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Abstract: Object tracking is an essential problem in computer vision that has been extensively
researched for decades. Tracking objects in thermal images is particularly difficult because of the
lack of color information, low image resolution, or high similarity between objects of the same class.
One of the main challenges in multi-object tracking, also referred to as the data association problem,
is finding the correct correspondences between measurements and tracks and adapting the object
appearance changes over time. We addressed this challenge of data association for thermal images
by proposing three contributions. The first contribution consisted of the creation of a data-driven
appearance score using five Siamese Networks, which operate on the image detection and on parts
of it. Secondly, we engineered an original edge-based descriptor that improves the data association
process. Lastly, we proposed a dataset consisting of pedestrian instances that were recorded in
different scenarios and are used for training the Siamese Networks. The data-driven part of the
data association score offers robustness, while feature engineering offers adaptability to unknown
scenarios and their combination leads to a more powerful tracking solution. Our approach had a
running time of 25 ms and achieved an average precision of 86.2% on publicly available benchmarks,
containing real-world scenarios, as shown in the evaluation section.

Keywords: data association and tracking; convolutional neural networks; feature engineering;
thermal imaging; autonomous driving; advanced driving assistance systems

1. Introduction

Multiple Object Tracking (MOT) is one of the most fundamental problems that have
been addressed in computer vision and robotics. Tracking is an important building block
in various tasks of computer vision such as surveillance [1], autonomous driving and
advanced driver assistance systems [2], or industrial inspection [3]. Even though it has
attracted the interest of many researchers over several decades, the problem of multiple
object tracking has not yet been solved. Many of the MOT methods follow a track by
detection framework where the tracking solution generally employs an object detector to
identify objects in each frame and then utilizes an association method between detections
and tracks, in order to maintain their identity over all frames from a given image sequence.
MOT can be separated into Online and Offline tracking methods according to how they
use object detection information in the image sequence. Offline methods [1,4] handle the
tracking problem as a global optimization problem and make use of all detections available
from the whole image sequence when associating unique track identities to these detections.
Therefore, offline methods can only be applied when the whole image sequence is present.
In contrast, online methods are more suitable for real-time applications since they rely on
the information from object detection up to the current frame. These real-time solutions
have also shown competitive tracking accuracy on international benchmarks [5,6].
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The challenges that appear in multi-object tracking can be split in two main categories:
sensor-related issues and data association problems. Some of the thermal sensor issues
may refer to:

- The number of objects within the field of view (FOV) of the sensor, which may be
unknown and in different states.

- Objects enter and leave the sensor FOV; therefore, it is necessary to have good object
management and object identity management.

- Since the object detector is not perfect, it may be susceptible to two kinds of errors,
missed detections (due to environment conditions, object properties, or occlusions)
and false detections or clutter (a detection that is not caused by an object). Both types
of errors could lead to disastrous outcomes if they are not handled correctly.

The main idea of the data association problem is that there is no information regarding
the origin of a detection or what real object caused it. Hence, we can split the challenges
for treating the data association problem into two categories:

- The origin uncertainty: There is no knowledge about how the new measurements
relate to previous sensor data, and

- Motion uncertainty: Objects can have multiple motion patterns, which may change in
consecutive frames.

The poor handling of the data association problem may lead to bad tracking results.
The issues mentioned above were approached by many researchers who have addressed
the tracking problem for different kinds of applications using different types of sensors such
as single cameras [7], stereo cameras [8], LIDARs, RADARs [9], or thermal cameras [10].
Some solutions from the literature try to improve the performance of object tracking by
fusing the information from multiple sensors [9].

Even so, to ensure high-quality results and robustness against individual sensor
failure, the tracking functionality must be reliable and the solution must not be centered
around the functioning of a certain sensor.

Thermal cameras have attracted a lot of attention in the automotive field due to their
ability to detect objects in bad weather conditions including rainy, snowy, or foggy weather.
Other advantages of thermal cameras include their ability to function without a light source,
the lack of saturation in the presence of the lights from oncoming vehicles, and the ability
to detect people or animals from long ranges even at night, improving the reaction time of
the driver. The main disadvantages of thermal images are that they do not contain as much
information as the color or even the monochrome images, and they usually have a lower
resolution, which makes the design of a data association function based on appearance
even more difficult. There are two main directions in the literature for addressing this
issue of data association: the feature engineering approaches [10–21] and the data-driven
methods (using convolutional neural networks) [22–31]. The advantage of designing the
data association function using data-driven methods is that after the convolutional neural
network architecture is designed, through a learning process the best features are identified.
The main issue with deep learning and with data-based models in general is that the
object tracker may get latched onto the wrong object, which may be a false detection but
looks similar to data from the training dataset, and never recover. Furthermore, if the
data association model is not trained on parts of objects, the tracker can have a hard time
tracking an object when it is partially occluded.

