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Abstract: Organophosphates (OPs) are neurotoxic agents also used as pesticides that can permanently
block the active site of the acetylcholinesterase (AChE). A robust and sensitive detection system of
OPs utilising the enzyme mimic potential of the cysteamine capped gold nanoparticles (C-AuNPs)
was developed. The detection assay was performed by stepwise addition of AChE, parathion ethyl
(PE)-a candidate OP, acetylcholine chloride (ACh), C-AuNPs, and 3, 3′, 5, 5′-tetramethylbenzidine
(TMB) in the buffer solution. The whole sensing protocol completes in 30–40 min, including both
incubations. The Transmission Electron Microscopy (TEM) results indicated that the NPs are spherical
and have an average size of 13.24 nm. The monomers of C-AuNPs exhibited intense catalytic activity
(nanozyme) for the oxidization of TMB, revealed by the production of instant blue colour and
confirmed by a sharp peak at 652 nm. The proposed biosensor’s detection limit and linear ranges
were 5.8 ng·mL−1 and 11.6–92.8 ng·mL−1, respectively, for PE. The results strongly advocate that
the suggested facile colorimetric biosensor may provide an excellent platform for on-site monitoring
of OPs.

Keywords: acetylcholinesterase inhibitors; pesticide intoxication; colorimetric biosensor; neurotoxin;
nanozyme; parathion ethyl

1. Introduction

Organophosphates (OPs) are commonly used as chemical warfare agents and pesti-
cides in developing countries due to their low cost, wide availability, and high potency [1,2].
Due to their inclusive efficacy as insecticides (methyl parathion, chlorpyrifos), herbicides
(glyphosate, diuron), nematicide (carbofuran, carbaryl), and fungicides (imazalil, thiaben-
dazole); the OP pesticides have extensively been applied in agricultural pest control. The
residues of the OPs, which have a long persistence in the natural environment, pose a
severe threat to terrestrial and aquatic animals [3]. Even low-dose exposures of OPs for
a long time can induce adversative health effects on fauna [4]. According to the U.S. En-
vironmental Protection Agency, OPs are highly toxic and categorized as the most toxic
“Class 1” compound [5,6]. The presence of OPs leads to the malfunctioning of the central
and peripheral nervous system by blocking the active site of AChE (EC 3.1.1.7), a prime
functioning enzyme of the nervous system and the neurotransmitters. The enzyme controls
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the level of acetylcholine (ACh) by catalysing it into choline and acetate at the synapse,
which leads to the culmination of neurotransmission. Accumulation of ACh interferes with
muscular functions, respiration, fluctuation in blood pressure, myocardial abnormalities,
seizures, and ultimately death [7,8].

A number of approaches have been adopted to detect the OPs as mentioned in the
Table 1. Detection of OP compounds has been traditionally performed with analytical
methods such as gas chromatography (GC) [9], high-performance liquid chromatography
(HPLC) [10], capillary electrophoresis [11], surface plasmon resonance [12], fluorimetry [13],
and spectroscopic methods [14,15]. Although these techniques have been standardized,
none of these methods is suitable for on-site monitoring and rapid detection of OPs [16].
Biosensor-based detection of neurotoxins has the potential to be easy, rapid, cost-effective,
portable, specific, and highly sensitive without the need for lengthy procedures [7]. Electro-
chemical biosensors for OPs detection have proven successful biosensing methods because
of simple instruments, high reliability, and compatibility with complex samples [17,18].

Among biosensing detection methods, enzyme-based biosensors can be an excellent
alternative for detecting insecticides and pesticides, including OPs, because these toxins
are enriched with compounds that can block the diverse enzymes of insects and pests [19],
including AChE. Oxidase mimicking materials such as MnO2 nanosheets and surface-
modified cerium oxide nanoparticles have been used to generate signals for detection of
OPs by colorimetry via TMB oxidation [20,21]. TMB, nanozymes, and hydrogen peroxide
(H2O2) based colorimetric detection systems have been employed in prior works [22–24].

