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Abstract: In this paper, a convolutional neural network for the detection and characterization of
impedance discontinuity points in cables is presented. The neural network analyzes time-domain
reflectometry signals and produces a set of estimated discontinuity points, each of them characterized
by a class describing the type of discontinuity, a position, and a value quantifying the entity of
the impedance discontinuity. The neural network was trained using a great number of simulated
signals, obtained with a transmission line simulator. The transmission line model used in simulations
was calibrated using data obtained from stepped-frequency waveform reflectometry measurements,
following a novel procedure presented in the paper. After the training process, the neural network
model was tested on both simulated signals and measured signals, and its detection and accuracy
performances were assessed. In experimental tests, where the discontinuity points were capacitive
faults, the proposed method was able to correctly identify 100% of the discontinuity points, and to
estimate their position and entity with a root-mean-squared error of 13 cm and 14 pF, respectively.

Keywords: time-domain reflectometry; distributed sensing; fault detection; convolutional neural
network; time-domain analysis

1. Introduction

Reflectometry is a technique for the detection and localization of impedance discon-
tinuity points in electrical cables. Its principle of operation consists of transmitting a
reference signal into the cable and observing the reflected signals at the same point of
injection. The analysis of the reflected signals, together with additional information about
the cable, yields the estimation of the position and characteristics of the discontinuity points
in the cable. The first and more natural application of reflectometry is cable fault detection
and localization [1], but this technique has also been used for many other measurement
problems over the years. Some examples are liquid levels and properties monitoring [2],
measurement of salinity and humidity in materials [3,4], measurement of complex soil
dielectric permittivity [5], and skin hydration monitoring [6]. Reflectometry is also widely
used in distributed monitoring applications. In this case, the cable is used as a sensing
element in continuous measurements of large regions or structures. An example is the
monitoring of structural elements, such as bridge steel strands [7] or concrete beams [8,9]
and bored piles [10] in buildings.

In recent years, artificial neural networks have been used in many data analysis
problems, among which is also the processing of reflectometry signals. The increasing
adoption of these models is due to their impressive performances in performing operations
that are not easily feasible using conventional signal processing techniques. In [11], an
approach for fault detection and assessment in instrumentation and control cables has
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been proposed that makes use of time–frequency domain reflectometry (TFDR) and region-
based convolutional neural networks (R-CNNs). A Gaussian envelope with a linear chirp
is used as a stimulus signal in TFDR. Reflected signals measured at the cable beginning
are represented in the time–frequency domain first, using the Wigner–Ville distribution.
The obtained RGB images are then analyzed through the R-CNN to find the location of
the reflected signals in the time–frequency domain. Additionally, a model of the reflected
signals is derived from a preliminary measurement on a cable with a known length. This
model is used for generating the training dataset for the neural network and for filtering out
the reflected signals due to multiple reflections. The proposed technique was tested in the
case of a single resistive fault in a branched network cable or in a cable without branches,
while the case of multiple faults (two faults were considered) was only qualitatively
analyzed. An enhanced version of TFDR (without using neural networks) is also used
in [12], where both the case of localized resistive faults and of localized ohmic-capacitive
faults are analyzed.

In [13], a multi-layer perceptron neural network (MLP-NN) is used for the detection
of soft faults in wire networks. Since branched networks are considered, the reference
signal is injected in multiple points to resolve ambiguities in the identification of branches
containing faults. Before sending reflectometry data to the MLP-NN, a pre-processing step
is performed. The difference between the measured reflectometry signals and reflectometry
signals obtained on a healthy network is computed, and after a thresholding process, the
positions and amplitudes of the peaks in the difference signals are found. These data are
the input of the MLP-NN, while its outputs are the estimated positions and impedances
of the detected soft faults. The usage of genetic algorithms is also explored for the same
purpose, leading to accurate estimation results. An MLP-NN with TFDR is also used in [14],
for fault detection in multi-core C&I cables. The aim of the method proposed in [14] is to
detect the presence and position of a fault and also to differentiate the faulty line within
the multi-core cable. In fact, when a line is faulty, the other lines are also affected due
to crosstalk.

