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Abstract: This article presents a method for detecting rotational speed by LC (inductor-capacitor)
wireless sensors. The sensing system consists of two identical LC resonant tanks. One is mounted on
the rotating part and the other, as a readout circuit, is placed right above the rotating part. When
the inductor on the rotating part is coaxially aligned with the readout inductor during rotation, the
mutual coupling between them reaches the maximum, resulting in a peak amplitude induced at the
readout LC tank. The period of the readout signal corresponds to the rotation speed. ADS (Advanced
Design System) software was used to simulate and optimize the sensing system. A synchronous
detection circuit was designed. The rotational speed of an electric was measured to validate this
method experimentally, and the results indicated that the maximum error of the rotation speed from
16 rps to 41 rps was 0.279 rps.

Keywords: rotational speed; inductive coupling; LC sensor; wireless sensor

1. Introduction

The accurate and continuous detection of rotation speed is very important in indus-
tries since it is a key parameter in the condition monitoring and control of rotating parts
such as generators, electric motors, and machine tool spindles. The speed information
of the rotating part can reflect whether its working state is normal, so it is essential to
measure the rotational speed in real time. Hence, various rotation speed sensors have been
developed. The basic technology in such sensors is based on optical reflections, magnetic
field variation or charge variation. In optical reflection measurement [1,2], the rotation
of the rotating parts causes the wavelength of the grating to change periodically. The
rotational speed is obtained by measuring the change period of the wavelength. In the
measurement of magnetic field variation [3–5], a magnet is usually installed on the rotating
parts. When they rotate, the magnet causes a variation in the magnetic field that can be
detected by a magnetic sensor, and the variation is converted to a square wave signal.
In charge variation measurement [6–9], electrostatic electrodes are utilized to detect the
electrostatic charge on the surface of rotating structures due to relative movement with
air. In fiber measurement [10], an all-fiber rotation speed measurement structure based on
dual-beam speckle interference has been proposed. In triboelectric measurement [11], a
self-powered drill pipe sensor that can measure the rotation speed and direction based on
triboelectric nanogenerators has been proposed. However, these measurement methods
have their strengths and weaknesses during operation in industrial environments, in terms
of accuracy, range, and suitability for applications in a hostile environment. Table 1 lists
the specifications of the current rotational speed sensors. For magnetic field variation
measurement, the response time of the magnetic sensor to the magnetic field variation is
long, and therefore its measurement range is limited. For charge variation measurement,
it is difficult to operate in humid environments. Fiber measurement requires complex
instruments. This paper presents and demonstrates an alternative approach to detect
rotational speed using an LC wireless sensor. LC wireless passive sensors have been widely
developed in industrial applications [12–20]. They have the advantages of wireless mea-
surement, low cost, and suitability for hostile environments [21]. In contrast to traditional
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LC wireless passive sensors, where only one LC tank is used and the sensing capacitance
is measured in response to parameters of interest, the system for measuring rotational
speed consists of two identical LC resonant tanks, where both L and C are fixed during
the measurement. One tank is mounted on the rotating part and the other, as a readout
circuit, is placed directly above the rotating part. Here, series matching capacitors in the
readout circuit (i.e., the readout LC resonant tank), are added so that the non-distortion
of the synchronous detection signal can be obtained [22]. Compared with the methods
listed in Table 1, the LC synchronous detection method proposed in this article has the
proper measurement range for industrial environments (e.g., humid environments). In
Section 2, the operation principle of the rotational speed measurement system is presented.
In Section 3, ADS software is used to simulate the measurement system. The matching
capacitance, the coupling distance, and the effect of component deviations are simulated
and optimized. In Section 4, different rotational speeds of an electric fan are experimen-
tally measured. To validate this method, an LED (light-emitting diode) optical method of
measuring the rotation speed is also performed and compared with the proposed method.
Finally, the maximum measurement rotational speed is estimated.

Table 1. Current rotational speed sensors.