In contrast to data-driven methods, in the feature engineering-based solutions the re-
searchers manually design features and cost functions and use an optimization method [13]
to assign the best measurement to each track. The difficulty in this approach is identifying
the best features to use for each type of sensor. Feature engineering methods are faster than
data-driven solutions; however, identifying the correct features to use depending on the
sensor is a more difficult endeavor.

In this paper we present a data association and tracking solution for thermal images
that exploits the benefits of both approaches. The proposed tracker was designed to track
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pedestrians in thermal images related to traffic scenarios. The contributions of this paper
are the following.

• We designed a family of five Siamese Convolutional Neural Networks that were
combined to create a data-driven, appearance-based association score capable of
working even in the case of partial occlusions. The base architecture of all neural nets
is similar and its design is also a contribution of the current paper.

• We proposed a uniform, local binary pattern descriptor obtained from edge orien-
tations. This engineered feature will be used to compute a similarity score between
measurements and tracks. The number will be included in the data association score
to provide adaptability to unknown scenarios.

• The creation of the dataset is useful for training a CNN when designing an appearance
data association function for tracking pedestrians in thermal images. The dataset is
made publicly available.

The data-driven and feature engineered scores were merged using a weighted combi-
nation and the resulting number was used to perform a successful data association and
track objects.

The rest of the paper is structured as follows. In Section 2 we present the state of the
art. In Section 3 we describe the proposed contributions. In Section 4 we illustrate the
performance of the proposed solution, and in Section 5 we conclude the paper.

2. Related Work

In this section we will review state-of-the-art methods that address the problem of
tracking using convolutional neural networks and feature engineering methods.

2.1. Feature Engineering-Based Tracking Methods

Most online tracking algorithms use a tracking-by-detection approach, where a detec-
tor provides the object candidates and, using a data association function, measurements
and tracks are correlated across multiple frames. When computing the similarity cost be-
tween detections in different frames, object appearance and motion are the most common
sources of information. In appearance-based cost computing, some traditional methods use
the distance computation between color histograms [7]. A similar approach was presented
in [11], where the similarity measure was calculated using the Chi-Square similarity of the
gray level histograms of the object and track and the cosine distance of the spatio-temporal
location of the two compared entities. The authors in [12] engineered an appearance simi-
larity cost function using multiple types of information including object dimension and
color histogram. Additionally, they used the L2 norm to compute the motion similarity
between detections and tracks, and then fused the results with the score obtained from the
appearance function. The authors calculated the association scores for all measurements
and all tracks and then used the Hungarian algorithm [13] to find the best mappings. In
the work presented in [14], the authors engineered an aggregated local flow descriptor
that encodes the relative motion pattern of two bounding box detections in different time
frames. The descriptor was used along with other features to find the best data association
between targets and detections. The authors of [10] designed a cost function where they
used a combination of multiple features such as HOG, width, height, and intersection over
union between the measurement and track bounding boxes in order to create an efficient
data association and tracking approach for objects detected in thermal images.

Bertozzi [15] applied a stabilization technique to cope with vehicle movements af-
fecting camera calibration. Localization and tracking of the pedestrians were based on
the search for warm symmetrical objects that had a specific aspect ratio and size. Other
approaches track pedestrians using hot areas. For example, the HotSpot tracker detects
objects by performing a pixel intensity thresholding and tracks the detections using a
Kalman filter with a global nearest neighbor approach to the association problem [16,17].
The paper in [18] presented a weighted function that combines similarities in position,
size, and appearance. The main issue with this work is that the appearance score was
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computed in a naive manner and, in the case of pedestrian overlapping in some situations,
the data association may fail. Yu et al. [19] used edges and edge orientations and trans-
ferred them into the Fourier domain to obtain a real-time tracker. Another tracker that
was applied on thermal images [20] used edge features and a 2640-dimensional histogram
feature computed from the intensity channel. In [21] the authors combined a motion and an
appearance score for improving the data association process from the tracking framework.
The appearance cost, between the track and measurement, was composed of a weighted
combination of multiple individual scores obtained via feature engineering. Some of the
quantities used were the mean, standard deviation in the region of interest, the height,
width, classification score, the uniform LBP of grayscale values from the regions of interest,
and an intersection over union score. The motion cost, between a track and a detection,
included the Euclidean distance in position between the two objects, a deviation cost,
which illustrated the drift in the motion pattern of the current measurement, and an optical
flow cost. The combination of the motion and appearance costs led to the creation of an
efficient tracker.

