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Abstract: Deep learning grew in importance in recent years due to its versatility and excellent
performance on supervised classification tasks. A core assumption for such supervised approaches
is that the training and testing data are drawn from the same underlying data distribution. This
may not always be the case, and in such cases, the performance of the model is degraded. Domain
adaptation aims to overcome the domain shift between the source domain used for training and the
target domain data used for testing. Unsupervised domain adaptation deals with situations where
the network is trained on labeled data from the source domain and unlabeled data from the target
domain with the goal of performing well on the target domain data at the time of deployment. In
this study, we overview seven state-of-the-art unsupervised domain adaptation models based on
deep learning and benchmark their performance on three new domain adaptation datasets created
from publicly available aerial datasets. We believe this is the first study on benchmarking domain
adaptation methods for aerial data. In addition to reporting classification performance for the
different domain adaptation models, we present t-SNE visualizations that illustrate the benefits of
the adaptation process.

Keywords: domain adaptation; aerial datasets; unsupervised learning; visualization; deep neural
networks

1. Introduction

Deep neural networks were used for a variety of tasks such as image classification,
segmentation, image generation, and speech recognition [1,2]. These models require a lot
of labeled training data to make them generalizable and highly scalable [3–5]. There are
practical scenarios where labeled data from the test domain are scarce or not available, and
supervised methods don’t maintain their performance, especially when the training and
test data are drawn from different distributions. An example of this would be to deploy
a model trained on images from one sensor corresponding to the source domain, and test
on images obtained from another sensor corresponding to the target domain. We expect a
drop in the accuracy due to the differences between the two domains [5], and thus domain
adaptation (DA) algorithms are necessary to recover performance. A common application
of domain adaptation is the case of unsupervised domain adaptation (UDA), where there
are labeled source data for training but unlabeled target data [4,6]. DA can reduce the
need for costly labeling of the target domain data by adapting the labels from the source
domain [7].

This benchmarking study focuses on unsupervised DA methods for classification
without access to any labeled target domain data. Several surveys were conducted on
the topic of domain adaptation [5,7–14] or transfer learning where the target domain
data are labeled [15–20]. All of the DA surveys conducted make use of the common
domain adaptation datasets, such as Office-31 (Amazon, Webcam, Digital) [21], Digits
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(MNIST, SVHN, MNIST-M) [6,22,23], and Syn2Real [24,25]. However, to our knowledge
there is no DA study based on aerial datasets. Aerial imagery is important to the remote
sensing community and presents unique challenges due to changes in rotation, resolution,
illumination, and noise depending on the sensor characteristics. Moreover, models trained
on ground based imagery do not generalize to aerial imagery due to some key differences.
The viewpoints in aerial images are different than those in ground based images, as a the
field of view of aerial cameras is larger and covers greater distance. This often means that
the objects in aerial images consist of fewer pixels and are more difficult to describe. Other
challenging conditions in aerial images include lower between-class variation, weather
related disturbances such as cloud cover, and greater variations in the orientation of objects
with respect to the background while still convey the same contextual information. These
attributes make aerial datasets more challenging for generalization across domains and
motivate the need for domain adaptation. In our benchmarking study, we focus on creating
suitable aerial datasets for domain adaptation and report the results from seven different
unsupervised domain adaptation methods on these datasets.

The main contributions of this paper are as follows:

1. We present the first benchmarking study of domain adaptation on aerial datasets.
2. We construct six different aerial datasets for domain adaptation by carefully selecting

the common classes and balancing the datasets.
3. We consider seven models for unsupervised domain adaptation and report their

performance on the aerial datasets.

The remainder of this work is organized as follows. Section 2 discusses the notation
and categories of domain adaptation. Section 3 provides an explanation for each of the
algorithms used for the benchmarking study. Section 4 describes the datasets and the
process used to make the aerial domain adaptation datasets used in this study. Section 5
provides the comprehensive results from the study and confusion matrices and t-SNE [26]
visualizations of the data before and after domain adaptation for each of the methods.
Finally, Section 6 presents the final remarks and conclusions based on our evaluation.

2. Background

In unsupervised domain adaptation, the source domain where training takes place
is described as Ds = {(xs

i , ys
i )}

ns
i=1, where ns is the number of labeled samples, and the

target domain, where testing takes place, is Dt = {(xt
j)}

nt
j=1, where nt is the number of

unlabeled samples. The number of classes is K in both source and target domains, and Cs

is the source classifier while Ct is the target classifier. The feature extractor is described by
F and the discriminator by D (when needed). Transfer learning (TL) was motivated by
the insufficient training data problem, where the collection and labeling of data in some
domains is expensive to do on a large scale. Here, the domains can be from the same
modality [27] or different modalities [28,29]. TL refers to a broad category of algorithms,
where knowledge transfer takes place, of which domain adaptation is a specific type.

Most DA methods can be categorized into divergence based and adversarial-based
methods [10]. The divergence based DA works by minimizing the domain shift between
the source and target distributions to obtain a domain invariant feature representation [10].
The classifier can then perform comparably on both domains. The commonly used methods
for comparing the distribution shift and the works that use them are: maximum mean
discrepancy (MMD) [4,30–33], Kullback-Leibler (KL) divergence [34], correlation alignment
(CORAL) [35,36] andH divergence. Class labels can also be used to transfer knowledge
between different domains [37–40], and if target labels are not available, pseudo labels are
used [30,33,41]. Models that adjust the architecture of the model, such as adaptive batch
normalization (ABN) [42–44], domain-guided dropout [45], etc., are also divergence based
DA methods.

In the adversarial-based DA, a domain discriminator is used to encourage domain
confusion by using an adversarial objective. This objective minimizes the distance between
the empirical source and target mapping distributions. This is further categorized based
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on the use of generative versus nongenerative models. The generative model makes use
of generative adversarial networks (GANs) to create synthetic target data, which is in
turn used to train the target model [46–48]. In the nongenerative approach, the feature
extractor learns a discriminative representation using the source domain labels and a
domain-confusion loss. The domain-confusion loss is added with the classification loss and
tries to match the source and target distributions to confuse the higher layers [6,37,49–51].
DANN [6] is a popular example of adversarial-based DA.

In most cases of TL and DA, the source and target domains have the same classes,
and this is called closed set DA. When the classes in the source and target are not identical,
the problem is called open set DA [52] and is more challenging. Figure 1 illustrates the
difference between open set and closed set DA. The work presented here considers closed
set unsupervised DA methods for classification.

Figure 1. (a) Closed set DA has same classes in source and target domains. (b) Both source and target
domains in open set DA contain contain data that do not belong to classes of interest. Unknown
samples are represented in green. Further, target domain can contain data from classes not related to
classes in source domain.

All the DA algorithms that we have used for this benchmarking study were the top
performing models with source code publicly available from each of the DA categories.

3. Domain Adaptation Algorithms

This section offers a description of each DA method used in our study. We begin
with Domain Symmetric Networks (SymNets) [53], Robust Spherical Domain Adaptation
(RSDA) [54], Conditional Adversarial Domain Adaptation with Gradually Vanishing Bridge
as well as Gradually Vanishing Bridge [55], the unsupervised form of Universal Domain
Adaptation [56], the source free method Source Hypothesis Transfer (SHOT) [57], and
finally the Structurally Regularized Deep Clustering [58].

