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Abstract: Intelligent machining has become an important part of manufacturing systems because of
the increased demand for productivity. Tool condition monitoring is an integral part of these systems.
Airborne acoustic emission from the machining process is a vital indicator of tool health, however,
it is highly affected by background noise. Reducing the background noise helps in developing a
low-cost system. In this research work, a feedforward neural network is used as an adaptive filter to
reduce the background noise. Acoustic signals from four different machines in the background are
acquired and are introduced to a machining signal at different speeds and feed-rates at a constant
depth of cut. These four machines are a three-axis milling machine, a four-axis mini-milling machine,
a variable speed DC motor, and a grinding machine. The backpropagation neural network shows an
accuracy of 75.82% in classifying the background noise. To reconstruct the filtered signal, a novel
autoregressive moving average (ARMA)-based algorithm is proposed. An average increase of 71.3%
in signal-to-noise ratio (SNR) is found before and after signal reconstruction. The proposed technique
shows promising results for signal reconstruction for the machining process.

Keywords: noise reduction; neural network; airborne acoustic emission; ARMA

1. Introduction

With the increase in demand for unmanned manufacturing processes, intelligent
machining has become indispensable to avoid breakdown maintenance [1]. Scheduled
maintenance is considered as an effective tool to increase a manufacturing system produc-
tivity [2]. Tool breakage is a major cause of breakdown maintenance in an industrial setup
which not only increases the manufacturing cost but also wastes time [3]. Moreover, ma-
chine tool quality degrades with time, which affects the product quality. Hence, predicting
the tool’s health in time is of critical importance to enhance the product quality as well as
to save cost and time. To monitor the tool health, various methods are introduced in the
literature. These methods can be divided into two groups: direct methods and indirect
methods [4]. Direct methods are based on the physical geometry of a tool that directly
indicates the tool condition. These methods involve image processing, electrical resistance,
and radioactive based techniques to evaluate tool health. These methods are generally
accurate in predicting tool health; however, they require stopping the machine which not
only interrupts production, but may also increase the production cost. To avoid these
issues, indirect methods are introduced. Indirect methods are based on the signals that
may generate from the machining process. These methods involve various signals—such
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as cutting force, temperature, vibration from the tool and tool holder, acoustic emission,
etc.—from the machining process that can be used to observe the tool condition [5].

Ghosh et al. [6] estimated average flank wear of a main cutting edge of tool for a
milling process using sensor fusion. They used a combination of seven sensors including
cutting force sensor, tool, and work-piece vibration measurement sensor, spindle current
and voltage sensors, sound pressure level sensor, and acoustic emission (AE) sensor.
Among these signals, AE based methods are preferred over others due to their higher
frequency range [7]. Acoustic emission can be divided into two categories, structure-borne
acoustic emission and air-borne acoustic emission [8]. Structure-borne acoustic emission
is the vibrations that are transferred from the tool to the tool-holder. For a metal cutting
process, the characteristic frequency of the emission lies with-in the range of 500 kHz to
1 MHz (ultrasonic range). Acoustic emission-based methods for the machining process are
reviewed in [9]. The structure-borne acoustic emission being having an ultrasonic frequency
range is an environmental noise free technique; however, it requires high computational
processing power. Air-borne acoustic emission is the vibrations that are transferred from
cutting edge to the surrounding. The air-borne acoustic emission lies within audible
range—i.e., from 0 Hz to 20 kHz. Different methods using airborne acoustic emission
to monitor the tool health have been proposed by researchers. The relationship between
air-borne acoustic emission and tool vibrations is determined by [10]. They found that the
vibrations from the tool holder, along with the cutting insert, are a major source of sound
generation. Delio et al. [11] proposed a method to detect chatter using airborne acoustic
emission. Their results show that the performance of the airborne acoustic emission-based
chatter detection approach is comparable with other methods based on displacement
probes, accelerometers, and dynamometers. Sari et al. [12] studied the effect of various
micro-piercing parameters to the power spectrum of the airborne acoustic emission. It is
observed that cutting processes with different materials, sheet thicknesses, and clearances
present a response in the range of 3–4 kHz For a honing process, Corral et al. [13] developed
an airborne acoustic emission based method to monitor the surface roughness, material
removal rate and tool wear. Kopac and Sali [14] developed a tool monitoring system using
airborne acoustic emission. They conducted several experiments with different cutting
speeds, feed-rates, and different amounts of wear. The depth of cut was taken as a constant
in the experiments. They concluded that the frequency range depends upon both cutting
speed and feed rate; however, the effects of cutting speed are lesser on the range than the
feed-rate. A two-stage technique is developed by Aliustaoglu et al. [15] to monitor the tool
condition using airborne acoustic emission. Several experiments were conducted on a four-
axis CNC machining center. Their results show that the proposed method can identify the
various tool wear conditions. Another airborne acoustic signal-based system is developed
by Salgado and Alonso [16] to monitor the tool wear in turning processes. They acquired
the feed motor current and acoustic signals. They analyzed the acquired signals using
singular spectrum analysis. Support vector machine (SVM) was then utilized as a learning
model to predict the tool wear. Kothuru et al. [17] studied the use of airborne acoustic
signals to predict the cutting tool wear and failure during the end milling operation. The
signals were acquired from different positions and analyzed in the frequency domain to
extract features that correlate the cutting phenomenon. Their method utilized SVM as a
decision-making algorithm. Another approach to predict the remaining life of a tool using
air-borne acoustic emission can be found in [18].