The term “nanozyme” was coined first time to describe gold nanoparticles (AuNPs)
possessing the capability of transphosphorylation [25]. Nanozymes are those nanoma-
terials capable of mimicking the functions of enzymes [26] as these easy-to-synthesise
materials exhibited higher stability than proteins under harsh conditions [27,28]. Con-
sequently, their applications in environmental monitoring [29,30] are highly desirable.
Enzyme mimicking materials can be categorized into two classes, oxidoreductases and hy-
drolases [31]. Colorimetric nanozyme based biosensing of OPs is a simple approach due to
the on-site monitoring of these compounds with naked eyes, and without the requirements
of readout instrument.

Table 1. Summarizes different methods that are devised for the detection of OP compounds.

Method Linear Range
(ng·mL−1)

LOD
(ng·mL−1) Target Analyte References

1 LC-MS (Conventional) – 0.5 Glyphosate [32]

2 Enzyme-linked immunosorbent assay
(Conventional) 0.44–8.48 0.19 Parathion [33]

3 3QD based sensor (Fluorescence) 25–3000 18.0 Parathion-Methyl [34]
4 Biosensor using MPH enzyme (Optical) 0–26, 312 1052.8 Parathion-Methyl [35]
5 Fe3O4 imprinted polymers (Conventional) 15–2500 5.2 Parathion-Methyl [36]

6 MIP-B-TiO2NRs- Voltammetry
(Photoelectrochemical) 0.01–100 7.4 × 10−3 Chlorpyrifos [37]

7 AuNCs-MnO2 based system (Fluorometric and
colorimetric) 0.125–750 0.125 Carbaryl [38]

8 AChE/AuNPs based system (Electrochemical) 0.01–1.0 2.78 × 10−5 Malathion [39]

9 RB-AuNPs based system (Colorimetric and
fluorescent) 969.2–3632.5 8.965 Ethoprophos [40]

10 Aptamer-AuNPs (Colorimetric) 21.31–2130 2.1 × 107 Omethoate [41]

In the current study, the peroxidase-like activity of C-AuNPs was exploited to detect
PE by a convenient colorimetric assay. C-AuNPs were able to produce some definite colori-
metric response with a chromogenic agent (TMB). Additionally, the C-AuNPs provided
indirect indication about functional and non-functional states of AChE. The distinctive fea-
ture of the developed method is that naked-eye detection of PE is plausible by monitoring
the colour of the reaction.
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2. Materials and Methods

AChE (from Electrophorus electricus), ACh, gold salt (HAuCl4·3H2O), and PE were
purchased from Sigma Aldrich, St. Louis, MO, USA. TMB was obtained from MOSS Inc.,
Chicago, IL, USA. All chemicals were of analytical grade and used as received.

2.1. Synthesis of C-AuNPs

Standard and working solutions of HAuCl4·3H2O, cysteamine, and sodium borohy-
dride (NaBH4) were prepared using Milli Q water (18.25 MΩ·cm) in volumetric flasks.
C-AuNPs were synthesized by adopting the method, with necessary modifications elabo-
rated by Ren et al. [42]. Briefly, 1.42 mM solution (40 mL) of HAuCl4·3H2O was sonicated
for 5.0 min and mixed with 400 µL of cysteamine solution at a concentration of 213 mM,
followed by continuous stirring at 500 rpm for 20 min in an amber flask. A capping solu-
tion consisting of 10 mM (10 µL) NaBH4 was added and kept at constant stirring for an
additional 30 min at room temperature. To remove the unreacted species and unbound
cysteamine ligands from colloidal C-AuNPs, the solution was centrifuged at 12,000 rpm
at room temperature for 20 min. The supernatant was removed, and the pellet was re-
suspended in Milli Q water (18.25 MΩ·cm). After confirmation of successful synthesis of
C-AuNPs via UV-Vis, the colloidal solution was stored at 4 ◦C to avoid further aggregation.