3.1. Domain-Symmetric Networks for Adversarial Domain Adaptation

The Domain Symmetric Network (SymNets) [53] utilizes a symmetric design of the
source and target classifiers for adversarial unsupervised domain adaptation. SymNets
make use of a novel adversarial learning method that includes a category-level and domain-
level confusion loss that can enhance the learning of features to be domain-invariant for the
various classes. The proposed cross-domain confusion scheme makes the target classifier
symmetric to the source classifier in terms of predicting the classes. The domain-level
confusion scheme used for the domain adversarial training makes use of the convolutional
layers in the network as a feature extractor G, and the fully connected (FC) layers as the
task classifier C. The domain discriminator D, which is symmetric to C is added on top of
G to distinguish between the features of the samples from the two domains.

The architecture of SymNets is described in Figure 2. In unsupervised domain adapta-
tion, the source domain is described as Ds = {(xs

i , ys
i )}

ns
i=1 containing ns labeled samples xs

i
with labels ys

i , and the target domain is Dt = {(xt
j)}

nt
j=1 containing nt unlabeled samples xt

j .
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Figure 2. Architecture of SymNets [53]. Blue and red arrows indicate source and target domains and losses corresponding
to them respectively. Yellow refers to feature extractor and corresponding losses and green represents classifiers and
their losses.

The SymNets design consists of two parallel task classifiers for K number of classes,
Cs and Ct, which are based on a single Fully Connected (FC) layer followed by softmax
operations. The source task classifier Cs is trained using the cross-entropy loss over the
labeled source samples,

min
Cs

Es
task(G, Cs) = − 1

ns

ns

∑
i=1

log(ps
ys

i
(xs

i )), (1)

where p(x) ∈ [0, 1] is the probability of the sample belonging to a class after softmax. Since
the target samples xt are unlabeled, the idea is to leverage the labeled source samples to
train the target domain classifier Ct using the cross-entropy loss (E):

min
Ct

Et
task(G, Ct) = − 1

ns

ns

∑
i=1

log(pt
ys

i
(xs

i )). (2)

To make Cs and Ct distinguishable, domain discrimination training Cst is done by
making use of the two-way cross-entropy loss:

min
Cst

Est
domain(G, Cst) = − 1

nt

nt

∑
j=1

log

(
K

∑
k=1

pst
k+K(xt

j)

)
− 1

ns

ns

∑
i=1

log

(
K

∑
k=1

pst
k (xs

i )

)
, (3)

where ∑K
k=1 pst

k (x) and ∑K
k=1 pst

k+K(x) are the probabilities of classifying an input sample x
as belonging to the source and target domains respectively.
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The category-level confusion loss makes use of the labeled source samples and the
feature extractor G is learned by the following objective:

min
G

Fst
category(G, Cst) = − 1

2ns

ns

∑
i=1

log(pst
ys

i +K(xs
i ))−

1
2ns

ns

∑
i=1

log(pst
ys

i
(xs

i )). (4)

For the domain-level confusion loss, the unlabeled target samples are used as the
individual class label is not required for domain-level confusion. For the target sample, the
feature extractor G is learned by the following objective,

min
G

Fst
domain(G, Cst) = − 1

2nt

nt

∑
j=1

log

(
K

∑
k=1

pst
k+K(xt

j)

)
− 1

2nt

nt

∑
j=1

log

(
K

∑
k=1

pst
k (xt

j)

)
(5)

The entropy minimization principle [59] is used in SymNets to enhance the dis-
crimination among task categories by summing over the probabilities at each pair of
category-corresponding neurons in Cst,

min
G

Mst(G, Cst) = − 1
nt

nt

∑
j=1

K

∑
k=1

qst
k (xt

j)log(qst
k (xt

j)), (6)

where qst
k = pst

k (xt
j) + pst

k+K(xt
j), k ∈ [1, . . . , K].

The overall training objective is obtained by combining Equations (1)–(6) as,

min
Cs ,Ct ,Cst

Es
task(G, Cs) + Et

task(G, Ct) + Est
domain(G, Cst) + min

G
Fst

category(G, Cst)

+λ(min
G

Fst
domain(G, Cst) + min

G
Mst(G, Cst)),

(7)

where λ ∈ [0, 1] is a trade-off parameter to suppress noisy signals from Fst
domain(G, Cst) and

Mst(G, Cst) during the early stages of training.

3.2. Spherical Space Domain Adaptation with Robust Pseudo-Label Loss

Robust Spherical Domain Adaptation (RSDA) [54] proposes a novel adversarial do-
main adaptation approach by leveraging the spherical space and defining a spherical neural
network. A robust pseudo-label loss is defined to make effective use of the pseudo-labels.
This loss weighs the importance of the estimated labels on target data by the posterior
probability of the correct label that is modeled by a Gaussian-uniform mixture model in
spherical space. The spherical features (L2 normalized) were shown to improve perfor-
mance in recognition and domain adaptation [60–64]. RSDA extends this idea by defining
all the operations in spherical feature space to leverage the advantages of the spherical
space structure. The architecture of RSDA is described in Figure 3.

The source domain has a labeled dataset, {xs
i , ys

i }
Ns
i=1 and the target domain is unla-

beled, {xt
j}

Nt
j=1. The goal of RSDA is to transfer the knowledge obtained from the labeled

source data classifier to get target labels. The feature extractor F goes through adversarial
training with a domain discriminator D such that F is able to distinguish between the
source and target domains. A CNN such as ResNet [65] is used as the feature extractor
F which is mapped onto a sphere. The spherical feature space also has a classifier (C)
and discriminator (D). The spherical neural network consists of spherical perceptron and
spherical logistic regression layers. The robust pseudo-label loss defined in spherical space
makes use of the pseudo-labels of the target domain and the Gaussian mixture model.
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Figure 3. Architecture of RSDA [54]. Blue and red arrows represent computational flow of source and target domain samples
respectively. F is a feature extractor which is a CNN that extracts features and embeds them onto a hypersphere. Spherical
classifier predicts class labels and domain discriminator predicts domain labels. Posterior probability of correct labels is
obtained by feeding the target pseudo-labels and target features into a Gaussian mixture model. Posterior probabilities then
weight pseudo-label loss for robustness.