One of the major challenges in the implementation of the airborne acoustic emission
in industrial applications is environmental noise from the machine surroundings [19].
Ruiz-Carcel et al. [20] proposed the spectral kurtosis as a tool to increase the signal-to-
noise ratio of acoustic emission for roll bearing acoustic emission. The major advantage
of the technique is the automatic selection of band-pass frequency to increase the SNR.
Zhu et al. [21] developed an algorithm to de-noise a signal where the signal is affected by
non-Gaussian noise. Blind source separation was used for this purpose. For a micro-milling
process, Lu and Wen [22] attempted to reduce the background noise effect on the acquired
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signal using hidden Markov model (HMM). Seemuang et al. [23] studied the relationship
between spindle noise and tool wear for a cutting process. It is found that there is no
relationship between frequency of spindle noise and tool wear. However, changing the
various parameters such as cutting speed and feed rate have significant effect of spindle
noise magnitude. A tool breakage detection technique using empirical mode decomposi-
tion and independent component analysis is developed by Shi et al. [24]. The technique
was able to detect tool breakage by de-noising signals during face milling. Li et al. [25]
proposed a technique to de-noise the acoustic emission of a milling operation. The features
were extracted in time-frequency domain and an adaptive kernel principal component
analysis was performed to de-noise the acquired signals. In the time-frequency based anal-
ysis techniques, synchrosqueezing-transforms-based techniques are developed [26]. Tary
and Herrera [27] proposed continuous wavelet and synchrosqueezing-transform-based
method to denoise the signals. Sony and Sadhu [28] developed a hybrid time–frequency
based method combing multivariate empirical mode decomposition and synchrosqueezing
transform to identify the time-varying behavior of the signal. Generally, the techniques
to de-noise the acoustic emission are developed based on the frequency analysis of the
acquired signal. However, a frequency-based filtering technique cannot be applied as there
is a chance of losing frequency of interest within the range specified for airborne acoustic
emission. For a machine shop, there exists a specific type of noise that is emitted from
the background machines present in that workshop and, hence, a neural-networks-based
filtering approach is best suitable to identify such type of noise through adaptive filtering.
A neural-network-based noise reduction technique for a machining process was proposed
by Zafar et al. [29]. The neural network performance was compared with the unsupervised
and clustering approaches.

The aim of this paper is to develop a neural network and ARMA-based algorithm to
reduce background noise for a machining signal. A machining signal can be affected by a
variety of background noise for example, such as sounds from parallel running machines,
operator voice or sounds in background; however, in this research, noise generated by
parallel running machines on the shop floor are only considered. Acoustic signals from four
different background machines are acquired and are introduced to the machining signal
as sources of noise. Feedforward neural network is used as an adaptive filter to reduce
the background noise. The proposed method adapts itself according to environmental
conditions and extracts the machining signal from background noise effectively. The filtered
signal is reconstructed through an ARMA-based algorithm which is a novel approach. The
contributions of the paper can be summarized as follows: (1) the proposed method utilizes
a novel neural network and ARMA-based algorithm to reduce the background noise. (2) An
ARMA-based algorithm is developed find the ARMA parameters automatically which
is then utilized to reconstruct the filtered signal. (3) The proposed approach extracts the
statistical features of the acquired signals in the time domain. (4) The developed approach
is benchmarked for several experiments for different levels of noise.

The rest of the paper is organized as follows: Background theory of the developed
algorithm is provided in Section 2. Section 3 discusses proposed method to reduce the back-
ground noise and the signal reconstruction. Section 4 describes the detailed experimental
setup to acquire acoustic signals. Results and discussion for the acquired signals filtration
and reconstruction are provided in Section 5. Section 6 discusses various challenges to the
research implementation in an industrial environment and the conclusions.