A generalized regression neural network (GRNN) is used in [15] for the localization
of faults in rail tracks. In this case, frequency-domain reflectometry (FDR) is used for
diagnosis, considering the rails as the wires of the transmission line under test. The
amplitude versus frequency waveform obtained with the FDR is exploited to localize
the fault, using the GRNN for non-linear regression. The type of fault (short or open) is
deducted by looking at the initial inclination of the amplitude versus frequency waveform.
A GRNN is also used in [16] for the analysis of features extracted from TFDR signals for
shielded cables diagnosis. In particular, the purpose is to detect faults in the cable. Three
features are extracted from the TFDR signals: the time delay of the reflected signal, its
amplitude, and the time–frequency phase difference between the reference and the reflected
signal. The GRNN uses these features as input and produces an estimate of the position
and reflection coefficient of the discontinuity point. Experimental results are provided
considering a single localized fault, of various entities, in the cable or at its end.

This paper develops the idea proposed in [17] by the authors, presenting a method
based on time-domain reflectometry (TDR) with convolutional neural networks (CNNs)
for the localization and characterization of multiple impedance discontinuity points in
cables. TDR is probably the most common reflectometric method, owing to the simplicity
of the stimulus signal (a narrow pulse or a short rise time step) and of the measurement
process. This implies that devices for TDR are also available at a lower cost.

According to the proposed method, TDR signals are analyzed by means of a 1D-CNN
that estimates the position and impedance of the discontinuity points in the cable under test.
The neural network identifies all the discontinuity points, including the line termination,
and hence, classification is also performed: each detected fault is associated with a class
(capacitive fault or line termination).

The main advantages of our method over the others found in the literature are
the following:
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• No pre-processing and extraction of features from the measured signals is required.
This implies less computational burden and better exploitation of the deep learning
paradigm. When working directly with raw data, deep neural networks can indeed
select the optimal features to extract for the given task. Additionally, a more simple
and general estimation procedure is obtained;

• Accurate localization and characterization of multiple discontinuity points in the cable;
• The neural network is trained using TDR signals generated with a transmission line

simulator. Even though an accurate model of the cable is required to obtain good
results, once it has been created, it can be used to generate training datasets to make
the neural network work in different conditions;

• The neural network can work with any cable of the same type as those used in the
training set, with a variable length.

2. Materials and Methods
2.1. Measurement Setup

In this study, RG58-CU coaxial cables containing capacitive faults were studied. This
setup was used as an example for developing and testing the proposed method since it
was strictly controllable. However, the method can also be used for setup containing other
types of cables and discontinuities, given that all the operations described in the following
are not specific to the considered setup.

The considered situation is depicted in Figure 1. The cable had total length l and
contained NF localized faults, simulated by means of capacitors connected in parallel to
the cable’s conductors through T junctions. The capacitors were placed at a distance zi
from the beginning of the cable and had the capacity Ci. The stimulus signal was generated
by an Agilent 33250A Arbitrary Waveform Generator (AWG), while the TDR signals were
acquired using a LeCroy Waverunner-2 LT262 oscilloscope.
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Figure 1. Representation of the measurement setup. Time-domain reflectometry (TDR) was applied
to a cable containing NF parallel faults to estimate the NF pairs of values zi, Ci.