2.2. Characterization of the C-AuNPs

The colloidal solution of 100 pM was used for the UV-Vis and Zeta potential analysis
of C-AuNPs. Absorption measurements were performed with Nanodrop UV-Vis Spec-
trophotometer (Thermo Scientific, Loughborough, UK). A wavelength range of 300–800 nm
with an increment of 0.5 nm was applied to absorb UV-Vis at room temperature. Surface
charge density (Zeta potential) was measured with a zeta sizer (Malvern Zetasizer, Nano
ZS-90, Malvern, UK) by using disposable cells DTS 1070. Average surface charge density
was calculated by taking a mean of three measurements. TEM at 197 kV was performed on
a JEOL TEM 2100 LaB6 thermionic gun, USA. The samples for TEM analysis were prepared
by adopting the drop-casting method. ImageJ software was employed to obtain the average
size by generating a histogram of C-AuNPs.

2.3. Optimization of Reagents and Reactions

The factors involved in the enzymatic hydrolysis of ACh and the chromogenic reaction
(oxidation) of TMB by C-AuNPs were optimized. These include the pH for enzymatic
and chromogenic reactions, incubation time for enzymatic hydrolysis, and the respective
concentrations of ACh, TMB, and C-AuNPs. Relative absorbance ∆A (∆A = A0 − A) was
used for the optimization, where A0 and A are the absorbances at 652 nm in the absence
and presence of AChE respectively. Details of the optimization procedure are reported in
the Supplementary Materials (Sections S1 and S2).

2.4. Protocol for AChE Assay via TMB Oxidation

To determine the hydrolysis of ACh by AChE, stock solution (0.5 U·mL−1) and work-
ing solution (2.0 m U·mL−1) of AChE were prepared using 20 mM Tris–HCl buffer (pH 7.5).
Similarly, working solutions of ACh (4.0 mmol·L−1) and TMB (0.4 mmol·L−1) were made
using Milli Q water and 100 mM sodium acetate buffer (pH 4.0), respectively. The assay
was established by pipetting 50 µL of Tris-HCl buffer (100 mM, pH 7.6), 25 µL of AChE
(2 mU·mL−1), and different concentrations of 20 µL ACh in a micro-centrifuge tube and
incubated for 20 min at 37 ◦C. Then 50 µL of sodium acetate buffer (100 mM, pH 4.0), 25 µL
of 0.4 mmol·L−1 TMB, 20 µL of C-AuNPs colloidal solution (100 pM), and 20 µL of the
above solution were mixed thoroughly. The UV-Vis spectrums of the resultant solutions
were measured, and the decrease in absorption at 652 nm depicting the aggregation effect
of choline as an enzymatic product of AChE activity was measured.
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2.5. Protocol for Sensing of Parathion Ethyl by C-AuNPs Probe

The insecticide (PE) was utilized as a candidate OP that potentially inhibits the
functionality of AChE. Since OPs are neurotoxins, all the experiments were performed
under the standard biosafety and chemical safety procedures with appropriate personal
protective equipment (PPE). Different dilutions of PE (20, 40, 60, 80, 100, 200, 300, and
400 nM) were prepared by ethyl alcohol (95%). The 50 µL of Tris-HCl buffer (100 mM, pH
7.6), 25 µL of AChE (2 mU·mL−1), and different dilutions of PE (25 µL) were mixed and
incubated for 10 min at 37 ◦C. Then 20 µL of ACh (4 mmol·L−1) was added to each sample,
and the reagents were incubated for an additional 20 min. Then, 20 µL of sodium acetate
buffer (100 mM, pH 4.0), 25 µL of 0.4 mmol·L−1 TMB, 25 µL of C-AuNPs (100 pM), and
20 µL of the above solution were dispensed using a micropipette. The UV-Vis spectra of
the resultant solutions were recorded by an increase in the absorption at 652 nm, which
was directly proportional to the concentration of PE. The inhibition efficiency (IE%) was
calculated using the formula noted in the Supplementary Materials (Section S3). To work
out the cross-reactivity of the designed probe, environmental contaminants such as PFOS,
PFOA, GenX, cancer-causing agent imidazole, and other toxins were introduced at the
concentration of 100 nM.

The overall methodology of the current study is summarized in Figure 1.
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Figure 1. Schematic representation of colorimetric detection of PE via C-AuNPs. Step 01 represents the effect of PE on the
formation of choline. Step 02 represents the oxidation potential of dispersed and aggregated C-AuNPs.