2. Background Theory

Typical architecture of a neural network is shown in Figure 1. A neural network is
a network of interconnected neurons which are organized in three layers. These layers
are typically called input layer i, hidden layer j, and output layer k. The neural network
attempts to build a mathematical model between a set of feature vectors Xii ε Rn and
their corresponding response Yii ε Rp and hence the learning data can be presented as
$ = [(Xk, Yk)]

E
k=1. Typically, set of feature vector is taken as input to the neural network and
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their response is taken as output of the network. Hence, the number of neurons in input
and output layers are equal to feature vector dimensions and the response respectively.
However, the number of neurons in the hidden layer can be variable and can be selected
based on the experience.
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The neural network is designed to model a relationship between the input feature
vectors Xii and their corresponding response Yii. A set of weight or gain factors wij as
well as a bias b is assigned to each connection between the input and hidden layers.
Mathematically, the hidden layer neurons response γ are given as

γ = ∑ wijXii + b (1)

An activation function S(γ) is used to identify the state of input layer neurons. For
this work, a typical sigmoid function is used which can be given as

S(γ) =
1

1 + e−y (2)

The sigmoid function output lies within the range of [0, 1]. The sigmoid function
response is again multiplied with a new set of weights vjk. The same procedure is repeated
between the hidden layer and the output layer. The weight values are updated in iteratively
to minimize the error between the desired response Yii and the predicted response.

Wkk = Wkk−1 + ∆Wkk (3)

where kk is the total number of iterations to reach desired mean squared error and ∆Wkk
is the change in weight. The mean square error is used to minimize the error, which is
given as

MSE =
1
N

N

∑
ii=1

(
Ŷii − Yii

)2
(4)

where N is the total number of training samples and Ŷii is the predicted response. Various
algorithms are used in the literature to update weights. These algorithms include scaled
conjugate gradient method [30], Bayesian interpolation [31], and Levenberg–Marquardt
(LM) algorithm [32], etc. In this research, an LM based backpropagation algorithm is
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employed because of its fast convergence. The algorithm adapts the weights of the neural
network using the weight update rule

∆Wkk = −µ[H(Wkk−1)]
−1∇E(Wkk−1) (5)

where µ is the learning rate, H is the Hessian matrix, and∇E is the gradient of the network
error function. The neural network is used to filter the machining signal.

To reconstruct the filtered signal, a novel ARMA-based algorithm is developed. ARMA
is a time series model that has been used in other fields of research to predict the forecast of
different systems such as sunspot data, rain prediction systems, prediction of dam inflow
of a dam reservoir, etc.; however, it has not been used to reconstruct the signal.

For a typical timeseries such as the predicted neural network response y1, y2, . . . , yt,
the ARMA model is a combination of auto-regressive model of order (p)

yt+1 = yt + ϕ1yt−1 + · · ·+ ϕpyt−p + δ (6)

and moving average model of order (q)

yt+1 = εt + θ1εt−1 + · · ·+ θqεt−q (7)

where ∅i, θi are the model coefficients, yt is the previous sample value and εt is the white
noise error. In general, the autoregressive model determines that the current value of the
system depends on how many previous terms whereas, the MA models are ‘averages’ of
the past and present noise terms.

AR and MA model can be combined to form ARMA which can be mathematically
defined as

yt = yt +∅1yt−1 + · · ·+∅pyt−p+εt+θ1εt−1 + · · ·+ θqεt−q (8)

To estimate the ARMA model, Box and Jenkins method [33] is used here. There are
two basic steps of the ARMA model estimation, namely, identification of ARMA order and
estimation of ARMA coefficients.

2.1. Identification of ARMA Model Order

To identify the correct order of the ARMA model automatically two tests are used;
namely autocorrelation function ACF test and partial autocorrelation function PACF test.
Autocorrelation function test shows how correlated the observations are, that is h lags
apart, and is used to identify the order of the MA model. Mathematically, ACF for a set of
measurements y1, y2, . . . yT can be defined as

rh =
Cy(h)
Cy(0)

(9)

where Cy(h) is given by

Cy(h) =
1
T

T−h

∑
g=1

(
yg − y

)
(yg+h − y) (10)

The number of peaks outside the predefined upper and lower bounds determines the
order of the MA model. The PACF is interpreted as a regression of the series against its
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past lags and is used to determine the order of the AR model. Mathematically, PACF can
be calculated as

χkk =

∣∣∣∣∣∣∣∣∣
1 r1 · · · r1
r1 1 · · · r2
...

...
. . .

...
rk−1 rk−2 · · · rk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 r1 · · · rk−1

r1 1
... rk−2

...
...

. . .
...

rk−1 rk−2 · · · 1

∣∣∣∣∣∣∣∣∣∣

(11)

Similarly, PACF indicates the order of the AR model. AR model will be of Mth order if
M peaks are outside the 95% confidence level. One of the pre-requisite conditions of the
time series model is that the series must be stationary [34]. To make the series stationary,
Mth order difference can be taken. Generally, the value of M is set to be 1 or 2; however, care
must be taken in selecting the value of M to avoid under or over differencing of the series.
An under differenced series may behave as non-stationary series while an over differenced
series may behave as a stationary series; however, the estimation of coefficients would be
difficult in this case. There are two tests to check the proper order of the difference for the
series—ACF test and variance test. ACF plot can be used to test the under differencing of
the series. If ACF of the series dies out quickly, then it means that the series is stationary,
otherwise, the series is non-stationary and series must be differenced. To determine the
over differencing of the series, variance test can be used—i.e., the variance of a stationary
series is minimum. It means that variance of the different order differenced series can be
recorded and the minimum value of variance will determine the proper order of difference
that is needed to be taken to make the series stationary.