Reference Year Measuring Range Error

Didosyan et al. [1] 2003 mrad/s area /
Wu et al. [4] 2016 0 rps~16.67 rps 3%

Wang et al. [7] 2015 1.67 rps~50 rps ±1.2%
Li et al. [8] 2019 5 rps~53.3 rps ±0.05%

Chen et al. [9] 2020 1.67 rps~5 rps /
Chen et al. [10] 2021 7.75 rps~45.68 rps 0.5%
Zhou et al. [11] 2021 0 rps~16.67 rps 4%

2. Principle of Rotational Speed Measurement

Figure 1a is the schematic circuit diagram of a traditional LC wireless passive sensor.
Its input impedance is written as [12]:

Zi = RO + RS + jωLO +
M(t)2ω2

RS +
1

jωCs
+ jωLS

(1)

where RO and LO are the resistance and inductance of the readout coil; LS and CS are the
inductance and capacitance of the LC sensing tank; RS is the parasitic resistance of the
coil; and ω is the angular frequency, respectively. M(t) is the mutual inductance of the
two inductors. The traditional LC sensors usually use the capacitor as a sensitive unit,
but the capacitance sensing principle is not suitable for rotational speed measurements.
The rotation of the rotating structure will cause the coupling coefficient between the two
inductors to change periodically. Therefore, the method in Figure 1b is used here to extract
the change period of the rotating structure to measure the rotational speed. The mutual
inductance is given by:

M(t) = k(t)
√

LOLS (2)

where k(t) is the coupling coefficient between the two inductors. It is constant in the
traditional LC wireless passive sensor. For the rotation speed measurement system, the
coupling coefficient k(t) is determined by the position between the readout coil and the
sensor coil. Since the readout coil is fixed and the sensor coil rotates at the angular velocity
to be measured, their relative positions change with time. Therefore, the coupling coefficient
k is a time-dependent function, which is written as k(t). Figure 1c is the schematic diagram
of the measurement principle, and Figure 1d is the experimental set-up corresponding to
Figure 1c.
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Figure 1. Operation principle of the rotational speed measurement based on a LC wireless sensor: (a) schematic circuit
diagram of a traditional LC wireless sensor; (b) schematic circuit diagram of a traditional modulation voltage measurement;
(c) schematic circuit diagram of the readout loop with a matched capacitor; (d) 3D modeling of the LC rotational speed
measuring system.

Using the following substitutions:

ωS = 2π fS =
1√

LSCS
(3)

Q =
1

RS

√
LS
CS

, (4)

where fs and Q are the resonant frequency and the quality factor of the LC sensing tank,
respectively, the real part Re(Zi), the imaginary part Im(Zi), and the phase φZ of the input
impedance Zi can be expressed as:

Re(Zi) = R0 + RS + 2πL0k(t)2Q
f f

fS

1 + Q2
(

f
fS
− fS

f

)2 , (5)

Im(Zi) = 2π f L0

1 + k(t)2Q2
1−

(
f
fS

)2

1 + Q2
(

f
fS
− fS

f

)2

 (6)

ϕZ = arctan
Im(Zi)

Re(Zi)
(7)

Near the resonant frequency, the real part reaches a maximum and the phase reaches
a minimum [12]. Therefore, in the traditional LC wireless passive sensor, the sensing
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capacitance in the LC sensing tank can be measured by the resonant frequency through
monitoring the real part or the phase of the input impedance based on the frequency
sweep [17]. In the rotational speed measurement, the LC sensing tank is mounted on the
rotating parts, as shown in Figure 1b. Both L and C are fixed during the measurement, and
k(t) = k(t + T), in which T is the rotation period. Therefore, it is necessary to scan the
frequency during the rotation, presenting a challenge in readout circuits. In this paper, we
use the principle of amplitude modulation. As shown in Figure 1b, an AC voltage source
with a single-frequency signal ωs is applied to the input:

us = UscosωSt (8)

Then, the output voltage across the series resistor RO will be an amplitude modulation
signal. It is written as [18]:

.
uO =

.
us√

(RO + RS +
M(t)2ω2

S
Rs

)
2
+ (ωSLO)