2.2. Data-Driven Tracking Methods

In the recent literature, common approaches for trackers were to model object features
using deep convolutional neural networks (CNNs). In the approach presented in [22], to
ensure robustness against background noise in the case of online training of CNNs, the
TCNN algorithm maintained stability of appearance through a tree structure of CNNs.
SRDCFir [23] is the adaptation of the SRDCF tracker for thermal images. This tracker
introduces a spatial regularization component that penalizes filter coefficients residing
outside the target region, leading to a more discriminative appearance model. In addition
to the HOG features used in [24], the SRDCFir employs channel-coded intensity features
and a motion feature channel.

Recently, an idea that became popular in visual object tracking, which also obtained
competitive results on international thermal imaging benchmarks, used a pre-trained
function to verify the level of similarity between measurements and tracks [25]. The
matching function is usually implemented by a two-branch CNN, whose branches are
the same and share the parameter space between them. The Siamese network takes the
image pairs (from the track and measurement) as input and outputs the similarity between
them. In the work of Liu et al. [26], the authors trained a multi-layer fusion Siamese
network to learn the similarity of two arbitrary objects from thermal images using flow
information. The presented network had multiple convolution layers and attempted to
fuse deep layers and shallow layers to obtain richer information for the data association
function. Zhang et al. [27] proposed a multi-stage deep feature fusion network, which
combined a multi-stage region proposal network (RPN) based on one-stage RPN and a
spatial transformer network for tracking objects in thermal images. SiamFC [25] is another
tracker that uses Siamese Networks, which can run in real time; however, its tracking
accuracy is inferior to state-of-the-art trackers, due its lack of online adaptation ability.
The DSiamM [28] tracker proposes to make an online update to the Siamese network by
integrating correlation filters into the network.

The solution presented in [29] decomposes the robustness and discrimination require-
ments in separate stages. In their approach, the authors addressed each stage by training
one network. Furthermore, for strengthening the robustness of their solution, two Siamese
AlexNet [30] networks were used for feature extraction and, finally, the results obtained
from each stage were fused in order to create an efficient data association function. In [31],
Zhang et al. proposed a method of generating a thermal imaging data set from a RGB data
set. Using this data set, the authors performed an end-to-end training using a Siamese
neural net model [32] for obtaining the thermal image features. The obtained features were
used for computing the similarity between objects in the data association function.

We built upon the state of the art by creating a data association solution that efficiently
combines the data-driven and feature-engineered costs in order to create a robust data
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association function useful within the tracking framework. We used the motion and
appearance scores presented in [21] and we added to the appearance score two additional
terms. The first term was a feature engineered score that was derived by combining the
uniform LBP with HOG features, and the second term was a data-driven term obtained by
using a family of Siamese neural networks. The architecture of a Siamese neural network
is also an original contribution of this paper. The model was trained using the dataset
presented in Section 3.2.4, which has been made publicly available. The combination of
the feature engineered and data-driven costs led to a solution, which is more robust and
is capable of tracking objects even in scenarios where the usage of a individual type of
cost failed. The mentioned contributions are detailed in Section 3. In Table 1 the main
differences of the proposed solution, with respect to some methods from the state of the
art, are presented. The “x” mark from a table cell refers to a specific feature of the method.

Table 1. Differences of the proposed solution with respect to some methods from the state of the art.

Method Feature Engineered Data Driven Whole Detection Part-Based

Online Tracker [18] x x
Tracker [21] x x
SiamFC [25] x x

MLSSNet [33] x x
Proposed Solution x x x x

3. Proposed Solution
3.1. Camera Setup

To ensure that our solution was able to accurately track pedestrians in various scenar-
ios, we recorded sequences in all weather and illumination conditions (day, night, rain, sun,
snow, fog, etc.). The thermal imaging sensor used consisted of a FLIR PathFindIR, which
incorporated a Vox microbolometer with a spectral response in the ranges of 8–14 µm. The
sensor can output images having a resolution of 320 × 240 pixels and it was equipped with
a 19-mm lens providing a field of view of 36◦ (h) and 27◦ (v). The camera can perform in
various weather conditions while being protected from dust or water due to the fact that it
is hermetically sealed (IP67 rated). The thermal time constant of the used thermal camera
is 12 ms.