2.2. Estimation of ARMA Coefficients

The second step of ARMA model estimation is to determine the value of its co-
efficients. This is done by the maximum likelihood method (MLE). The method se-
lects the values as estimators of a set of parameters that maximize L(q1, q2, q3, . . . , qT) =
f (y1, y2, y3 . . . , yT ; q1, q2, q3, . . . , qT) where f (y1, y2, y3, . . . , yT ; q1, q2, q3, . . . , qT) is the joint
density function of the observations y1, y2, y3, . . . , yT . L(q1, q2, q3, . . . , qT) is called the like-
lihood function. Finding the values q1, q2, q3, . . . , qT to maximize L(q1, q2, q3, . . . , qT) is
equivalent to finding the values to maximize l(q1, q2, q3, . . . , qT) = ln(L(q1, q2, q3, . . . , qT))
which is called the log-likelihood function [34].

To estimate the p + q + 2 parameters ϕ1, ϕ2, ϕ3, . . . , ϕp; θ1, θ2, θ3, . . . , θq; δ; σ2 of the
ARMA model using MLE, joint density function of the observations y1, y2, y3, . . . , yt
needs to be found—i.e., f

(
ϕ1, ϕ2, ϕ3, . . . , ϕp; θ1, θ2, θ3, . . . , θq; δ; σ2) = f (y

∣∣ϕ, θ, δ, σ2) . It is
difficult to determine the exact density function of y1, y2, y3, . . . , yt from this information;
however, if it is assumed that p starting values on the AR model s∗ = s1−p, s2−p, s3−p, . . . , s0
and q starting values on the MA model u∗ = u1−p, u2−p, u3−p, . . . , u0 have been observed
then the conditional distribution of given y1, y2, y3, . . . , yN , s∗ = s1−p, s2−p, s3−p, . . . , s0,
and u∗ = u1−p, u2−p, u3−p, . . . , u0 can easily be determined. The joint density of y given s∗

and u∗ can be calculated by conditional likelihood function is given by

Ly|s∗ ,u∗
(
ϕ, θ, δ, σ2) = ( 1√

2πσ

)n
exp

{
− 1

2σ2

T
∑

a=1
u2

a(s∗, u∗,ϕ, θ, δ)

}

=
(

1√
2πσ

)n
exp

{
− 1

2σ2 κ∗(θ,ϕ, δ)
} (12)

where
κ∗(θ,ϕ, δ) = ∑T

a=1 u2
a(s
∗, u∗,ϕ, θ, δ)
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The conditional log-likelihood function can be calculated by taking ln on both sides.

ly|s∗ ,u∗
(
ϕ, θ, δ, σ2) = ln(Ly|s∗ ,u∗

(
ϕ, θ, δ, σ2))

= − n
2 −

n
2 ln
(
σ2)− 1

2σ2

T
∑

a=1
u2

a(s∗, u∗,ϕ, θ, δ)
(13)

= −n
2
− n

2
ln
(

σ2
)
−− 1

2σ2 κ∗(θ,ϕ, δ) (14)

The values that maximize ly|s∗ ,u∗
(
ϕ, θ, δ, σ2) and Ly|s∗ ,u∗

(
ϕ, θ, δ, σ2) are the values ϕ̂, θ̂, δ̂

that minimize κ∗(θ,ϕ, δ) = ∑T
a=1 u2

a(s∗, u∗,ϕ, θ, δ) with σ̂2 = 1
n ∑T

a=1 u2
a(s∗, u∗,ϕ̂, θ̂, δ̂) =

1
n κ∗
(
θ̂,ϕ̂, δ̂

)
.

3. Proposed Algorithm

Airborne acoustic emission signals can be affected by a variety of background noise
signals. However, in the proposed method noise from only four background machines are
considered and are taken as noise. Figure 2 shows the flowchart of the algorithm. Acoustic
signals from the machining process as well as from background machines are recorded
separately. Statistical features such as mean, standard deviation, RMS, skewness, kurtosis,
signal maximum, and minimum values are calculated. To reduce the background noise, a
feedforward neural network is proposed to use as an adaptive filter. A machining signal
could be filtered through traditional filters; however, the traditional filters would fail within
the characteristic frequency range. The network is trained with individual acquired signal
features using the procedure defined in Section 2. Afterward, background noise signals for
one second is introduced to the machining signal. The noisy signal is then used to evaluate
the performance of the neural network as an adaptive filter. The trained network works as
an adaptive filter and removes noise samples from the signal. To reconstruct the filtered
signal automatically, an ARMA-based algorithm is then developed.
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The first step in the signal reconstruction algorithm is to identify the ARMA model
order. To determine the order of the ARMA model, ACF and PACF tests are used for which
at least 50 samples from the signals are needed. For the first 50 samples, the sample values
of the machining signal that are filtered falsely by the algorithm are replaced by the values
determined by the average of the two neighboring samples. After replacing the falsely
filtered values, the ARMA model order is estimated using the first 50 samples. Once the
model is identified, the ARMA model coefficients are found using MLE for the 50 samples.
Once, the ARMA model is built, it is then used to forecast N sample points to reconstruct
the filtered signal. The developed algorithm can forecast up to five sample points without
moving the window further. To reconstruct more than five sample points, the algorithm
first forecast five samples and then move the window to the next 50 samples and then check
for several filtered samples. The process continues until the whole signal is reconstructed.
After a complete signal is reconstructed, the reconstruction algorithm takes the average of
the forecasted or reconstructed samples and update the false negatives values of the first
50 samples. Flowchart of the reconstruction algorithm is given in Figure 3.
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4. Experimentation