The spherical adversarial training loss is defined as,

L = Lbas(F, C, D) + Lrob(F, C, φ) + γLent(F), (8)

and takes into account the basic loss, robust pseudo-label loss, and conditional cross entropy
loss, which are all defined in the spherical feature space. Lbas(F, C, D) is the basic loss
which is used to learn the classifier in the source domain and align features across domains.
The basic adversarial domain adaptation loss takes either DANN [6] or MSTN [66] as the
baseline and Lbas is the spherical version of the loss. The cross-entropy loss, Lent(F) is
used to reduce prediction uncertainty and is defined as,

Lent(F) =
1

Nt

Nt

∑
j=1

H(C(F(xt
j))), (9)

where H is the entropy of the distribution. To define the form of the robust pseudo-label
loss, Lrob(F, C, φ), the pseudo label is ỹt

j = argmaxk[C(F(xs
i ))]k for the kth element. A

random variable zj ∈ {0, 1} is used to figure out if the data are correctly labeled (1) or
wrongly labeled (0). If the probability of correct labeling is Pφ(zj = 1|xt

j , ỹt
j) with parameter

φ, the robust loss is,

Lrob(F, C, φ) =
1

N0

Nt

∑
j=1

wφ(xt
j)J (C(F(xt

j)), ỹt
j), (10)

where, N0 = ∑Nt
j=1 wφ(xt

j), and J (·, ·) is the mean absolute error (MAE) [67]. wφ(xt
j) is

defined based on the posterior probability of correct labeling,

wφ(xt
j) =

{
γj, if γj ≥ 0.5,
0, otherwise,

where γj = Pφ(zj = 1|xt
j , ỹt

j).
The probability Pφ(zj = 1|xt

j , ỹt
j) is learned using the Gaussian mixture model in

spherical feature space.
The spherical neural network (SNN) is an extension of MLP from Euclidean to spher-

ical space. The features on the spherical space are obtained by normalizing the feature
vectors, f = r F(x)

||F(x)|| . The classifier is constructed by stacking a few spherical perceptron
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(SP) layers and a final spherical logistic regression (SLR) layer. The SP layer consists of a
linear transform and an activation function.

The spherical linear transform (g) consists of first projecting the features from the
former spherical surface onto the tangent plane, then a linear transformation to transform
the projected features onto the tangent plane of the later spherical surface, and then back
from the tangent space onto the later spherical surface. The nonlinear activation function
in spherical space is defined as,

SReLU(x) = r
ReLU(x)
||ReLU(x)|| . (11)

The SP layer is then,

fout = SReLU(g( fin)). (12)

The SLR layer is described similar to the Euclidean logistic regression as,

p(y = k|z) ∝ exp(wT
k z + bk), k = 1, 2, . . . , K, (13)

where, wT
k z + bk = 0 is the classification boundary on the sphere.

3.3. Gradually Vanishing Bridge for Adversarial Domain Adaptation

Gradually Vanishing Bridge for Adversarial Domain Adaptation [55] proposes a
method to perform unsupervised adversarial domain adaptation that utilizes a vanishing
bridge mechanism on the generator and the discriminator used in the network. The
bridge is a measurement which models the difference between the existing and ideal
representation of the domains. On the generator, the bridge reduces the overall transfer
difficulty and reduces the influence of residual domain specific characteristics. It connects
either the source or the target to an intermediate domain to enable domain alignment.
On the discriminator, the bridge enhances the discriminating ability and balances the
adversarial training process. During the training process, the range of the bridge is reduced
gradually to reduce the influence of the domain characteristics of the bridge output which
in turn reduces the discrepancy between the source and target. After the adaptation is done,
more points from both the domains are covered in the intermediate domain. The points
that are still outside of the intermediate domain are taken as hard examples. Applying the
bridge to both the generator and discriminator is denoted as GVB-GD and it ensures that
the two-player minmax game is balanced. The adversarial training process also ensures
that the distribution of the intermediate representation is similar across both the domains.

The gradually vanishing bridge framework is an end-to-end network. The bridge layer
on the generator outputs the domain specific properties, called γ. The intermediate repre-
sentation ri is found by subtracting γ from the classifier response ci. This representation is
minimized by the classification loss.

ri = ci − γi (14)

The bridge layer associated with the discriminator represents the distance between
the current discriminator function and the ideal decision boundary to be achieved. The
discriminator also receives additional discriminative power from the bridge layer. The
overall objective of the network is given by the equation below which shows that the
network is trained by minimizing classification loss, adversarial transfer loss, and the
reconstruction loss for the generator and maximizing the adversarial transfer loss for the
discriminator.

min
G∗

(Lcls + Ladv
trans + Lext)

max
D∗

Ladv
trans

(15)
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where Lcls is the classification loss, Ladv
trans is the adversarial transfer loss and Lext is the

reconstruction loss.

3.4. Conditional Adversarial Domain Adaptation with Gradually Vanishing Bridge

Gradually Vanishing Bridge [55] can be applied to other unsupervised domain adapta-
tion methods like Conditional Adversarial Domain Adaptation (CDAN) [68]. CDAN uses
conditioning strategies such as multilinear conditioning that captures the cross variance
between feature representations and classifier predictions to improve the discrimination
process. In the model CDAN-GD, the gradually vanishing bridge is applied on the gen-
erator and discriminator. The major contribution of CDAN is the domain discriminator,
which is trained on the cross-covariance of the domain specific feature representations and
predictions made by the classifier. This discriminator is also trained on the ambiguity of
the classifier which helps the discriminator prioritize the easier samples. Back propagation
is then used to solve the system in linear time.

This method improves adversarial domain adaptation methods by addressing two
shortcomings. First, when the joint distributions of features and classes across both domains
are not identical, adapting only the feature representation will not be enough as deep
representations usually transition from general to specific as training progresses in deep
networks. The second shortcoming occurs when the feature distribution is multi-modal,
which often occurs in real-life scenarios. In this case, the adversarial network performs
poorly. These challenges are overcome by training the generator and discriminator on
information related to the domains such as its respective labels or similar modality objects.
By adapting the feature representation f , the classifier prediction g is able to capture
multi-modal structures in the adversarial domain adaptation. Domain variations in both
feature representation f and classifier prediction g can be represented at the same time via
conditioning. Thus, CDAN is presented as a minimax optimization problem consisting
of two error terms: E(G) from the source classifier G, which needs to be minimized
for reduced source risk, and E(D, G), which is related to the source classifier G and the
domain discriminator D across both domains. Here, E(D, G) will be minimized over
the discriminator but maximized over the feature representation f = F(x) and classifier
prediction g = G(x). The minimax game of conditional domain adversarial network
(CDAN) is shown as,

min
G

E(G)− λE(D, G)

min
D

E(D, G)
(16)

where λ is a hyper-parameter between the two objectives to trade off source risk and
domain adversary.

3.5. Universal Domain Adaptation with Universal Adaptation Network

Most domain adaptation techniques require a definite class-wise relationship between
the source and target domain classes. Universal Adaptation Network (UAN) [56] is an
interesting modification of DANN [6] where the network does not need to know any
specific class-wise relationship between the source and target domains. UAN can identify
the target samples that do not belong to any of the classes of the source domain and
categorize them as unknown samples, while classifying other target samples into one of
the source domain classes.

In UAN, during training, a source domain Ds = (xs
i , ys

i ) with ns annotated samples
of Cs classes collected from a distribution p and a target domain Dt = (xt

i ) with nt non-
annotated samples of Ct collected from a distribution q are given. The common label set
shared by source and target domains is denoted by C = CS

⋂
Ct. The label sets or classes

specific to the source and target domains are denoted by Cs = Cs\C and Ct = Ct\C,
respectively. The target data are totally nonannotated, and the target label set is defined
only for the purpose of explanation of the setting. Commonness between the source and
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target domains is defined as the Jaccard distance of the label sets ξ = |Cs
⋂

Ct |
|Cs

⋃
Ct | . In our case

of aerial datasets under consideration, keeping in line with all other methods evaluated,
we selected a closed setting with ξ = 1.