A Gaussian pulse was used as a stimulus signal since it is concentrated in both time-
and frequency domains. This was useful to have cleaner reflectometry signals while having
the ability to perform frequency-domain simulations such as those described in Section 2.3.
The stimulus signal was therefore defined as

vG(t) = e−
(t−t0)

2

2σ2 (1)

where σ = 8.1 ns (the lowest achievable with the hardware used for experiments) and
t0 = 100 ns. In experiments, a sampling frequency of 250 MHz was used for the acquisi-
tion of reflectometry signals. The number of samples acquired for each TDR signal was
N = 1024, corresponding to a time duration of ∼ 4 µs. This duration was sufficient to see
all the reflected signals, considering that the velocity of EM waves in RG-58CU cables is
∼ 2× 108 m/s, and cables no longer than 200 m were considered.
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2.2. Neural Network

The neural network for faults localization and characterization proposed in this
article was inspired by single-shot CNNs for object detection in images [18,19]. The main
component of these neural networks is a sequence of convolutional and pooling layers
that have the purpose of extracting features from the images being analyzed. The level of
abstraction of the extracted features increases moving toward the final layers. The result
produced by this stack of convolutional layers is a set of 2D feature maps that are then
further processed by densely connected layers or additional convolutional layers to finally
estimate the bounding boxes containing the objects in the image and associate a class to
each of them.

Since time-domain signals were the object of our study, we used 1D convolutional
layers instead of 2D ones as the base component of the model. The neural network for faults
localization and characterization proposed in this paper is depicted in Figure 2. The input of
the first layer of the neural network was the measured TDR signal that had a size of 1024× 1.
The first layer contained eight convolution kernels of length 15, corresponding to a time
duration of 60 ns. This value was chosen to match the time duration of the stimulus signal
and the reflected signals. The rectified linear unit (ReLU) was used as an activation function.
The 1D max-pooling operation was then applied to the output of the convolutional layer,
using a pool size of 2. The output of the neural network was therefore downscaled from
1024× 8 to 512× 8. The same operations (convolution, activation, pooling) were performed
in five layers of the neural network, with the only difference in the number and size of
convolution kernels. The five layers contain, respectively, the following:
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• A total of 16 kernels of size 11× 8;
• A total of 32 kernels of size 5× 16;
• A total of 64 kernels of size 5× 32;
• A total of 128 kernels of size 5× 64;
• A total of 256 kernels of size 5× 128.

The last convolutional layer had the only purpose of dimensionality reduction. There-
fore, it contained 128 kernels of size 1× 256, and no activation and pooling operations
were performed.
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This sequence of convolutional layers served to create an abstract representation
of the problem. In this way, the neural network could consider accurately all the in-
formation contained in the reflectometry signal, e.g., ignoring reflected signals due to
multiple reflections.

The feature maps produced by the last convolutional layer were then flattened to a
2048× 1 array that was sent to the last two densely connected layers of the network. The
first of them contained 256 artificial neurons and used the ReLU activation function, while
the second contained 5 · S artificial neurons and used the sigmoid activation in order to
have outputs in the range (0–1). The output of the last layer was finally reshaped to build
an S× 5 matrix, whose rows were the predictions produced by the neural network. The
range of length that could contain a discontinuity point was divided into S cells. The i-th
prediction represents the estimated discontinuity point in cell i. Each prediction was an
array of the following five elements:

• The first element indicated the normalized position of the discontinuity points relative
to the range of lengths in the cell;

• The second and third elements indicated the class of the predicted discontinuity point.
If the first of these two elements was greater than the second, a capacitive fault was
predicted; an open termination of the line was predicted otherwise;

• The fourth element quantified the capacity value. This was also a normalized value
relative to the range of possible capacity values. If a line termination was predicted,
this value was neglected;

• The last element indicated the probability score of the prediction.

At inference time, only predictions with a probability score greater than a given thresh-
old were selected, and their characteristics were derived from the other four parameters
produced by the neural network for each prediction.

2.3. Dataset Generation and Training Procedure

A great quantity of data is required to train neural network models, and this is
especially true for deep neural networks. The neural network proposed in this paper
required a TDR signal such as those described in Section 2.1 as input data and a list of
the impedance discontinuity points in the cable as target data. A TL simulator [20] was
adopted to produce an adequate number of samples, each of them accompanied by a label
containing information about the faults in the cable and the cable length.

2.3.1. Simulation Procedure

Using classical microwave theory, the RG58-CU cable was modeled similarly to a
transmission line composed of elementary cells such as that depicted in Figure 3.