3. Results and Discussion
3.1. Characterization of Cysteamine Capped AuNPs

The UV-Vis absorbance spectra showed a characteristic sharp peak at 530 nm for
the C-AuNPs due to the strong surface plasmon resonance (SPR) of these plasmonic NPs
(Figure 2). The narrow SPR band of NPs is associated with the spherical mono-disperse
materials [43]. Ganapuram et al. and Sobczak-Kupiec et al. observed similar maxima of
SPR peaks for AuNPs [44,45]. The mono-dispersed nature of the C-AuNPs was further
established by a high positive surface charge (+39.4 ± 2.05 mV), which contributes to the
stability of these NPs because of the electrostatic repulsion of the highly positive surfaces
minimizing aggregation. Similarly, the positive charge also signifies the presence of amine
groups (NH3

+ group) on the surface of these NPs as a capping agent [42,46].
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TEM micrograph of Figure 3a illustrates that nearly every particle is spherical with
smooth surfaces. The C-AuNPs overlap with each other rendering the assembly of the ploy-
dispersed NPs, representing an extensive network of small particles which is in agreement
with the mono-dispersed NPs shown in TEM scans presented by Shah et al. [47]. As sample
preparation for TEM analysis was done by the drop-casting method, so mono-dispersed
NPs are getting interconnected, contributing to agglomeration. Evaporation of water from
the sample leads to the unexpected agglomeration of the sample on the TEM grid due to
surface tension during the air-drying step, though it is a temporary clustering [48,49], Since
these bond formations are reversible, the shape and size of the individual NPs remain
unchanged [50]. According to the histogram (Figure 3b), the average size of these NPs are
only 13.24 nm which shows the application potential of this miniature size C-AuNPs, since
smaller NPs have robust and better activity compared to large size AuNPs [51–53].
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3.2. Optimization of Reagents and Reactions

The AChE maximally hydrolyzed ACh (4.0 mmol·L−1) after incubating for 20 min
with Tris HCl buffer (pH 7.6) as a reaction medium sketched in the Supplementary Ma-
terials (Section S1). The 100 pM of C-AuNPs best oxidized the 0.4 mmol·L−1 TMB in
acetate medium (pH 4.0) see Supplementary Materials (Section S2). Recently, Yan et al.
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and Sun et al. considered the optimization of concentrations of reagents, pH of buffer
solutions, and incubation milieus as preliminary experiments for the development of a
successful colorimetric assay [20,54]. The C-AuNPs have easy synthesis protocols, have
more substantial catalytic power, and C-AuNPs + TMB assay needs less incubation time,
making the overall process simple, easy, and quick.

3.3. AChE Assay via TMB Oxidation

The peroxidase-like activity of C-AuNPs and the adverse effect of choline on the
catalytic capabilities of these nanozymes were studied by utilizing TMB as a typical peroxi-
dase substrate [55]. The red spectra in Figure 4a represent the UV-Vis spectra of C-AuNPs
with a maximum peak at 530 nm. The aqua colour spectra with very shallow peaks at
370 nm and 652 nm are the UV-Vis spectra of colourless TMB where the dark blue spectra
were obtained when C-AuNPs were incubated with TMB, in the presence of H2O2. The
incidence of two sharp peaks confirmed the oxidation of TMB at 370 nm and 652 nm as
shown in dark blue spectra. A noticeable change in the colour of TMB (colourless to intense
blue) further confirms the oxidation of TMB within 60 sec at room temperature. This
instant oxidation of TMB demonstrates the nanozymic nature of C-AuNPs and indicates
the potential of the C-AuNPs + TMB system for the development of a quick monitoring
assay. A similar observation was reported earlier by Liu et al. [56]. The inset figure of
Figure 4a shows the colloidal solution of C-AuNPs (wine red), TMB (Colourless), and
oxidized TMB (oxTMB) (Intense blue).
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To analyse the effects of choline on the C-AuNPs + TMB system, the possible combina-
tions of the enzyme (AChE) and substrate (ACh) were made to rule out the false-negative
results and ratify the proposition that the presence of choline induces aggregation in C-
AuNPs. Results obtained by these combinations suggest that the TMB is being oxidized in
all combinations where both reagents, i.e., substrate and enzyme, are not present together.
The prominent peaks at 370 nm and 652 nm, as shown in Figure 4b, confirm the presence
of oxTMB. The oxidation of TMB advocates for the existence of well-dispersed C-AuNPs.
On the other hand, when both AChE and ACh are present, the TMB oxidation was not
significantly observed, which is indicated by the colourless reagent in the inset diagram
of Figure 4b, and further confirmed by the spectra with no significant peaks (Figure 4b).
Thus, to produce choline, both the substrate and enzyme should be present with all other
required conditions and the presence of choline induced aggregation in C-AuNPs.