2

∠ϕZ (9)

Unfortunately, this produces an additional phase φZ dependent on the rotational
speed, causing the demodulated signal to fluctuate with the phase. In order to avoid
this problem, the scheme in Figure 1c is proposed. A matching capacitor CO is added
in the readout coil so that the readout and sensing LC tanks have the identical resonant
frequency: ωO = 1√

LOCO
= ωS. Under the circuit configuration, the output voltage across

the series resistor RO is currently written as:

.
uO =

.
us

RO + RS +
M(t)2ω2

S
RS

∠0◦ (10)

Considering that k(t) = k(t + T), in which T is the rotation period, it is clear from
Equations (2) and (10) that the rotational speed can be easily demodulated from the output
voltage across the series resistor RO. According to Equation (10), the output signal at both
ends of the reference resistor RO is used as the modulation signal. The change frequency of
the mutual inductance M(t) is used for the message frequency, and then the input signal
of the signal source in Equation (8) is used as the local oscillation signal. The frequency
of the local oscillation signal is used for the carrier frequency. The demodulation method
used here is product synchronous detection [18].

3. Simulation

Synchronous detection requires that a high-frequency carrier has the same phase as
the amplitude-modulated signal. To optimize our design, ADS software is used here to
simulate the measurement system. The matching capacitance, the coupling distance, and
the effect of component deviations are simulated and optimized. Figure 2 is the schematic
diagram of the ADS simulation, in which the readout coil (red) has a fixed position, whereas
the sensor coil is rotating (blue). The impedance across the readout coil can be simulated
by changing the position of the blue coil according to the rotation track. Table 2 lists the
parameters used for simulation.

3.1. Matching Capacitance

To observe the effect of matching capacitance on the phase of the impedance, the
output signal without the matching capacitance, as shown in Figure 1b, is also simulated
for comparison. The LC sensing tank coil and the readout coil are set to 16 turns, with an
inner diameter of 1.2 cm, a wire diameter of 0.2 mm, and a conductor gap of 0.067 mm. The
matching capacitance and LC sensing tank capacitance are both set to 20 pF. The reference
resistance RO is set to 1 ohm, and the series resistance of the coils, RS, is set to 0.3 ohm. The
axial distance between the coils is set to 1.7 cm. The turning radius is set to 1.5 cm. The
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external signal source is taken as a sine wave voltage of ωO = ωS = 15.44 MHz with initial
zero-phase. The rotation angle of the LC sensing tank relative to the readout coil ranges
from 0 rad to π rad with step π/4 rad. The simulated impedance phase as a function of
rotation angle is shown in Figure 3.
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Table 2. Circuit simulation parameters.

Symbol Quantity Parameter Value

LS sensor inductance 5 µH
LO readout coil inductance 4.97 µH
CS sensor capacitance 20 pF
CO readout coil capacitance 20 pF
d coupling distance 1.7 cm

RO reference resistance 1 ohm
RS inductance DC resistance 0.3 ohm
f 0 signal source frequency 15.960 MHz
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In order to understand the influence of the matching capacitor on the amplitude
of the demodulated waveform, the impedance without and with matching capacitor is
respectively given by:

Znc = Re + jIm (11)

Zc = Re (12)

Here

Re = RO + RS +
M(t)2ω2

S
Rs

(13)

Im = ωSLS (14)

The change of the demodulated signal amplitude (Uc with the matching capacitor
and Unc without the matching capacitor) with respect to the real part of the impedance is
given by: ∣∣∣ dUc

dRe

∣∣∣∣∣∣ dUnc
dRe

∣∣∣ =
∣∣∣∣∣∣∣∣∣

(
Re2 + Im2)3/2 1√

1+ Im2
Re2

Re3 − ReIm2

∣∣∣∣∣∣∣∣∣ (15)

It is clear from Equation (15) that the demodulated waveforms with the matching
capacitor are more sensitive to real part changes than those without the matching capacitor.
Therefore, the introduction of the matching capacitor can make the demodulated waveform
more sensitive to change in mutual inductance.