Sensors 2021, 21, x  5 of 13 
 

 

The last convolutional layer had the only purpose of dimensionality reduction. 
Therefore, it contained 128 kernels of size 1 × 256, and no activation and pooling opera-
tions were performed. 

This sequence of convolutional layers served to create an abstract representation of 
the problem. In this way, the neural network could consider accurately all the information 
contained in the reflectometry signal, e.g., ignoring reflected signals due to multiple re-
flections. 

The feature maps produced by the last convolutional layer were then flattened to a 2048 × 1 array that was sent to the last two densely connected layers of the network. The 
first of them contained 256 artificial neurons and used the ReLU activation function, while 
the second contained 5 ⋅ 𝑆 artificial neurons and used the sigmoid activation in order to 
have outputs in the range (0–1). The output of the last layer was finally reshaped to build 
an 𝑆 × 5 matrix, whose rows were the predictions produced by the neural network. The 
range of length that could contain a discontinuity point was divided into 𝑆 cells. The 𝑖-
th prediction represents the estimated discontinuity point in cell 𝑖. Each prediction was 
an array of the following five elements: 
• The first element indicated the normalized position of the discontinuity points rela-

tive to the range of lengths in the cell; 
• The second and third elements indicated the class of the predicted discontinuity 

point. If the first of these two elements was greater than the second, a capacitive fault 
was predicted; an open termination of the line was predicted otherwise; 

• The fourth element quantified the capacity value. This was also a normalized value 
relative to the range of possible capacity values. If a line termination was predicted, 
this value was neglected; 

• The last element indicated the probability score of the prediction. 
At inference time, only predictions with a probability score greater than a given 

threshold were selected, and their characteristics were derived from the other four param-
eters produced by the neural network for each prediction. 

2.3. Dataset Generation and Training Procedure 
A great quantity of data is required to train neural network models, and this is espe-

cially true for deep neural networks. The neural network proposed in this paper required 
a TDR signal such as those described in Section 2.1 as input data and a list of the imped-
ance discontinuity points in the cable as target data. A TL simulator [20] was adopted to 
produce an adequate number of samples, each of them accompanied by a label containing 
information about the faults in the cable and the cable length. 

2.3.1. Simulation Procedure 
Using classical microwave theory, the RG58-CU cable was modeled similarly to a 

transmission line composed of elementary cells such as that depicted in Figure 3. 

 
Figure 3. Elementary cell of a transmission line. 

Figure 3. Elementary cell of a transmission line.



Sensors 2021, 21, 8032 6 of 13

The theoretical formulation of the primary parameters of the transmission line was
computed considering the dielectric dispersion and the skin effect. The resulting primary
parameters were

R(ω) =
1

σcπr2
i
+

1

σcπ
[
(ro + t)2 − r2

o

] + 1
2π

(
1
ri
+

1
ro

)√
ωµ0

2σc
(2)

L(ω) =
µ0

2π
ln

ro

ri
+

1
2πω

(
1
ri
+

1
ro

)√
ωµ0

2σc
(3)

G(ω) = ω tan δ
2πε0εr

ln(ro/ri)
(4)

C =
2πε0εr

ln(ro/ri)
(5)

where ω was the angular frequency, µ0 was the vacuum permeability, and ε0 was the
vacuum permittivity. The other symbols in the equations were the geometrical and electrical
parameters of the coaxial cable defined in the scheme of Figure 4 as follows:

• ri—Inner conductor ray;
• ro—Outer conductor ray;
• t—Outer conductor thickness;
• σc—Copper conductivity;
• εr—Insulator relative permittivity;
• tan δ—Insulator loss tangent.
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The effectiveness of the TL model in representing the coaxial cable was evaluated
by comparing simulated TDR signals with experimental signals measured in the same
configurations. As can be seen in Figure 5, the theoretical model was not able to accurately
represent the cable. In particular, the differences in the shape of the reflected signals
indicate poor modeling of the frequency-domain behavior of the coaxial cable.
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open termination.