The aggregation of C-AuNPs due to choline has also been reported by El et al. [57].
The reason behind this aggregation depends upon the deprotonation of cysteamine under
the influence of pH. Capping agents (amine groups) of C-AuNPs are being deprotonated
at alkaline pH [58]. The positively charged choline acts as a bridge among deprotonated
C-AuNPs and leads to the aggregation of these NPs. The aggregated form of C-AuNPs
loses its catalytic activity and is unable to catalyse the oxidization of TMB. Depending
upon the pH of the medium, cysteamine exists in three ionic forms: the positively charged
form (cys+), the zwitterionic form (cys-ZW), and the negatively charged form (cys-) [59].

To study the effect of PE on the above-discussed C-AuNPs + TMB system, PE was
introduced to block the enzymatic activity of AChE. The presence of PE in the reaction
mixture reduced the Ach hydrolysis; the lesser the hydrolysis, the lower the choline
production will be. The presence of lesser choline will reduce the aggregation of C-
AuNPs. However, the non-aggregated C-AuNPs will remain catalytically active and exhibit
peroxidase-like activity. This non-aggregated and mono-dispersed state of C-AuNPs was
indicated by the blue colour of the chromogenic reaction, which was confirmed by the
prominent peaks at 370 nm and 652 nm, as shown in Figure 4c.

3.4. Sensing of Parathion Ethyl through C-AuNPs Probe

While characterizing the inhibition of AChE by PE, a reduced amount of choline pro-
duction was observed as the presence of PE irreversibly inhibited the AChE consequently.
With an increase in the concentration of PE, a gradual inactivation pattern of AChE was
observed, which eventually led to higher oxidation of TMB (Figure 5). The transformation
in colour (inset Figure 5) further explains the continuing oxidation of TMB, which is in
agreement with Ren et al. [60]. Irreversible inhibition of AChE has already been reported
due to the presence of OPs [61–63]. The formation of a covalent bond with the active site
(phosphorylate serine residues) of AChE by these toxic chemicals converts the enzyme into
a non-functioning molecule [64].

3.5. Effect of C-AuNPs Concentration on Oxidation of TMB

Whereas evaluating the correlation between concentrations of C-AuNP and oxidation
of TMB, the relative absorbance ∆A (652nm) was only 0.3 when the concentration of C-
AuNPs was just 10 pM. The ∆A reached up to 2.0 when the concentration of the C-AuNPs
was increased to 100 pM (Figure 6). The inset in Figure 6 indicated continuous growth in
the absorbance spectra with a gradual increase of the peak at 652 nm. A direct relationship
was observed between the NPs concentrations and oxidation of TMB. Hence, the higher
catalytic power of nanozyme was established with increasing concentration. Sun et al. also
reported that in comparison to low concentration, high concentrations of nanomaterials
have higher catalytic power to catalyse the oxidation of TMB [54].
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3.6. The Efficiency of the C-AuNP Based Sensor