The Universal Adaptation Network consists of a feature extractor F, classifier G,
adversarial domain discriminator D and a nonadversarial domain discriminator D′. Inputs
x from both domains are processed through the feature extractor F to get features z = F(x),
which are then fed into the classifier G to get the probability ŷ = G(z) over the source
classes. In addition to domain gap, in a universal setting there is also category gap
between source and target domains. To mitigate this discrepancy, UAN introduces the
non-adversarial discriminator D′ that learns to calculate the domain similarity parameter
d̂′. It is, in turn, used to compute the source transferability criterion for training the network
with the adversarial discriminator D. Source similarity weights ws and wt of the source
and target domains, respectively, are calculated following the equation below, under the
assumption that entropy expresses the uncertainty in predictions and more confident
predictions produce lower entropy.

ws(x) =
H(ŷ)

log|Cs|
− d̂′(x)

wt(x) = d̂′(x)− H(ŷ)
log|Cs|

(17)

Here, H(ŷ) is the entropy of the sample prediction and d̂′(x) is the output of non-
adversarial discriminator D′. Weights ws and wt confine domain alignment via adversarial
training within the shared label set between the two domains. The error functions can
therefore be written as follows.

EG = E(x,y)∼pL(y, G(F(x)))

ED′ = −Ex∼plogD′(F(x))− Ex∼qlog(1− D′(F(x)))

ED = −Ex∼pws(x)logD(F(x))− Ex∼qwt(x)log(1− D(F(x)))

(18)

where L is the cross-entropy loss. Therefore, the objective functions are the following.

max
D

min
F,G

EG − λED

min
D′

ED′
(19)

where λ is a hyperparamter for trade-off between domain transferability and discriminabil-
ity. In the test phase, the adversarial discriminator is removed while the nonadversarial
discriminator, along with the classifier produce the source similarity weights and depend-
ing on a source similarity threshold, the samples correspond to one of the source classes or
as an unknown.

3.6. Source Hypothesis Transfer

Source Hypothesis Transfer (SHOT) proposes a discrepancy based domain adaptation
technique using hypothesis transfer from source domain Ds to the target domain Dt. For
vanilla unsupervised domain adaptation task, ns labeled samples {xi

s, yi
s}ns

i=1 are given
where xi

s ∈ Xs, yi
s ∈ Ys with nt target samples {xi

t}
nt
i=1 where xi

t ∈ Xt. For vanilla
unsupervised DA, the goal is to find {yi

t}
nt
i=1 where yi

t ∈ Yt for the target samples by
learning a mapping ft : Xt → Yt. SHOT proposed a domain adaptation technique without
the source data during the adaptation procedure. To achieve that, first a network is trained
with a source data to learn the mapping fs : Xs → Ys. During the adaptation procedure
with the target data, the source trained model is initialized and the parameters for the
classifier part of the model is kept frozen and only the backbone part of the network is
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trained with the information maximization (IM loss). The overall architecture of the SHOT
method is shown in Figure 4.

Figure 4. Network architecture of Source Hypothesis Transfer (SHOT) [57].

During training the network on the source domain Ds, the source feature extractor
gs and the source hypothesis hs are both trained. Here, gs encodes the input image to a
d dimension feature, i.e., gs : Xs → Rd and the hypothesis module takes the embedding
feature and output k dimensional logits, i.e., hs : Rd → Rk, where the total number of
classes is k. During the domain adaptation procedure on the target domain Dt, the target
feature extractor gt is initialized with the source trained backbone and learned during
the domain adaptation procedure. The source hypothesis hs is transferred to the target
hypothesis ht and keeps unchanged throughout the network training procedure.

The loss function for the source training is categorical cross-entropy loss with label
smoothing. The label smoothing component helps to achieve evenly separated clustering
in the embedding space. The overall source training loss can be written as follows.

Lsrc( fs;Xs,Ys) = −E(xs ,ys)∈Xs×Ys

K

∑
k=1

qk log δk( fs(xs)) (20)

where, δk = exp(ak)
∑i exp(ai)

, during training with the target data, as the source data are not
made available, the distribution alignment based on features does not work. The authors
argue that the ideal output probability for the target samples should be similar to one hot
vectors, i.e., the model should be confident and diverse. For this purpose, the information
maximization (IM) loss is introduced as the sum of the entropy loss Lent and KL-divergence
loss Ldiv and can be written as follows.

Lent( ft;Xt) = −Ext∈Xt

K

∑
k=1

δk( ft(xt)) log δk( ft(xt))

Ldiv( ft;Xt) =
K

∑
k=1

p̂k log p̂k

(21)
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where, ft(x) = ht(gt(x)) is the output logits of the network with K-dimensions and
p̂ = Ext∈Xt [δ( ft(xt))] is computed as the mean of the entire target domain. However, this
does not ensure that similar classes match with each other between the source and the
target domain. To alleviate this, the authors propose to use self supervised pseudo labeling
motivated by deep clustering technique. They compute the class centroid for each of the
target classes and compute the pseudo labels based on the cosine distances from each of the
centroids. The overall loss function for the domain adaptation can be written as follows.

Lent(gt) = Lent( ft;Xt) + Ldiv( ft;Xt)−

βE(xt ,ŷt)∈Xt×Ŷt

K

∑
k=1

1[k=ŷt ] log δk( fs(xs))
(22)

where ŷt ∈ Ŷt is the estimated pseudo labels. Recently Taufique et al. [69] proposed a
variant of SHOT utilizing HRNet [70] backbone that further improved the performance
of SHOT.

3.7. Unsupervised Domain Adaptation via Structurally Regularized Deep Clustering

Structurally Regularized Deep Clustering (SRDC) [58] is a discrepancy based unsu-
pervised domain adaptation method which minimizes the risk of damaging the intrinsic
discrimination of target data. This potential damaging of the target domain usually occurs
when the domain aligned features are explicitly learned. To avoid this, a source regularized,
deep discriminative clustering method is used to directly show the existing discrimination
within the target data. The method is motivated by the assumption that structural similarity
exists between the two domains. This method uses a framework of deep network based
discriminative clustering that minimizes the KL divergence between the predictive label
distribution of the network and an introduced auxiliary one, by replacing the auxiliary
distribution with the ground truth labels of the source data. Thus, it implements the
structural source regularization with joint network training. The target discrimination
process is also enhanced by clustering of the intermediate network features. The structural
regularization is also enhanced by selecting less divergent source examples.

The joint network method consists of an embedding function and a classifier function.
The assumptions for the method are that the classes used are discriminative within a
domain but the same classes in different domains are geometrically close. After getting the
softmax predictions of the target data, the network minimizes the KL divergence between
the softmax outputs of the target samples and the auxiliary samples. The method then
alternates between updating the auxiliary samples and using these updated samples to
train the network to update the network parameters to optimize deep clustering. The
equation below shows the objective of deep clustering that is to be achieved. The first term
calculates the KL divergence where Pt is the softmax output of the target samples and Qt

is the softmax output of the auxiliary samples. The second term in the equation is used to
balance the cluster assignment. This term also helps in maintaining the cluster size balance
by performing entropy maximization of the labels on the target domain.

min
Qt ,θ,ν

Lt = KL(Qt||Pt) +
K

∑
k=1

Qt
klogQt

k,

whereQt
k =

1
nt

nt

∑
i=1

qt
i , k

(23)

The above objective is optimized by alternating between the auxiliary distribution
step and the network update step. Since both the domains share the same label space,
joint training pushes instances from the same classes into the same regions, thus achieving
feature alignment between the two domains. The clusters are also enhanced by selecting
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soft source samples, and this is done by reassigning the weights to the source after every
epoch, based on their similarity to the target samples.