2.3.2. Calibration of the RG58-CU Cable Parameters

A calibration procedure was developed to extract a more accurate model of the primary
parameters of the RG58-CU cable. From well-known theory, the propagation function of
electromagnetic waves in transmission lines depends on the primary parameters according
to the equation

γ(ω) =
√
(R + jωL)(G + jωC) = α(ω) + jβ(ω) (6)

As demonstrated in [21], using the SFWR technique, a measure of α(ω) and β(ω)
can be obtained for any value of ω. In particular, they can be measured in a range of
frequencies of interest and then used to derive an estimate of the primary parameters of
the TL in those frequencies.

From (6), the following equation was derived:

γ2 = α2 − β2 + 2jαβ = RG−ω2LC + jω(RC + LG) (7)

Starting from Equation (7), only one pair between R, L and G, C can be estimated
using a linear regression technique, e.g., the ordinary least squares (OLS) method. Since
the main contribution to the frequency-domain behavior of the TL was derived from the
primary parameters R and L, it was decided to estimate them, maintaining the theoretical
formulation for G and C instead. The frequency-domain model of R and L was derived
from Equations (2) and (3) respectively.

R(ω) = R0 + R1
√

ω (8)

L(ω) = L0 + L1
1√
ω

(9)
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where R0, R1, L0, L1 were the parameters to be estimated with the fitting procedure.
Hence, using Equation (7), the following OLS problem was defined:

G(ω1) G(ω1)
√

ω1 −ω2
1C(ω1) −ω2

1C(ω1)
1√
ω1

· · · · · · · · · · · ·
G(ωN) G(ωN)

√
ωN −ω2

NC(ωN) −ω2
NC(ωN)

1√
ωN

ω1C(ω1) ω1C(ω1)
√

ω1 ω1G(ω1) ω1G(ω1)
1√
ω1

· · · · · · · · · · · ·
ωNC(ωN) ωNC(ωN)

√
ωN ωNG(ωN) ωNG(ωN)

1√
ωN


·


R0
R1
L0
L1

 =



α2(ω1)− β2(ω1)
· · ·

α2(ωN)− β2(ωN)

2α(ω1)β(ω1)
· · ·

2α(ωN)β(ωN)


(10)

where ωi, i = 1, . . . , N were the angular frequencies of interest, G(ωi) and C(ωi) were
computed with Equations (4) and (5) respectively, and α(ωi) and β(ωi) were the real and
imaginary part of the propagation function of the transmission line measured using the
SFWR technique. The N = 80 frequencies were linearly spaced in the interval 1–80 MHz,
in order to span the entire bandwidth of the stimulus signal. The parameters estimated
through the OLS problem are reported in Table 1.

Table 1. Estimates of the parameters of R(ω) and L(ω) models.

R0 (Ω·m−1) R1 (Ω·m−1·Hz−1/2) L0 (H·m−1) L1 (H·m−1·Hz1/2)

0.022 6.7× 10−5 2.3× 10−7 7.5× 10−5

As can be seen in Figure 6, the real part of the propagation function is approximated
much better by the model that includes the calibrated primary parameters.
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As expected, the simulator produces much more accurate results when the calibrated
primary parameters are used. As an example, the same configuration of Figure 5 was
simulated using the calibrated parameters. The result of the simulation is presented in
Figure 7. As can be seen, there is a much better fitting between the measured signal and
the simulated one. The global root-mean-squared error (RMSE) for all the experiments
described in Section 3.2 was 0.098 V using the theoretical model, while it was 0.044 V
using the calibrated model. Therefore, the RMSE was more than halved owing to the
calibration process.
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2.3.3. Dataset Generation

The dataset for training the neural network was therefore generated using the cali-
brated RG58-CU cable model. Simulations were carried out using the setup described in
Section 2, considering the constraints reported in Table 2 to randomly generate the circuital
configuration of each sample.

