
and multi-point reception.

Combination Type Accuracy S Precision Recall F1-Score

1TAB 96.15% 0.02 96.29% 95.59% 95.51%
1TAC 93.08% 0.01 93.67% 92.37% 92.08%
1TBC 91.21% 0.02 92.56% 90.295 90.50%

1TABC 94.73% 0.02 95.32% 94.00% 94.20%
2TAB 93.74% 0.02 95.42% 93.51% 93.20%
2TAC 94.07% 0.01 94.99% 93.66% 93.58%
2TBC 94.95% 0.02 96.34% 95.10% 94.87%

2TABC 96.15% 0.01 96.63% 96.13% 95.93%
3TAB 89.01% 0.03 90.25% 88.36% 88.51%
3TAC 88.79% 0.02 90.57% 88.49% 87.77%
3TBC 88.90% 0.02 90.62% 88.38% 88.34%

3TABC 90.55% 0.03 91.64% 90.31% 89.99%

Table 12. The SVM’s classification results of the combination method of multi-point excitation and
single-point reception.

Combination Type Accuracy S Precision Recall F1-Score

1TA + 2TA 96.29% 0.02 96.34% 96.06% 95.70%
1TA + 3TA 89.78% 0.01 90.39% 87.82% 87.58%
2TA + 3TA 92.75% 0.02 93.23% 92.72% 92.43%

1TA + 2TA + 3TA 95.49% 0.02 96.12% 95.20% 95.03%
1TB + 2TB 95.38% 0.01 96.32% 95.35% 94.94%
1TB + 3TB 93.08% 0.02 94.54% 92.35% 92.59%
2TB + 3TB 94.03% 0.02 95.31% 94.71% 94.10%

1TB + 2TB + 3TB 93.41% 0.02 95.23% 93.79% 93.45%
1TC + 2TC 92.09% 0.02 93.02% 92.05% 92.00%
1TC + 3TC 90.22% 0.03 91.97% 89.74% 89.06%
2TC + 3TC 91.43% 0.03 93.35% 90.98% 90.83%

1TC + 2TC + 3TC 92.09% 0.03 93.44% 92.22% 91.95%

7. Conclusions

Aiming to identify multiple defects in rail, experiments and numerical simulations are
used to focus on the ultrasonic guided wave detection signals of crack defect, transverse
crack under shelling, and corrosion defect. By modifying and combining the sensor
positions, a sample library of defect detection signals is obtained by 9 different signal
excitation-reception methods. The S-PCA algorithm is proposed to extract the features
of the signal to eliminate the dependency on professional knowledge. Furthermore, the
extracting features are input into the SVM classifier to identify the type and extent of
defects. At the end of the research, the following conclusions are drawn:

• The method of extracting features from the segments of detection signal by PCA
can effectively eliminate redundant information in the signal and retain adequate
information, which improves the accuracy of quantitative and qualitative identification
of rail defects.

• The detection signals collected from different excitation-reception positions describe
the overall health of the different parts of the rail. Obtaining the combined detection
signal through single-point excitation and multi-point reception or multi-point excita-
tion and single-point reception can more comprehensively describe the health status
of the detection object, which is good to improve the accuracy of defect recognition.
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• The S-PCA algorithm is an efficient method of extracting features based on statistical
theory. It does not rely too much on the professional knowledge of guided wave
detection, which reduces the difficulty of rail defect identification. Furthermore, the
method could be more easily implemented in practical engineering in the future.
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