4. Aerial Datasets

This section describes the aerial datasets used in this benchmarking study. Since there
are no aerial datasets dedicated to domain adaptation, we considered publicly available
aerial datasets for classification and utilized their shared classes for unsupervised domain
adaptation.

4.1. AID

The Aerial Image Dataset (AID) [71] is a dataset developed for the task of aerial
scene classification by procuring images from Google Earth and contains 30 classes of
aerial or satellite imagery: beach, bridge, center, airport, bare land, baseball field, church,
commercial, dense residential, forest, industrial, meadow, desert, farmland, medium
residential, mountain, park, port, railway station, resort, parking, playground, pond, river,
school, sparse residential, storage tanks, viaduct square and stadium. The annotations
were made by experts in remote sensing image interpretation. The images in the dataset
are termed as multisource images as the Google Earth images are collected from varying
remote imaging sensors. The images were selected from many countries some of which
are, the United States, England, Italy, China, Japan, France, and Germany. The data are also
considered diverse as the images were captured under different imaging conditions such
as at different times during the day and at various seasons throughout the year. There are
a total of 10,000 aerial images of size 600 × 600 pixels. The images are obtained at multiple
ground sampling distances (GSDs) ranging from 8 m to 0.5 m. The classes selected from
AID for our experiments are airport, parking, storage tank, beach, forest, river, baseball
field, medium residential, and sparse residential.

4.2. UCM

The UC Merced Land Use Dataset (UCM) [72] is a publicly available image dataset
of overhead land images meant for research purposes. It consists of 21 classes and has
100 images per class measuring 256 × 256 pixels. The pixel resolution of the dataset is
1 foot/0.3 m per pixel in the RGB color space. The dataset consists of these classes: beach,
buildings, chaparral, agricultural, airplane, baseball diamond, dense residential, forest,
freeway, golf course, mobile home park, overpass, parking lot, harbor, intersection, medium
residential, river, runway, sparse residential, tennis courts and storage tanks. The images
were downloaded from the United States Geological Survey (USGS) National Map from
different urban US regions. The images selected contain a wide variety of spatial patterns,
textures and colors making it ideal for scene classification. The classes selected from UCM
for our experiments are airplane, parking lot, storage tank, beach, forest, river, baseball
diamond, medium residential, and sparse residential.

4.3. NWPU

The NWPU-RESISC45 [73] dataset was created by Northwestern Polytechnical Uni-
versity (NWPU) for REmote Sensing Image Scene Classification (RESISC). It is known for
having high diversity within each class while also maintaining similarity amongst the
classes. The dataset was collected from Google Earth. NWPU has a total of 31,500 high-
resolution remote sensing images which are divided into 45 scene classes. The classes are
as follows: circular farmland, cloud, commercial area, dense residential, desert, forest, free-
way, golf course, ground track field, airplane, airport, baseball diamond, basketball court,
beach, bridge, chaparral, church, harbor, industrial area, intersection, island, lake, meadow,
medium residential, mobile home park, roundabout, runway, sea, ice, ship, snowberg,
sparse residential, stadium, storage tank, mountain, overpass, palace, parking lot, railway,
railway station, rectangular farmland, river, tennis court, terrace, thermal power station,
and wetland. Each class has 700 RGB images each of size 256 × 256 pixels. The spatial
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resolution is from around 30 m to 0.2 m per pixel. The classes selected from NWPU for our
experiments are railway station, parking lot, bridge, runway, storage tank, and airplane.

4.4. CLRS

The Continual Learning Benchmark for Remote Sensing (CLRS) [74] dataset was
designed for remote sensing image scene classification and for continual/lifelong learning.
The authors created a criterion for three continual learning scenarios and have divided
the dataset into those three categories. The CLRS dataset has 25 classes and a total of
15,000 images. The remote sensing images were procured from Google Earth, Bing Map,
Google Map and Tianditu which all possess different remote imaging sensors, so the images
are multi-source. Each class contains 600 images of size 256 × 256 pixels. The resolution of
the data ranges from 0.26 m to 8.85 m. The 25 scene classes are highway, industrial, meadow,
airport, bare-land, beach, mountain, overpass, park, parking, playground, commercial,
desert, farmland, port, railway, railway-station, residential, river, runway, forest, golf-
course, stadium, and storage-tank. The classes of interest from CLRS for our work are
railway station, parking, bridge, runway, storage tank, and airport.

4.5. xView

This dataset was created as part of the xView [75] 2018 Detection Challenge. It contains
around 1 million object samples divided across 60 classes with the option of using either 3-
band or 8-band imagery. The images have a resolution of 0.3 m/pixel. This is an imbalanced
dataset as there are some classes with many instances and some classes with only a few
instances. The images are captured using the WorldView-3 satellite at 0.3 m ground sample
distance. The objects within each image in this dataset vary in size from 3 m to greater
than 3000 m. Each image in this dataset is of a very high resolution and often there were
multiple objects from different classes within an image. This makes it difficult to perform
classification accurately. To overcome this, each image was cropped around the bounding
boxes so that only 1 object is in each image from a single class. The original images range
from 2500 × 2500 to 4000 × 4000 pixels. The cropped image sizes range from 10 × 10
to 987 × 987. More preprocessing was done on this dataset to achieve optimum results
for our experiments. The images which were smaller than 30 × 30 pixels were discarded.
The number of images per class was restricted to 5000 and for classes not meeting this
requirement, data augmentation was performed. The data augmentation was in the form of
flipping the image horizontally and vertically. The final dataset contained the classes small
vehicle, large vehicle, storage tank, plane, and ship. The classes which were augmented are
plane, ship and storage tank.

4.6. DOTA

The Dataset for Object deTection in Aerial images (DOTA) [76] dataset is a benchmark
dataset created for performing object detection in aerial images. The images in this dataset
are mainly gathered from Google Earth and satellite JL-1 and satellite GF-2, which belong
to the Chine Centre for Resources Satellite Data and Application. A total of 2086 images
were captured using these satellites from different areas of the world. The images are in a
range of around 800 × 800 pixels to 6000 × 6000 pixels. The object categories in this dataset
are ground track field, harbor, bridge, large vehicle, small vehicle, helicopter, roundabout,
soccer ball field, swimming pool, plane, ship, storage tank, baseball diamond, tennis court
and basketball court. Similar to xView, each image in this dataset is of a very high resolution
and often there were multiple objects from different classes within an image. This makes it
difficult to perform classification accurately. To overcome this, each image was cropped
around the bounding boxes so that only 1 object is in each image from a single class. The
cropped image sizes range from 10× 10 to 904× 904. More preprocessing was done on this
dataset to achieve optimum results for our experiments. The images which were smaller
than 30 × 30 pixels were discarded. The number of images per class was restricted to 5000
and for classes not meeting this requirement, data augmentation was performed. The data
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augmentation was in the form of flipping the image horizontally and vertically. The final
dataset contained the classes small vehicle, large vehicle, storage tank, plane, and ship. The
class which was augmented is storage tank.