Experimentation is performed at Industrial Automation Lab of the college of EME,
NUST (Pakistan). For a turning process, acoustic signals are acquired from a Denford
Cyclone P CNC machine tool. Figure 4 shows the experimental setup.

The signals are acquired through an acoustic sensor at a rate sampling rate of 44.1 kHz
to fulfill the Nyquist criteria. Each signal is recorded for 10 s. A total of 27 machining
signals are recorded at different speeds and feed rates while depth of cut is kept constant.
Calculated statistical features of the acquired data are tabulated in Table 1. The statistical
properties of an acoustic signal such as first four moments, maximum value, minimum
value, and maximum value of its root mean square (RMS) are taken as input.
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Table 1. Various features of acquired signals.

Test
No.

Sample
No.

Speed
(RPM)

Feed Rate
(mm/s)

Mean
×10−5

Standard
Deviation Max Min RMS

Max Kurtosis Skew-
Ness

1 1 1016 200 −1.74 0.0044 0.0191 −0.0152 0.1137 2.9318 0.0136

2 2 1016 200 −1.81 0.0046 0.0192 −0.0161 0.0063 2.9340 0.0195

3 3 1016 200 −1.70 0.0045 0.0194 −0.0151 0.0058 2.9543 0.0038

4 1 1016 400 −1.56 0.0052 0.0235 −0.0196 0.0091 3.1213 0.0011

5 2 1016 400 −1.63 0.0049 0.0561 −0.0212 0.0071 3.1899 −0.0258

6 3 1016 400 −1.54 0.0054 0.0274 −0.0213 0.0095 3.1457 0.0251

7 1 1016 600 −1.63 0.0055 0.0298 −0.0253 0.0108 3.3991 0.0611

8 2 1016 600 −1.85 0.0046 0.0202 −0.0161 0.0062 3.0040 0.0439

9 3 1016 600 −1.48 0.0068 0.0460 −0.0444 0.0201 4.3357 −0.0548

10 1 1522 200 −1.74 0.0055 0.0222 −0.0219 0.0079 2.9679 0.0087

11 2 1522 200 −1.62 0.0056 0.0255 −0.0194 0.0075 3.0014 0.0120

12 3 1522 200 −1.53 0.0060 0.0277 −0.0269 0.0107 3.1795 −0.0256

13 1 1522 400 −1.28 0.0061 0.0407 −0.0273 0.0119 3.2998 −0.0347

14 2 1522 400 −1.41 0.0055 0.0865 −0.0212 0.0109 4.0949 0.0081

15 3 1522 400 −1.62 0.0054 0.0233 −0.0182 0.0075 2.9845 0.0071

16 1 1522 600 −1.95 0.0062 0.0396 −0.0424 0.0158 3.9978 −0.0397

17 2 1522 600 −1.85 0.0056 0.0256 −0.0213 0.0088 3.0727 0.0117

18 3 1522 600 −1.61 0.0057 0.0347 −0.0233 0.0092 3.0663 0.0153

19 1 2000 200 −1.50 0.0057 0.0250 −0.0200 0.0083 2.9056 0.0158

20 2 2000 200 −1.68 0.0059 0.0279 −0.0227 0.0091 2.9688 −0.0105

21 3 2000 200 −1.58 0.0059 0.0292 −0.0283 0.0096 3.0455 0.0503

22 1 2000 400 −1.33 0.0055 0.0249 −0.0195 0.0083 2.9997 0.0364

23 2 2000 400 −1.72 0.0055 0.0244 −0.0199 0.0079 3.0126 0.0463
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Table 1. Cont.

Test
No.

Sample
No.

Speed
(RPM)

Feed Rate
(mm/s)

Mean
×10−5

Standard
Deviation Max Min RMS

Max Kurtosis Skew-
Ness

24 3 2000 400 −1.56 0.0057 0.0249 −0.0209 0.0078 3.0517 0.0340

25 1 2000 600 −1.64 0.0061 0.0287 −0.0223 0.0101 2.9768 0.0330

26 2 2000 600 −1.47 0.0063 0.0269 −0.0234 0.0089 2.9606 0.0501

27 3 2000 600 −1.51 0.0063 0.0318 −0.0289 0.0121 3.2031 0.0403

Machining signals are recorded at different speeds and feed rates while depth of cut is
kept constant. Calculated statistical features of the acquired data are tabulated in Table 1.
The statistical properties of an acoustic signal such as first four moments, maximum value,
minimum value, and maximum value of its root mean square (RMS) are taken as input.