The camera outputs its data in analog format (PAL), which is converted to digital using
the DVD EZMaker 7 converter from AVerMedia. The converted images were upscaled to
a 640 × 480 resolution. The camera was fixed on top of the vehicle, at an equal distance
to the lateral sides of the vehicle, using a magnetic mounting tripod. The mounting and
position of the camera on the vehicle can be seen in Figure 1. On the horizontal axis the
position of the camera on the car was 2555 mm, and on the vertical axis the camera was
mounted at a height of 1788 mm.

Figure 1. Camera position and mounting on the vehicle.
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3.2. Proposed Approach

In this paper, we build upon the solution presented in [21], which was considered the
base solution for our approach. In this section we are providing some details regarding
the base solution and in the following subsections we describe the proposed contribu-
tions. It is worth mentioning the fact that the techniques presented in this paper can be
applied to other tracking frameworks as well to improve the overall data association and
tracking performance.

The proposed solution followed a tracking-by-detection framework, where the simi-
larity cost function between a track and a detection includes both motion and appearance
scores. The input of our algorithm was given by a set of bounding boxes, and the output
was a set of tracks that had a smoothed trajectory and unique ID. The high-level modules
from the processing pipeline of an autonomous vehicle or advanced driving assistance
systems can transform the results of the tracking algorithm into an actionable output or
warning message for the driver.

The main components of the tracking solution included the following modules: clutter
elimination, similarity cost computation, track and detection association, track update,
and results’ refinement. For reducing the running time of the association process between
a track and a detection, a validation gate was used around the position of the predicted
hypothesis. The detections that fell within the validation gate of a track were considered
in the association process of that specific track. The tracks and detections were associated
using a similarity cost function based on appearance and motion.

The appearance score is useful in target tracking for differentiating between objects
using visual features. Furthermore, the appearance score should adapt to the changes that
appear in consecutive frames for the same instance due to deformations or point-of-view
changes. In thermal images, distinguishing between objects can be particularly difficult, in
comparison to RGB images, because of the lack of color information or relevant texture
information. The appearance score, between a track i and a detection j, onto which we built
our current solution contained several visual features, as illustrated in Equation (1).

ϑ(i, j) = whLhL(i, j) + wµsµs(i, j) + wσsσs(i, j) + whshs(i, j) + wwsws(i, j)+

wcscs(i, j) + wosos(i, j)
(1)

In Equation (1) above, hL(i, j) represents the difference between the histogram of
uniform local binary pattern (LBP) in the region of interest (ROI) of the detection j and
track i, µs(i, j) is the mean value pixel intensity distance of the ROI, σs(i, j) represents
the variance score in the ROI, hs(i, j) and ws(i, j) are the differences in height and width
between the track i and detection j, σs(i, j) represents the overlapping distance, and cs(i, j)
represents the class detection probability score. Additionally, to the appearance score, a
motion score was been used. The expression of the motion score between the track i and
detection j is given by Equation (2).

m(i, j) = wdstdst(i, j) + f c(i, j) + wσm

(
σm(i, j)x + σm(i, j)y

)
(2)

The meaning of the terms used are: dst(i, j) is the euclidean distance between the track
and detection position; f c(i, j) is the difference in the optical flow in the regions of interest,
between the track i and detection j; and σm(i, j)x ∧ σm(i, j)y are the scores that illustrate the
deviation of the object’s motion from the motion pattern it had so far, on the x and y axes.

The weights introduced in both Equations (1) and (2) allow us to set the influence of
certain parameters. Their value was determined experimentally and can be found in [21].
The final similarity cost was composed of the sum of the motion and appearance costs.

The similarity costs between tracks and all the detections that fell within their covari-
ance ellipses were stored in memory and were fed to an optimal assignment algorithm [13]
to find the best correspondences. The following three scenarios can be identified after
running the Hungarian algorithm: We can have a track matched with a detection, an un-
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matched detection, or an unmatched track. Each of these scenarios are addressed separately
and they are presented in Section 3.2.3.