The IE% of AChE was detectable in the tested range between 20 and 400 nM con-
centration as shown in Figure 7a. The inhibitor (PE) showed a linear correlation in the
range between 11.6–92.8 ng·mL−1 (40–320 nM), which is in agreement with the previ-
ously described studies [20,54]. The lower limit of detection of this C-AuNPs + TMB
assay has been established as 5.8 ng·mL−1 (20 nM), which is better than several previous
reports [34,35,40,41]. The LOD of classical analytical methods is comparable [36] and
better [32,33] than our proposed system; however, these methods are less robust and expen-
sive. Their electrochemical sensing approaches [37,39] have additional steps to follow long
protocols and need high temperatures for hours to successfully synthesize nanomaterials.
The protocol of gold nanoclusters-anchored MnO2 composite also needs 4–5 h to complete
the synthesis in addition to other steps of the protocol [38]. Compared to nanozyme based
biosensing [20] which capitalized the MnO2 sheets as nanozyme, the synthesis of MnO2 is
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complex and needs heating at 90 ◦C for an additional 15 min followed by MnO2 + TMB
based detection, which needed more prolonged incubations. Contrarily, our protocol
involves the simple synthesis of C-AuNPs, which is easy to follow, and all steps occur at
room temperature. Our protocol requires 85–95 min, which includes synthesis of particles
and sensing of the analytes. Thus we can say that in terms of simplicity, economics, easiness
of procedure, and robustness of the protocol, the C-AuNPs + TMB sensing is better than all
these reports.
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demonstrates that with growing concentration of PE the inhibition of AChE increasing (b) The
selectivity of the developed assay towards PE, carcinogenic compounds, and other toxins at a
wavelength of 652 nm. The absorbance of PE was much higher compared to other compounds tested.

The cross-reactivity assay results shown in Figure 7b demonstrate that none of the
tested toxins induce the same colorimetric response as PE when presented at a concentration
as high as 100 nM instead of PE (100 nM). Accordingly, these outcomes indicate that the
C-AuNPs + TMB probe is specific enough to detect PE selectively with high precision and
reliability. Compared to sensor technologies that utilize parathion-methyl as an analyte,
our approach exhibited 180 times better sensitivity (5.8 ng·mL−1) compared to the MPH
enzyme-based biosensor (1052.8 ng·mL−1) [35], and three times better than the QD-based
sensor (18.0 ng·mL−1) [34]. The sensitivity achieved is comparable to the sensitivity
of Fe3O4 imprinted polymers (5.2 ng·mL−1) [36], as described in Table 1. Overall, the
developed assay was simple, sensitive, and highly selective in detecting OPs. Thus, our
proposed sensor meets the detection requirements for on-site and robust visual detection
of OPs with high sensitivity, precision, and reproducibility.

4. Conclusions

A simple and sensitive sensor assay based upon a nanozyme (C-AuNPs) and acetyl-
cholinesterase inhibition by parathion ethyl (PE) was developed. The assay meets the
detection requirements for on-site and robust visual monitoring of OPs with high sen-
sitivity, precision, and reproducibility. The biosensor utilizes C-AuNPs to catalyse the
oxidization of colourless TMB into a blue-coloured reagent for visual monitoring of PE
with excellent specificity. The visual monitoring makes this method more adaptable than
other analytical techniques which are dependent upon advanced instrumentations. This
colorimetric detection system can be utilized for a range of applications to monitor PE
in environmental and food processing applications such as irrigation water, juices, milk
products, fruit, and vegetables for quality control, and safety purposes.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21238050/s1, S1 is providing the information of optimization steps for enzymatic hydrolysis
of Ach byAChE. Figure S1: Optimization of the enzymatic reaction. (a) Enzymatic hydrolysis of ACh
was noted to be the best at a pH of 7.6 (b) Selection of optimum incubation time (c) Maximum ∆A at
652 nm was obtained with a 4.0 mmol·L-1 concentration of ACh. Error bars represent the standard
deviation from three replicates; S2 contains the data about the optimization reactions conducted to get
the maximum nanozymic potentials of C-AuNPs. Figure S2: Optimization of chromogenic reaction.
(a) The optimum ∆A of the chromogenic reaction was at a pH of 4.0. (b) The maximum ∆A of the
reaction was noted at 0.4 mmol·L-1. (c) The maximum ∆A was observed at 100 pM concentration of
C-AuNP. Error bars represent the standard deviation of three replicates. S3: Providing the details of
the applied formula for the calculation of inhibition efficiency.
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