Feature vectors to the neural network. The first and second moment of the signal are
mean and standard deviation whereas the third and fourth moment about the mean are
known as skewness and kurtosis [35]. The ith standardized moment ζi of an acoustic signal
s is given as

ζi = E
[
(s− s)i

]
(15)

and skewness of a signal is given by i = 3 and can be defined as

Sk =
ζ3

σ3 (16)

where ζ is the moment and is the standard deviation.
The signal skewness determines the signal symmetry about its mean value. Similarly,

kurtosis of a signal is given by i = 3 and can be defined as

Kx =
ζ4

σ4 (17)

Kurtosis of a signal determines the sharpness of the peak of the signal. RMS of
a machining signal varies with the increase in degradation of tool health. Hence, it is
considered as a significant feature to monitor tool health [36,37]. RMS of a signal for a
specific window length is defined as

Srms =

√
s2

1 + s2
2 + · · ·+ s2

nn
nn

(18)

where s is signal sample and nn is the total number of sample points in a window. Figure 5a
shows a raw acoustic signal. The signal is acquired during a turning process at a feed rate
of 200 mm/s and a constant depth of cut of 0.5 mm. To estimate the signal RMS in the time
domain a window length of 1000 samples is selected. The RMS of the signal is shown in
Figure 5b.

To validate the acquired signal from the microphone, the fast Fourier transform (FFT)
of the machining signal is calculated. For the purpose, the signal is acquired at 1522 RPM
which corresponds to 25.4 Hz in frequency domain. A clear peak at 25.4 Hz frequency can
be seen in the Figure 6.
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The machining signal can be affected by various types of environmental noise—for
example, if an operator sneezes or a telephone rings in the background, etc. However,
for this research, only parallel running machine noise is considered. Normally different
machines operate in parallel on a shop floor. The acoustic signals of these parallel operating
machines interfere with the acoustic signal of the machining process. These acoustic signals
are a key source of the noise to the machining process acoustic signal. The acoustic signals
from the parallel operating machines are considered as background noise. In this regard,
four machines—a variable speed DC motor, a grinding machine, a three-axis CNC milling
machine, and a four-axis mini milling machine—are selected and their signals are recorded.
These machines are denoted as M1, M2, M3, and M4 while the CNC machine is denoted
as MC. The distance between the CNC machine and the background machines is fixed;
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however, each machine has a specific distance from the CNC machine. The distance
between the CNC machine and background machines are given in Table 2.

Table 2. Background machine distance measures.

Machine Symbol Approx. Distance

A variable speed DC motor M1 6 m

Grinding machine M2 3 m

Three-axis milling machine M3 1 m

Four-axis mini-milling machine M4 3 m

Figure 7 shows the acoustic signals of the selected background machines while
Figure 8 shows the RMS level of the signals. It can be seen from Figure 8a that machine 4
signal has overlapping RMS level with machining signal RMS. As it is clear from Figure 8b
that the grinding machine signal was quite dominant and its RMS level is much higher
than the rest of the machine signals.
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Figure 7. Raw acoustic signals of background noise: (a) variable DC motor; (b) grinding machine; (c) milling three–axis;
(d) milling four-axis.

The neural network is trained with a single dataset A whereas the performance of the
trained neural network is tested on two separate datasets namely dataset A and data B.
Both datasets are prepared from the same (foreground and background) machines. For
dataset A and B, machining signals and signals from each background machine having
a length of 10 s are recorded. Dataset A consists of a total of 881 RMS samples. Out of
881 samples, 441 samples are from machining signal while 440 samples are taken from
background machines signal (110 samples from each machine). A separate set of signals
from the machining as well as background machines is also recorded and is termed as
dataset B. This signal set is used to test the neural network performance. Similar to dataset
A, the RMS level of the signals is calculated and taken as an important feature. Hence,
dataset B consists of 2205 RMS samples with equal 441 samples from machining signals as
well as from the background machine.
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5. Results and Discussion

The architecture of the neural network consists of 4, 10, and 1 neurons in the input,
hidden layer, and output layer respectively. Dataset A is further divided into three sub-
datasets with 70% samples used for training purposes, 15% used for validation purpose,
and remaining data used for testing. The neural network is trained until the minimum
value of the validation error of 0.1124 is found. The performance of the neural network is
assessed using dataset B. For machining signal, the neural network showed an accuracy of
82.3%. The confusion matrix of the back-propagation neural network for machining signal
is given in Table 3. The table shows that when only machining signal is fed to trained
neural network, it classifies 363 samples correctly. In the table, class 1 represents machining
signal, whereas, class 0 represents the background noise or signals from other sources. The
neural network showed an accuracy of 96.1% for M1 machine. Accuracy in the case of
M2 is found to be maximum (100%) for grinding machine. This is due to the fact that the
acoustic signal of M2 is quite distinguishable and dominant. Accuracy in the case of M4 is
found to be 95.7%. The neural network showed the worst performance for M3 and shows
an accuracy of only 5%. One of the possible reasons for the low accuracy of M3 is that the
RMS level of M3 is overlapping with machining signal RMS as shown in Figure 8a.