In this section we describe the proposed contributions and how they were used to
improve the data association and tracking performance. First, in Section 3.2.1, we will
present the proposed family of Siamese Neural Networks used for obtaining the data-
driven score. Secondly, we present the novel feature engineered descriptor in Section 3.2.2.
In Section 3.2.3, we detail how the proposed data associations’ scores were included in
the tracking framework, and, finally, in Section 3.2.4, we will detail how we created the
pedestrian dataset and what this dataset contained.

3.2.1. Data-Driven Score

Creating a data association function that can be used to track objects can be addressed
using similarity learning. We proposed to learn a function, γ(i, j), that compared a given
thermal image, which belonged to the measurement j, to a candidate image, which had
the same size and belonged to track i, and returned a high score if the two images were
different and a small score otherwise. In this section we will discuss implementing the
function γ(i, j) using a deep convolutional network.

Similarity learning, in the context of CNNs, is typically addressed using Siamese
architectures, which apply the same transformation ϕ to both input images and then
combine their results using a function g, as shown in Equation (3). If we consider the
function g a distance or similarity metric, the function ϕ can be considered an embedding.

α(i, j) = g(ϕ(x), ϕ(y)) (3)

To obtain a more effective appearance score for thermal image tracking, we con-
structed a family of Siamese networks. We called the proposed Siamese networks a family
of networks due to their similar structure. Unlike existing solutions based on Siamese
networks, which often compute the similarity using the entire detection, we computed the
similarity using multiple networks trained on the whole detection and also on parts of it,
as depicted in Figure 2, which made our solution more robust in cases of occlusion.

Figure 2. Architecture of the proposed data driven cost based on a family of Siamese Networks. These
networks work on the whole image and on parts of it, improving the robustness of the TIR tracker.
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To this end, we designed two different types of network structures: the first type
of network model will work on the entire detection, while the second model will work
on parts of the detection. The proposed network models will work on detections having
a dimension of a minimum (width × height) of 19 × 50 pixels. For dimensions smaller
than the ones mentioned, the data association will work using only the feature-engineered
score. The first step in our solution was to resize the input representing the detected image
rectangle to a size of 200 × 200 pixels. Thermal infrared emission does not depend on any
light source; however, the emissivity of the clothes that each person wears leads to a unique
thermal texture and structure for each pedestrian. Even though the environment in which
the target is plays a large role in the apparent temperature of the target (the at-aperture-
measured target radiance is a function of the emissivity of the target, the reflectivity of that
same target, and the thermal environment that the target is in), the tracking algorithm is
not drastically affected by this aspect because the frame rate of the camera is sufficiently
large and the characteristics of each track are updated at each frame using the features of
the detections. The characteristics of the same target do not change drastically between
frames; so, the data association function can make the right correspondences.

In the second step, to compute the texture and structure appearance similarity, we
designed a CNN able to capture the changes in appearance and the texture uniqueness of
each pedestrian such that the tracker was able to distinguish easily between objects. The
architecture that we adopted for the embedding function ϕ consisted of eight layers, as
shown in Figure 3. Specifically, we first used a convolutional layer with a kernel size of
3 × 3 and 96 filters. Then, we used a ReLU activation followed by a max pooling layer and
a dropout of 25%.

Figure 3. Graphical depiction of the embedding function ϕ used for generating the features for the
input image.

The second convolution layer used the kernel size of 3× 3 and 128 filters, and similarly
to the previous case, this layer was followed by a ReLU activation and a max pooling
layer with a 25% dropout. The final convolutional layer used a kernel size of 3 × 3 having
12 filters and ReLU activation and it was followed by the max pooling and dropout with a
25% dropout rate. The last two layers were fully connected layers: the first layer having
a size of 128 nodes and a ReLU activation followed by a 10% dropout, and the second
layer having 50 nodes and ReLU activation. The embeddings of the two images were
compared using the Euclidean distance. To train the neural net, we used the contrastive
loss function (4), where Y is the tensor of details about image similarity, which is 0 if the
inputs are from the same class and 1 otherwise, D is the tensor of Euclidean distances
between the pairs of images, and margin is a constant used to enforce a minimum distance
between them. In our scenario, it had a value of 1.