4.7. Aerial DA Datasets

To the best of our knowledge, there are no existing datasets designed for aerial domain
adaptation. For closed-set DA, the classes between the source and target domain datasets
are the same. Using the datasets described in this section, we create three aerial DA datasets
for our benchmarking study. Each of these datasets are made by taking the common classes
between two of the aerial datasets. There are differences in the image characteristics
between the source and target domain based on their GSDs and the sensors that were
used to collect the data. The first DA dataset is between AID and UCM, with 9 classes in
common between them. The shared classes and number of samples for the AID-UCM DA
dataset is in Table 1. Sample images from the shared classes are shown in Figure 5.

Table 1. AID-UCM DA Dataset.

AID Classes Number of Samples UCM Classes Number of Samples

Airport 360 Airplane 100
Parking 390 Parking Lot 100

Storage Tank 360 Storage Tank 100
Beach 400 Beach 100
Forest 350 Forest 100
River 410 River 100

Baseball Field 220 Baseball Diamond 100
Medium Residential 290 Medium Residential 100
Sparse Residential 300 Sparse Residential 100

Figure 5. Sample images from shared classes between AID (top row) and UCM (bottom row). Classes are (from left to
right) baseball field/baseball diamond, beach, medium residential, sparse residential, parking/parking lot, airport/airplane,
storage tank, forest, and river.

The next dataset is created by considering the common classes between NWPU and
CLRS. The 6 shared classes and samples in each class for the NWPU-CLRS DA dataset is in
Table 2. Sample images from the shared classes are shown in Figure 6.

Table 2. NWPU-CLRS DA Dataset.

NWPU Classes Number of Samples CLRS Classes Number of Samples

Airplane 700 Airplane 600
Bridge 700 Bridge 600

Parking 700 Parking 600
Railway Station 700 Parking 600

Runway 700 Parking 600
Storage Tank 700 Storage Tank 600
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Figure 6. Sample images from shared classes between NWPU (top row) and CLRS (bottom row). Classes are (from left to
right) airplane, bridge, parking, railway station, runway, and storage tank.

The third dataset is created by taking the common classes between DOTA and xView.
The 5 shared classes and samples in each class for the DOTA-xView DA dataset is in Table 3.
Sample images from the shared classes are shown in Figure 7.

Table 3. DOTA-xView DA Dataset.

DOTA
Classes

Number of
Samples

Augmented
Samples

xView
Classes

Number of
Samples

Augmented
Samples

Large Vehicle 5000 0 Large Vehicle 5000 0
Plane 5000 0 Plane 1159 3841
Ship 5000 0 Ship 4476 524

Small Vehicle 5000 0 Small Vehicle 5000 0
Storage Tank 2126 2874 Storage Tank 1447 3553

Figure 7. Sample images from shared classes between DOTA (top row) and xView (bottom row).
Classes are (from left to right) large vehicle, plane, ship, small vehicle, and storage tank.

5. Experiments

The code for the DA methods in our study was obtained from the URLs in Table 4.
We considered the entire source domain for training and the entire target domain for
adaptation. All the methods are unsupervised DA, so no label information from the target
domain is used during adaptation. After adaptation, we consider the entire target domain
for evaluation. The implementation for SymNets, RSDA, SRDC, CDAN-GD, and GVB-GD
was done on a Linux workstation with an NVIDIA Titan V GPU with 12 GB memory. SHOT
and UAN were implemented on a Linux workstation with an RTX 2080 Ti GPU with 12 GB
memory. The parameter selection of the specific methods is described as follows.
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Table 4. URLs for codes of implemented methods. All code is implemented in PyTorch.

Method Base Network Code Repository

SymNets ResNet-50 https://github.com/YBZh/SymNets (accessed on 1 March 2021)
RSDA ResNet-50 https://github.com/XJTU-XGU/RSDA (accessed on 1 March 2021)

CDAN-GD ResNet-50 https://github.com/cuishuhao/GVB/tree/master/CDAN-GD (accessed on 1 March 2021)
GVB-GD ResNet-50 https://github.com/cuishuhao/GVB/tree/master/GVB-GD (accessed on 1 March 2021)

UAN ResNet-50 https://github.com/thuml/Universal-Domain-Adaptation (accessed on 1 November 2021)
SHOT ResNet-50 https://github.com/tim-learn/SHOT (accessed on 1 March 2021)
SRDC ResNet-50 https://github.com/huitangtang/SRDC-CVPR2020 (accessed on 1 March 2021)

SymNets: the backbone and implementation of SymNets follows the original de-
scribed in [53]. The feature extractor G is a pretrained ResNet-50 [65] excluding the last FC
layer. The feature extractor G is fine-tuned depending on the dataset and the classifier Cst is
trained from scratch using back-propagation. The learning rate of Cst is 10 times that of G.
The optimization used is SGD with a momentum of 0.9 and batch size of 128. The strategy
described in [53] to update the learning rate (λ) is used. The learning rate is adjusted using
ηp = η0

(1+αp)β , where p is the progress of training epochs linearly changing from 0 to 1,

η0 = 0.01, α = 10 and β = 0.75. λ is gradually changed from 0 to 1 by λp = 2
1+exp(−γp) − 1

and γ = 10 for all the experiments.
RSDA: the backbone network architecture was kept the same as the original RSDA

implementation in [54]. The training is done by alternatively optimizing the network
parameters F, C, D and the parameters φ of the Gaussian mixture models while freezing
one of the sets of parameters. The network is first trained with the basic loss from DANN [6]
Lbas to initialize F, C, and D. The following procedures are then run alternately:

1. Fix F, C, and D and estimate φ: The pseudo-labels ỹt
j are estimated by fixing F, C,

and D and the distance of a sample from the spherical class center for a class ỹt
j is

calculated using the cosine distance. Then, φ is estimated by the EM algorithm [59].
2. Optimizing F, C, and D and fixing φ: With the current pseudo-labels and parameter

φ, F, C, and D are trained as a standard domain adaptation training by the pro-
gressive adversarial training strategy described in [6] with the objective function in
Equation (8).

The feature extractor, F, is set to a ResNet-50 [65] pretrained on Image-Net excluding
the last FC layer. Optimizing F, C, and D is done by SGD with a momentum of 0.9 and
learning rates of C and D and 10 times that of F. Following the method in [6], the learning
rate η and hyperparameter γ are estimated by η = 0.01

(1+αp)β and γ = 2
1+exp(−τp) − 1, where

α = 10, β = 0.75, τ = 10, and p is the optimizing progress that linearly changes from 0 to 1.
The alternating iteration is performed 10 times and each step runs SGD for 5000 steps.