Table 3. Confusion matrix for machining signal.

Predicted
Class

Output Class

Class 0 1

0 0 72

1 0 363

Until now, the neural network is tested on limited number of signal samples. To
demonstrate the accuracy of the neural network in real scenario, a separate dataset (dataset
B) is used. For the dataset B, the background noise signal is mixed with the machining
signal for one second. Different combinations of the background noise are used to validate
the network performance in various scenarios. A machining signal mixed with the M4
noise is shown in Figure 9. In the figure, the machining signal mixed with the background
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noise is shown in red color in the 5–6 s windows. It can be seen that the RMS level of the
signal between 5 and 6 s is higher than the rest of the signal.
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Figure 9. (a) Noise introduction (above) and (b) RMS level of the same signal (below).

FFT plot of the machining signal is shown in Figure 10a before adding the noise. Four
dominant peaks of the machining signal at 2.332 kHz, 2.336 kHz, 2.352 kHz, and 2.358 kHz
can be seen in the figure. Figure 10b shows the FFT of the machining signal after mixing
with background noise. It can be seen from Figure 10b that an additional peak at 2.340 kHz
is added to the plot. In addition to that it can also be observed that amplitudes of the
dominant peaks are also affected by the noise. Hence, it validates the hypothesis that signal
cannot be analyzed in the frequency domain as the background noise frequency may fall
within the machining signal frequency of interest.

The noisy signal is then passed through the back-propagation neural network. Figure 11
shows the filtered signal. It is observed that RMS values between 220 and 264 sample
numbers which correspond to the noisy patch in the signal are filtered. However, some
other values from the machining signal are also wrongly classified.

To reconstruct the filtered signal a time series model ARMA-based algorithm is de-
veloped. To estimate the order of the ARMA model, a minimum of 50 points is needed;
therefore, to make the signal continuous or to reconstruct the filtered values for the first
50 samples, the filtered values are initially replaced by the average of the two neighbor
samples. A variance test has been used to check the stationarity of the signal. The variance
of the signal is calculated and recorded for the series and then the series is differenced until
minimum variance is found which is equal to 1. Therefore, one difference in the series
is taken. Table 4 shows the different values of variance calculated at a different order of
difference. It can be seen that variance is minimum at D1.
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Table 4. Variance value at a different order of difference.

Order of Difference Variance

Variance 4.76× 10−7

D1 4.70× 10−7

D2 9.37× 10−7

D3 2.51× 10−6

D4 8.09× 10−6

ACF and PACF tests are used to calculate the order of MA and AR models respectively.
Figure 12 shows the ACF plot of the signal. ACF is calculated for 20 lags only. It can be



Sensors 2021, 21, 8023 16 of 19

seen that only one peak at the lower lags is above the upper bound of the graph. This
suggests that the MA model should be of order 1.
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Figure 13 shows the PACF plot of the signal which is also calculated for 20 lags only.
A peak of 0.4 is found at lag 1 which is suggesting the AR model of order 1. However,
ARIMA models with p = 1,2,3,4 and q = 1,2,3,4 are also investigated and the best results are
found are ARIMA (2,1,2).
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Figure 13. PACF Plot.

The coefficient values for the selected model are found using maximum likelihood
estimation. The values of the coefficients are tabulated in Table 5.

Table 5. Estimated coefficients values.

Model Coefficient 1 Coefficient 2

Autoregressive model (∅) −0.0186 0.6104

Moving Average model (θ) −0.1894 −0.8105

The estimated ARMA model is then used to reconstruct the filtered signal. A window
of 50 samples is selected and then a maximum of five samples are forecasted to reconstruct
the signal. Then the window is moved to the next 50 values of the signals and the same
procedure is repeated until the complete signal is reconstructed. After that, filtered values
for the first 50 samples which were replaced by the average of their neighbor samples, are
now replaced by the average of the filtered signal. Figure 14 shows the reconstructed signal.
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In the above figure, the machining signal is shown by a blue line while the filtered or
reconstructed samples are shown by the red line. The neural network results are presented
in Table 6. In the table, the first column represents the various combinations of machining
and noise signals. For example, MC + M1 shows that the machine 1 signal is introduced
to the machining signal. In order to validate the proposed algorithm performance, three
indicators—namely, signal to noise ratio, coefficient of variation, and mean square error—
are used. The signal to noise ratio (SNR) is the ratio between mean and standard deviation
of a signal and it is given as