The solution with the matching capacitor in the readout coil has a smaller impedance
phase than that without the matching capacitor. According to the principle of product syn-
chronous detection [21], the excitation source voltage is used as the current seismic signal
to be multiplied by the output signals, and a low-pass filter is then used to eliminate the
two times frequency component. This requires that the phase of the amplitude modulation
signal across the reference resistor is zero.

3.2. Coupling Distance

The simulated coupling axial distance ranges from 1.5 cm to 1.9 cm with a step
of 0.1 cm, and other parameters are listed in Table 1. Figure 4 shows the amplitude of
impedance as a function of rotation angle under different coupling distances. It can be seen
from Figure 4 that the amplitude decreases as the coupling distance increases. This means
that the coupling distance affects the modulation depth of the amplitude-modulated signal.
If the coupling distance is too large, the amplitude change of the modulated signal will be
insignificant. Therefore, an appropriate coupling distance is needed in order to observe the
obvious amplitude modulation effect.

3.3. Component Deviations

In practical measurements, there are parameter errors in components. To simulate the
effect of component deviations, the excitation source signal is still taken as ωO = ωS. The
component parameter errors appear only in the LC sensing tanks. The capacitance relative
error and the inductance relative error are defined as δC and δL, respectively. Figure 5
shows the simulated impedance phase as a function of rotation angle under different
component errors. The relative position of the coil is set to change from 0 to π every
π/4. The capacitance error in the simulation is set to −2% to 2%, and the error interval is
1%. Figure 5a shows that the input impedance will produce extra phase when there is a
deviation between the sensor coil and the readout coil matching capacitor. The inductance
error in the simulation is set to −2% to 2%, and the error interval is 1%. Figure 5b shows
that the input impedance will produce an extra phase when there is a deviation between
the sensor coil and the readout coil inductor. Figure 5 shows that both the capacitance
error and the inductance error cause the additional phase of the impedance. As discussed
above, the additional phase results in the waveform distortion of the synchronous detection.
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Therefore, in order to achieve the minimum waveform distortion, the capacitance and
the inductance in the LC sensing tank and the LC readout tanks are selected as equally
as possible.
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4. Experiments and Results

The rotational speed measurement system is shown in Figure 6. In Figure 6a, the
black cylinder represents the rotating structure. The sensor coil (yellow) was installed on
the rotating structure. At the same time, the LED speed measurement method was used
here to calibrate the accuracy of the speed measurement. Therefore, the LED reflective
material (blue) was also installed on the rotating structure. The readout coil was composed
of an inductor, a capacitor, and a reference resistor to form an LCR series loop. An AC
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voltage source was used to provide a stable sinusoidal signal to the readout coil circuit, and
the signal frequency was the series resonance frequency of the LCR circuit. The voltage
signal across both ends of the reference resistor was used as the modulation signal, and
the signal from the AC voltage source was used as the carrier signal. Then, the modulated
signal and carrier signal were respectively connected to the multiplier. Finally, the low-pass
filtering method was used to eliminate the high-frequency carrier in the output signal of the
multiplier, and the oscilloscope displayed the demodulated waveform containing the speed
information. Figure 6b shows a photo of the experimental set-up. In our experiments, both
readout and sensing coils were copper planar loop coils. They were wound by a winding
machine with inner and outer diameters of 1.2 cm and 2.0 cm, respectively. After the
winding, the insulating electronic glue reinforced the two coils, and the constant capacitors
were soldered to the coils. Finally, the LC sensing tank was mounted on an electric fan
controlled by DC voltage. The resonant frequency of the two LC tanks was measured to be
15.960 MHz by a vector network analyzer (N5224 PNA, Agilent). The coaxial distance of
the two coils was 1.7 cm. In the measurement system, the analog multiplier was an AD835.
The −3 dB frequency of the low-pass filter was 10 MHz. The rotational speed was adjusted
by changing the DC supply voltage of the electric fan. The supply voltage increased from
4 V to 12 V by a step of 0.5 V. When the test was carried out, the carrier signal and the
measured voltage signal across the reference resistor were first multiplied by a multiplier
and then filtered by a low-pass filter to remove the high-frequency carrier.
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The measured voltage signal across the reference resistor is shown in Figure 7a for the
coaxial coupling distance of 1.4 cm at two different rotation speeds, where the waveform
diagrams at the speeds of 9.4 rps and 15 rps are represented by the blue line and red
line, respectively. Figure 7b is for the rotation speed 9.4 rps under two different coaxial
coupling distances, where the waveform diagrams at the distances of 1.4 cm and 2 cm are
represented by blue and red, respectively. Figure 7 shows that the factors affecting the
amplitude modulation signal not only included the coupling distance but also the jitter and
background noise of the rotating structures. So it was necessary to perform synchronous
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detection on the amplitude modulation signal, and only the changing waveform of the
amplitude was required.
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Figure 8 shows the demodulated voltage waveforms in the oscilloscope for different
rotation speeds. Since the input impedance Zi of the circuit reached a maximum when the
readout coil and the sensor coil were aligned, the voltage across the reference resistor RO
reached its minimum value. In the signal waveform after demodulation, the minimum
value of the voltage corresponded to the lowest point of the demodulated signal waveform.
The time interval between the lowest points of the two signals corresponded to the rotation
period. Compared with the results in Figure 7, the high-frequency carrier signal and
background noise were well-suppressed. It is obvious that the signal period decreased as
the rotation speed increased.
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Figure 8. The demodulated voltage signal as a function of time for different rotation speeds in
the oscilloscope.