CDAN-GD: for these experiments, the backbone network is a ResNet-50 [65] which is
pretrained on ImageNet, as done in the original paper. The new layers and classifier layers
are trained through back propagation, where the classifier is trained from scratch with the
learning rate set as 10 times that of the lower layers. As with GVB-GD the bridge layer is
built on the generator and discriminator using fully connected layers. The (λ) is set to 1 and
the (µ) is set to 1 to indicate the bridge on both networks. The CDAN is also implemented
with entropy conditioning which prioritizes the discriminator on easy to transfer samples.
For the training process, we employ mini-batch SGD with the momentum of 0.9 and a
weight decay of 0.0005. The learning rate is taken as 0.001 for all the experiments with a
batch size of 16.

GVB-GD: in these experiments, the backbone network is a ResNet-50 [65] which
is pretrained on ImageNet, as done in the original paper. The bridge layer is built on
the generator and discriminator using fully connected layers. In the adversarial training
gradient reversal layer is applied to the network. In the early stages of the training
procedure, a progressive training strategy is applied to suppress noisy signals from the

https://github.com/YBZh/SymNets
https://github.com/XJTU-XGU/RSDA
https://github.com/cuishuhao/GVB/tree/master/CDAN-GD
https://github.com/cuishuhao/GVB/tree/master/GVB-GD
https://github.com/thuml/Universal-Domain-Adaptation
https://github.com/tim-learn/SHOT
https://github.com/huitangtang/SRDC-CVPR2020
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discriminator. For the training process we employ mini-batch stochastic gradient descent
(SGD) with the momentum set to 0.9 and a weight decay of 0.0005. The learning rate is
taken as 0.001 for all the experiments with a batch size of 16. The (λ) is set to 1 and the (µ)
is set to 1 to balance the loss and it indicates that the bridge is implemented on both the
generator and the discriminator.

UAN: the backbone or feature extractor is an ImageNet pretrained ResNet-50 [65]
following what was done in the original paper. The classifier is a 2-layer fully connected
network where the final output layer size depends on the dataset. Both the adversarial and
non-adversarial discriminators are 3 layer FC networks with sigmoid activation function
applied to the final output. While training, the learning rates for both the discriminators
and the classifier was set as 0.001 and that of the feature extractor was set as 0.0001. Training
was done with mini-batch SGD optimizer with momentum of 0.9.

SHOT: in these experiments, the network architecture is the same as described in their
Github implementation. The backbone is a pretrained ResNet-50 [65] where the classifier
layer is replaced with an FC layer of 256 neurons followed by a BN layer. The classifier
layer consists of an FC layer followed by a weight normalization (WN) layer as shown
in Figure 4. We consider a base learning rate of η0 = 10−2 for the backbone and 10 times
the learning rate of the upper level layers. Similar to the original implementation, we
also use the SGD optimizer with 0.9 momentum. We have used a learning rate scheduler
η = η0 · (1 + 10 · p)−0.75 where p is the training process from 0 to 1. We have also set the
hyperparameter β = 0.3.

SRDC: The backbone network is a ResNet-50 [65] which is pretrained on ImageNet,
as done in the original paper. In the backbone network the last FC layer is replaced with
the task specific FC layer to parameterize the classifier. The pretrained layers are fine
tuned, and the new layers are trained where the learning rate of the new layers is 10 times
that of the pre-trained layers. For the training process mini-batch SGD is used with the
momentum of 0.9 and a weight decay of 0.0001. The batch size is taken as 16. For each run,
the best performing clustering model is used as the test model. Additional regularization
is done by performing discriminative clustering in the bottleneck feature space.

6. Results and Discussion

In this section, we compare the performance using the overall accuracy and F1 scores
of the different DA models on the aerial datasets. We also report the confusion matrix and
t-SNE plots for the xView to DOTA domain adaptation scenario.

6.1. Performance Comparison

Tables 5–7 present the performance comparison for all the benchmarking methods.
Each of the methods was executed five times and the mean and standard deviation of the
accuracy was reported. The F1 scores for the methods are also reported as the classes are
not perfectly balanced. F1 score is the harmonic mean of the precision and recall. Precision
is the measure of how many positive predictions are correct. It is defined as the ratio of true
positives over the sum of true positives and false positives. Recall is the measure of the
correct positive cases from all the actual positive cases. It is defined as the ratio of the true
positives over the sum of the true positives and false negatives. Every method except UAN
achieved impressive performance for most of the datasets. For AID to UCM, SymNets
acquires the highest performance gain with the classification accuracy jumped from 81.75%
(before adaptation) to 99.15% (after adaptation). The F1 scores follow a similar trend as the
accuracy scores except for the DOTA to xView adaptation. This may be because training
on a higher resolution dataset, such as DOTA, and then adapting to a lower resolution one,
like xView, is more challenging and leads to a degradation in performance. While being
source free during adaptation, SHOT achieved competitive performance with the other
source dependent methods.
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Table 5. Accuracy and F1 scores comparison of DA Methods before adaptation (Before) and after adaptation (After) for
AID-UCM DA dataset with the best performance in bold.

Method
AID→UCM UCM→AID

Accuracy F1 Score Accuracy F1 Score
Before After Before After Before After Before After

SymNets 81.75 ± 1.25 99.15 ± 0.22 0.83 0.98 75.85 ± 1.03 98.37 ± 0.11 0.79 0.97
RSDA 87.44 ± 1.62 98.67 ± 0.26 0.87 0.99 82.76 ± 0.85 98.15 ± 0.12 0.85 0.98

CDAN-GD 84.53 ± 1.49 97.37 ± 0.26 0.79 0.97 80.43± 1.21 97.20 ± 0.27 0.8 0.97
GVB-GD 84.39 ± 1.02 97.63 ± 0.26 0.84 0.96 81.8 ± 0.40 97.41 ± 0.18 0.79 0.97

UAN 82.44 ± 0.01 84.24 ± 0.32 0.79 0.81 78.41 ± 0.46 85.34 ± 0.08 0.76 0.81
SHOT 83.28 ± 0.80 98.80 ± 0.26 0.80 0.99 77.38 ± 0.78 98.55 ± 0.14 0.76 0.98
SRDC 84.97 ± 0.14 95.57 ± 0.56 0.82 0.96 79.91± 0.94 95.89 ± 0.79 0.76 0.97

Table 6. Accuracy and F1 scores comparison of DA Methods before adaptation (Before) and after adaptation (After) for
NWPU-CLRS DA dataset with the best performance in bold.

Method
CLRS→NWPU NWPU→CLRS

Accuracy F1 Score Accuracy F1 Score
Before After Before After Before After Before After

SymNets 94.42 ± 0.51 98.11 ± 0.17 0.94 0.98 87.81 ± 0.69 95.51 ± 0.43 0.89 0.95
RSDA 94.26 ± 0.66 97.66 ± 0.13 0.87 0.99 89.00 ± 0.53 94.61 ± 0.27 0.89 0.93

CDAN-GD 95.57 ± 0.21 97.14 ± 0.21 0.96 0.98 88.34 ± 1.09 94.51 ± 0.77 0.86 0.95
GVB-GD 96.19 ± 0.36 97.16 ± 0.33 0.97 0.98 89.25 ± 1.67 93.86 ± 0.81 0.91 0.94

UAN 94.29 ± 0.23 91.79 ± 0.11 0.93 0.91 84.48 ± 0.28 90.63 ± 0.10 0.84 0.90
SHOT 94.41 ± 0.25 98.27 ± 0.13 0.94 0.98 87.49 ± 0.39 96.14 ± 0.13 0.88 0.96
SRDC 94.59 ± 0.50 97.68 ± 0.18 0.95 0.98 87.31 ± 0.64 93.51 ± 0.54 0.87 0.93

Table 7. Accuracy and F1 scores comparison of DA Methods before adaptation (Before) and after adaptation (After) for
DOTA-xView DA dataset with the best performance in bold.