SNR =
S
σs

=
1
N ∑N

i=1 si√
1
N ∑N

i=1
(
si − S

) (19)

where S and σs are the mean and standard deviation of the signal. Coefficient of variation
(CV) is the reciprocal to SNR. In the Table 6, the fourth column SNR1 represents SNR of
the mixed signal before filtering. The SNR2 column represents the SNR of the filtered
and reconstructed signal. Similarly, the CV1 column represent coefficient of variation of
the mixed signal whereas CV2 column represent the coefficient of variation of the filtered
and reconstructed signal. From Table 6, it can be observed that the SNR of the machining
signals before and after adding the noise are significantly improved. Similarly, the CV
value of the machining signal reduces after filtering. Column 9 of the table shows the
percentage increase in the SNR before and after filtering the noise. The last column of the
table shows mean squared error between filtered signal and the original machining signal.

Table 6. Results for real scenarios.

Noise MEAN1
×10−2

STD1
×10−2 SNR1 CV1 MEAN2

×10−3
STD2
×10−4 SNR2 CV2 % In-

crease
MSE
×10−7

MC + M1 0.5812 0.1619 3.590 0.278 5.447 6.97 7.810 0.128 54.02 1.34

MC + M2 1.0439 1.5243 0.684 1.460 5.447 6.97 7.810 0.128 91.23 1.34

MC + M3 0.551 0.0903 6.098 0.163 5.478 7.32 7.486 0.133 18.53 1.68

MC + M4 0.5634 0.1161 4.851 0.206 5.478 7.29 7.513 0.133 35.43 1.72

MC + M1 + M2 1.0501 1.5425 0.680 1.468 5.447 6.97 7.810 0.128 91.28 1.34

MC + M1 + M3 0.588 0.1809 3.250 0.307 5.447 6.97 7.810 0.128 58.38 1.34

MC + M1 + M4 0.5959 0.2025 2.943 0.339 5.447 6.97 7.810 0.128 62.31 1.34

MC + M2 + M3 1.0456 1.5291 0.683 1.462 5.447 6.97 7.810 0.128 91.24 1.34

MC + M2 + M4 1.0473 1.5351 0.682 1.46 5.447 6.97 7.810 0.128 91.26 1.34

MC + M3 + M4 0.5707 0.1345 4.242 0.235 5.447 6.97 7.810 0.128 45.67 1.34

MC + M1 + M2 + M3 1.0519 1.5476 0.679 1.471 5.447 6.97 7.810 0.128 91.29 1.34

MC + M1 + M2 + M4 1.0535 1.5532 0.678 1.474 5.447 6.97 7.810 0.128 91.31 1.34

MC + M1 + M3 + M4 0.6018 0.2191 2.746 0.364 5.447 6.97 7.810 0.128 64.83 1.34

MC + M2 + M3 + M4 1.0491 1.5397 0.681 1.467 5.447 6.97 7.810 0.128 91.27 1.34

MC + All Noise 1.0553 1.5581 0.677 1.476 5.447 6.97 7.810 0.128 91.32 1.34

6. Conclusions

Airborne acoustic emission from a machining process provides vital information re-
garding the tool wear and can be used to develop a low-cost solution to monitor tool health.
However, background noise is one of the major challenges in its implementation. The re-
search aims to propose a solution to filter the noise generated by parallel running machines
on the shop floor to overcome the implementation challenge of airborne acoustic emission
in the lab environment. The characteristic frequency of tool condition for airborne acoustic
emission lies within the first few kHz. Parallel running machining machines frequency
can lie within or outside this range. Traditional band-pass, band-stop, or notch filters
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can be applied if noise frequency lies outside the machining frequency range; however,
these filters would also filter the machining signal if the noise frequency lies within the
machining frequency range. Therefore, different techniques of machine learning algorithms
have been used as adaptive filters to classify machine and noise signals.

Different combinations of noise signals are mixed and introduced to machine signals
to test the performance of the proposed solution in a real environment. To reconstruct
the filtered signal, the ARMA-based algorithm is used. A series needs to be stationary to
estimate the ARMA model. Proper order of differencing is selected using variance and
autocorrelation function to avoid under and over differencing of the series. An under-
differenced series would behave as a non-stationary series, while on the other hand, it
is difficult to estimate over-differenced series coefficients. Order of moving average and
autoregressive model is estimated to be around 1 using autocorrelation and partial autocor-
relation function test, however, better results are found at ARIMA (2, 1, 2). ARMA-based
signal reconstruction shows promising results with an average increase in SNR of 70.3%
before and after signal reconstruction. Moreover, an average MSE of 1.3 × 10−7 is found
between reconstructed and original machining signal. Finally, it can be concluded that
the proposed technique can work best for the lab environment; however, the proposed
technique can face a challenge to filter the noise having characteristics closer to the ma-
chining signal. Moreover, implementation of ARMA-based reconstruction algorithm in the
dominant noisy environment would be a challenging problem.
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