Table 2. Parameters of the simulated transmission lines.

Number of
Faults NF

Distance between
Discontinuity Points (m)

Total Length of
the Cable (m)

Capacity of the
Faults (pF)

Min 0 10 10 50
Max 4 - 200 500

A total of 106 samples were generated. After simulations, the TDR signals were
processed to remove the transmitted pulse, which did not provide any information given
that the signals were time aligned, and to add Gaussian noise. Labels for all the samples
were defined in compliance with the format of the neural network’s output. The range
of lengths that contained discontinuity points (faults and line terminations) was divided
into S = 32 cells, and the positions of the discontinuity points zi were normalized relative
to the range of lengths of the corresponding cells, obtaining values 0 ≤ z′i < 1. For each
sample, an array p of length S was defined whose elements were 1 if the corresponding
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cell contained a discontinuity point and 0 otherwise. The class of each discontinuity point
(fault or line termination) was specified through a S× 2 matrix that had elements cm,n = 1
for m corresponding to cells containing a discontinuity point and n corresponding to the
class of the discontinuity point (1 for faults, 2 for line termination) and 0 otherwise. Finally,
the capacities associated with the faults, Ci, were normalized relative to the range reported
in Table 2, computing the values C′i .

2.3.4. Training of the Neural Network

The CNN described in Section 2.2 was implemented in Python, using the TensorFlow
library. In total, 80% of the samples of the dataset were used for neural network training,
while the remaining 20% were used for validation. In the training procedure, the following
multi-objective loss function was minimized:

L = α1
1

N f +1

S
∑

n=1
pn
(
ẑ′n − z′n

)2
+ 1

2(N f +1)

2
∑

m=1

S
∑

n=1
pn(ĉm,n − cm,n)

2+α2
1

N f

S
∑

n=1
pnc1,n

(
Ĉ′n − C′n

)2

+ 1
N f +1

S
∑

n=1
pn( p̂n − pn)

2 + 1
S−(N f +1)

S
∑

n=1
(1− pn)( p̂n − pn)

2
(11)

where the estimates produced by the neural network were marked with a hat. The parame-
ters α1 = 50 and α2 = 100 were introduced as a result of a tuning procedure that involved
the maximization of the performances of the neural network on the validation dataset.

The neural network model was trained for 300 epochs using the Adam optimizer [22].
The learning rate was varied according to exponential decay, updating its value at the end
of each epoch so that it halved every 200 epochs.

The weights of the neural network model after the training procedure, as well as the
training and validation datasets of simulated signals and the test dataset of experimental
signals presented in Section 3.2, are available in [23].

3. Results and Discussion

The performances of the CNN were assessed considering both simulated and experi-
mental signals. The threshold for the probability score of predictions was set to half the
range (0.5). A discontinuity point prediction was considered correct if a discontinuity
point of the same class was present in the label at distance less than the length of a cell.
A reflectometry signal was therefore considered correctly analyzed if all the faults were
detected without any false positive.

3.1. Performance Assessment on the Validation Dataset

The performance of the neural network was first assessed using a validation dataset
that was composed of 2× 105 samples. The outputs produced by the neural network
were compared with the corresponding labels. Overall, 99.87% of simulated cables were
correctly assessed, meaning that all the faults were correctly identified, and there were
no false positives. Estimation errors for the correctly detected discontinuity points were
computed and are summarized in Table 3. The RMSE in the estimation of discontinuity
points (both faults and line terminations) was below 10 cm, leading to a mean absolute
percentage error (MAPE) lesser than 0.1%. The MAPE in the capacity estimation was below
2% instead.

Table 3. Estimation errors obtained for the validation dataset.

Cable Length Error Fault Position Error Fault Capacity Error

RMSE (m) MAPE RMSE (m) MAPE RMSE (pF) MAPE

0.070 0.059% 0.066 0.091% 11 1.2%
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3.2. Performance Assessment on the Test Dataset (Experimental Data)

The same kind of assessment was performed considering experimental data. In this
case, 100% of the cables were correctly characterized. Estimation results for experiments on
cables with one, two, three, and four simulated capacitive faults are reported, respectively,
in Tables 4–7.