To calibrate our measurement results, the output frequency of the proposed system as
a function of the rotational speed, measured by the LED method, is shown in Figure 9. It
can be seen that the slope is 1.02 ± 0.006 Hz/rps.
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Figure 9. The measured output frequency as a function of rotational speed obtained by the LED
detection method.

Figure 10 shows the rotational speeds measured by our synchronous detection method
and by the LED detection method for different DC voltages of the electric fan, respectively.
Since the rotating structure is a DC-controlled electric fan, it cannot display its own speed
information in real time, so we used the traditional LED measurement method to verify
the accuracy of the synchronous detection measurement results. The maximum error was
only 0.279 rps compared to the LED detection method. However, the rotational speed
measurement based on the LC wireless sensor has the advantages of low cost and suitability
for hostile environments. The main specifications for the LC rotational speed measurement
method are given in Table 3.
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Table 3. The specifications of the LC rotational speed measurement method.

Measuring Range Maximum Error Linearity

16 rps~41 rps 0.279 rps 1.02 ± 0.006 Hz/rps
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5. Discussion

The simulation and experimental results indicate that the main factors affecting the
demodulation waveform were the component deviations between the readout coil and
the sensor coil as well as the distance between them. The component error (the inductors,
the capacitors, and the additional magnetic permeability introduced by the magnetic parts
to the inductors) between the two coils will produce the additional imaginary part of the
input impedance, which results in the phase difference between the carrier signal and
the modulation signal, so the demodulated waveform will produce random fluctuations.
The coil spacing will affect the size of the demodulated waveform fluctuations, which
means that if there is a vibration in the coil’s axis in the experiment, the demodulated
waveform will also fluctuate randomly. Therefore, the component error and the axial
vibration between the coils should be avoided as much as possible in the experiment.
In our experiments, the maximum error of the rotation speed from 16 rps to 41 rps was
0.279 rps. Since metal can shield electromagnetic signals [20], the impact of metal in the
measurement environment should be avoided.

6. Conclusions

In summary, this paper proposed and demonstrated a rotation speed measurement
method based on an LC wireless passive sensor. By introducing the same capacitor in the
readout loop as the sensing loop, the rotation speed could be easily demodulated by the
synchronous detection. Experimental results showed that the method had a high accuracy
and could measure high rotation speeds. The results also suggest that rotation speed
measurement based on LC wireless sensors has the advantages of low cost, suitability for
hostile environments, and suitability for non-conducting parts.
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