Method
DOTA→xView xView→DOTA

Accuracy F1 Score Accuracy F1 Score
Before After Before After Before After Before After

SymNets 65.67 ± 0.52 70.82 ± 0.85 0.66 0.72 69.44 ± 0.56 95.88 ± 0.76 0.68 0.96
RSDA 64.33 ± 1.19 68.44 ± 1.28 0.66 0.71 77.07 ± 1.18 87.93 ± 4.22 0.77 0.93

CDAN-GD 64.74 ± 2.07 75.21 ± 1.22 0.64 0.75 71.84 ± 2.38 83.17 ± 3.28 0.66 0.84
GVB-GD 64.43 ± 2.07 73.41 ± 2.04 0.61 0.76 70.25 ± 1.44 84.84 ± 2.17 0.69 0.73

UAN 62.74 ± 0.17 68.13 ± 0.43 0.61 0.66 68.71 ± 0.22 80.78 ± 0.40 0.68 0.79
SHOT 67.86 ± 0.38 75.36 ± 0.69 0.67 0.73 71.19 ± 1.37 80.46 ± 2.37 0.69 0.79
SRDC 66.44 ± 0.36 70.50 ± 1.39 0.70 0.72 72.39 ± 2.14 84.88 ± 7.13 0.66 0.72

6.2. xView to DOTA Results

In this section, we will discuss the results of the xView to DOTA adaptation in more
detail with the help of confusion matrices (Figures 8–14) and t-SNE plots (Figures 15–21) of
the various DA methods before and after adaptation. The custom xView to DOTA dataset
was chosen for further analysis as there is a significant jump in accuracy from before DA to
after DA for all the methods in this study, with SymNets showing the highest performance
gain. A confusion matrix is used to quantify the performance of a classifier, where each
row corresponds to the actual class and each column corresponds to the predicted class. It
is used to show which classes are confused with each other for a given model, where ideal
performance results in a diagonal matrix.
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While there is an improvement in the performance for all classes across all DA methods,
the most confusion appears to be between small vehicle and large vehicle or between ship
and storage tank. This could be due to the fact that at small resolutions, small and large
vehicles appear similar as do ships and storage tanks.

Figure 8. SymNets results for xView-DOTA dataset, before adaptation (left) and after adaptation (right).

Figure 9. RSDA results for xView-DOTA dataset, before adaptation (left) and after adaptation (right).

Figure 10. CDAN-GD results for xView-DOTA dataset, before adaptation (left) and after adaptation (right).
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Figure 11. GVB-GD results for xView-DOTA dataset, before adaptation (left) and after adaptation (right).

Figure 12. UAN results for xView-DOTA dataset, before adaptation (left) and after adaptation (right).

Figure 13. SHOT results for xView-DOTA dataset, before adaptation (left) and after adaptation (right).
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Figure 14. SRDC results for xView-DOTA dataset, before adaptation (left) and after adaptation (right).

6.3. Feature Visualization

To visualize the features, we make use of t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) [26], which is a dimensionality reduction method used to visualize high-
dimensional data on a 2D or 3D plot. t-SNE works in three steps: first, the similarity
between points in the higher dimensional-space is measured. Next, a distribution that
measures the pairwise distances between points in the lower-dimensional embedding is
calculated. Finally, KL divergence is used to minimize the difference between the probabil-
ity distributions in the higher and lower dimensional spaces to provide the final 2D graph
for visualization.

To visualize features in this benchmarking study, we show t-SNE plots with the
source and target domain features of the network before and after adaptation. Prior to
the adaptation process, the t-SNE plot is obtained when the model is trained only on the
source domain. The t-SNE plot after adaptation is used to visualize the improvement in
the alignment of source and target domain features after the model is adapted to the target
domain. In this section, we show the t-SNE plots for all the DA methods in Figures 15–21,
before and after adaptation on the xView-DOTA dataset which contains five classes, as
outlined in Table 3.

Figure 15. SymNets t-SNE for xView-DOTA dataset, before adaptation (left) and after adaptation (right). Blue points correspond to
source domain (xView), and red points to target domain (DOTA).
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Figure 16. RSDA t-SNE for xView-DOTA dataset, before adaptation (left) and after adaptation (right). Blue points
correspond to source domain (xView), and red points to target domain (DOTA).

Figure 17. CDAN-GD t-SNE for xView-DOTA dataset, before adaptation (left) and after adaptation (right). Blue points
correspond to source domain (xView), and red points to target domain (DOTA).

Figure 18. GVB-GD t-SNE for xView-DOTA dataset, before adaptation (left) and after adaptation (right). Blue points
correspond to source domain (xView), and red points to target domain (DOTA).
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Figure 19. UAN t-SNE for xView-DOTA dataset, before adaptation (left) and after adaptation (right). Blue points correspond
to source domain (xView), and red points to target domain (DOTA).

Figure 20. SHOT t-SNE for xView-DOTA dataset, before adaptation (left) and after adaptation (right). Blue points
correspond to source domain (xView), and red points to target domain (DOTA).

Figure 21. SRDC t-SNE for xView-DOTA dataset, before adaptation (left) and after adaptation (right). Blue points
correspond to source domain (xView), and red points to target domain (DOTA).
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When the domain adaptation process is successful, the source and target domains
have near perfect alignment. From the t-SNE plots of the DA methods, SymNets, RSDA
and SHOT seem to have the best source and target domain alignment after adaptation, as
seen in Figures 15, 16 and 20.

7. Conclusions

We presented a benchmarking study of seven unsupervised domain adaptation meth-
ods (SHOT, RSDA, Symnet, UAN, GVB-GD, CDAN-GD, and SRDC) on three custom aerial
DA datasets. These datasets were created by taking the common classes between AID-
UCM, DOTA-xView, and NWPU-CLRS. We reported the accuracy for each of the methods
considered on the aerial datasets to determine their efficacy. The confusion matrices and
t-SNE plots of the methods on the xView-DOTA dataset were also reported.

For the AID to UCM adaptation, SymNets does the best, while SHOT reports the
most improvement for the UCM to AID adaptation task. For CLRS to NWPU and NWPU
to CLRS adaptation, SHOT shows the best performance. Finally, for the DOTA to xView
dataset, SHOT has highest accuracy, while SymNets does best for the xView to DOTA
adaptation. Overall, SHOT and SymNets are the best performing models for the task of
aerial domain adaptation. This is further evidenced by observing the confusion matrix
of SymNets for the xView to DOTA adaptation, where after adaptation, the diagonal
gets stronger. The t-SNE plots of SymNets and SHOT both show good alignment of the
source and target domains after adaptation, which is further evidence of the efficacy of
these methods.
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