Table 4. Estimation results for real cables with one capacitive fault.

Position of the Fault (m) Capacity of the Fault (pF) Length of the Cable (m)

Nominal Estimated Nominal Estimated Nominal Estimated

50 49.94 107 112 65 65.00
50 49.92 152 158 65 65.01
50 49.97 217 205 65 64.92
50 49.92 309 310 65 64.95
50 49.96 404 434 65 65.01
50 49.99 450 450 65 64.96

Table 5. Estimation results for real cables with two capacitive faults.

Position of
Fault 1 (m)

Capacity of
Fault 1 (pF)

Position of
Fault 2 (m)

Capacity of
Fault 2 (pF)

Length of the
Cable (m)

Nominal Estimated Nominal Estimated Nominal Estimated Nominal Estimated Nominal Estimated

15 15.04 107 112 65 65.10 152 156 81 81.05
15 15.04 107 113 65 65.21 217 206 81 80.97
15 15.05 107 112 65 65.18 450 451 81 80.80
15 15.13 217 206 65 65.03 309 309 81 80.83
15 15.12 217 206 65 65.02 404 433 81 80.84
15 15.14 450 459 65 65.14 404 430 81 80.69

Table 6. Estimation results for real cables with three capacitive faults.

Experiment 1 Experiment 2

Nominal Estimated Nominal Estimated

Length of the Cable (m) 131 130.99 131 130.93
Position of Fault 1 (m) 50 49.90 50 49.93
Position of Fault 2 (m) 65 65.06 65 64.99
Position of Fault 3 (m) 115 115.09 115 114.92

Capacity of Fault 1 (pF) 107 115 217 214
Capacity of Fault 2 (pF) 217 210 450 454
Capacity of Fault 3 (pF) 404 431 404 418

Table 7. Estimation results for real cables with four capacitive faults.

Experiment 1 Experiment 2

Nominal Estimated Nominal Estimated

Length of the Cable (m) 143 142.96 143 142.96
Position of Fault 1 (m) 50 49.87 50 49.88
Position of Fault 2 (m) 65 65.12 65 65.03
Position of Fault 3 (m) 115 114.93 115 114.95
Position of Fault 4 (m) 131 131.40 131 131.32

Capacity of Fault 1 (pF) 107 117 107 115
Capacity of Fault 2 (pF) 217 214 152 165
Capacity of Fault 3 (pF) 404 436 309 323
Capacity of Fault 4 (pF) 450 441 450 439
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The results of the statistical analysis of the estimation errors obtained for all the
experiments are reported in Table 8. The errors obtained for experiments are slightly
greater than those obtained for the validation simulated samples; however, good accuracy
was obtained in both position and capacity estimation.

Table 8. Estimation errors obtained for experimental signals.

Cable Length Error Fault Position Error Fault Capacity Error

RMSE (m) MAPE RMSE (m) MAPE RMSE (pF) MAPE

0.12 0.10% 0.13 0.22% 14 4.3%

4. Conclusions

In this study, a method to detect and characterize impedance discontinuity points in
cables was presented. The method, based on the use of TDR and CNNs, was characterized
for the case of capacitive faults in coaxial cables, but it can be used in any situation
where localized impedance discontinuity points are present. In fact, only retraining of
the neural network with an appropriate dataset of labeled reflectometry signals would be
required for the neural network to work in a different condition. Typical applications for
the proposed method are the localization and characterization of multiple discontinuity
points in a distributed sensing element, e.g., faults in cables, leaks in pipelines, damages in
concrete structures. The metrological characterization of the method presented in this paper,
revealed by analyzing the estimation errors for both simulated and actual experimental
signals, proves that it can localize the discontinuity points with great accuracy.
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