Loss =
YD2 + (1−Y)max(margin− D, 0)2

2
(4)

For creating the training dataset for the part-based model, the original image was
split into four equal parts, i.e., top left, the top right, the bottom left, and the bottom
right part. The part-based similarity networks were trained on parts of the image. There
was one Siamese Network responsible for identifying the similarity between each of the
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four parts from the target with the corresponding part of the measurement. The function
h
(

xp, yp
)

(Equation (5)) that computed the similarity between parts p of the x and y images
was defined similarly as the function presented in Equation (3); however, the embedding
function ϕ was different for the part-based scenario. The overall similarity was computed
by summing the scores obtained for each part, as shown in Equation (6).

h
(
xp, yp

)
= g

(
ϕp
(
xp
)
, ϕp

(
yp
))

(5)

β(i, j) =
4

∑
p=1

h
(
xp, yp

)
(6)

The part-based models were also trained using contrastive loss and had similar
architectures to the model created for the entire image; however, the number of nodes of
the last fully connected layer, number of filters, and kernel sizes were different. The part-
based models had 30 nodes for the last fully connected layer and the kernel size of all layers
was 3 × 3, while the number of filters for the first convolutional layer was 112, second
layer convolutional layer was 96, and the number of filters for the third convolutional
layer was 12. The final data association score of the data-driven component was computed,
as described in Equation (7), where w1 is 100 and w2 is 25, are two weights that were
determined experimentally.

γ(i, j) = α(i, j)w1 + β(i, j)w2 (7)

3.2.2. Feature Engineered Score

Object texture did not change drastically between frames; therefore, it is a good
feature to use to measure the correlation between track and measurement. We aimed to
better capture the texture structure of each object by creating a feature that combined the
histogram of oriented gradients’ descriptor and the uniform local binary pattern descriptor.
Furthermore, using an engineered feature we made the proposed tracking method more
adaptable to unknown scenarios. For computing this descriptor, we first computed the
magnitude G and the orientation θ of the gradient using the input images derivatives IX
and IY (8). The image was split into cells having a dimension of 10 × 10 pixels. For each
cell a nine-bin histogram was created and every pixel from that cell cast a weighted vote in
the histogram based on the orientation of the gradient of that pixel, with the weight being
the magnitude of the gradient.

|G| =
√

I2
X + I2

Y; θ = arctan
(

IX
IY

)
(8)

We then iterated each cell from the image, and assigned for that cell the orientation
corresponding to the bin that has the largest value from the histogram. To the obtained
result, the local binary pattern (LBP) descriptor was applied, Equation (9).

LBPP,R =
P−1

∑
p=0

s
(

gp − gc
)
2p (9)

The number of neighbors for a pixel in a neighborhood of radius R is the value P, and
the function s is defined as s(x) = 0 if x > 0 or s(x) = 1, otherwise. In our scenario, gp was
the orientation of neighbour pixel p, and gc was the orientation of the center pixel. In the
proposed solution, a neighborhood of 3 × 3 was used; hence, all values from the region
of interest could be represented using a 256-value histogram. In order to improve the
memory consumption and the running time and to achieve more robustness against noise,
a uniform local binary pattern histogram was employed [34]. Therefore, for the proposed
neighborhood, there were 256 possible patterns, out of which 58 were meaningful; hence,
there were a total of 59 bins necessary.
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The voting of each LBP code was done using a lookup table to improve the running
time of the solution. The resulting histogram was denoted as θLBP. A graphical depiction
of the main steps can be seen in Figure 4. After resizing the original image, some artefacts
may appear in the image and look like vertical stripes. These artefacts do not affect the
overall performance of the algorithm.

Figure 4. Top left image is the original image. The top right image represents the orientation of
each pixel, which is represented using a different color. In the bottom left, the dominant orientation
for each cell of 10 × 10 pixels is selected. In the bottom right image, the LBP representation of the
orientation image is shown. Using the information from this LBP image, a uniform local binary
pattern histogram is created.

The final similarity score between the input image belonging to the track i and mea-
surement j, with respect to the proposed feature, was computed using the root mean
square function on the values of the histograms, θLBP, for the track i and measurement j
(Equation (10)).

τ(i, j) =

√√√√ 1
59

59

∑
k=1

(
θLBP(k)i − θLBP(k)j

)2
(10)

3.2.3. Data Association Score and Tracking

The appearance score between track i and measurement j, using both the engineered
feature and the data-generated features, is given by Equation (11). The value of w3 is
300 and was determined experimentally by performing extensive tests on multiple scenar-
ios. The term ϑ(i, j) was introduced in Equaiton (1). It is worth mentioning that all the
weights used in our solution were stable with respect to the test data. They did not require
modifications when the scenarios were changing or when using other thermal images
acquired with the same sensor.

µ(i, j) = ϑ(i, j) + w3τ(i, j) + γ(i, j) (11)

An optimal assignment algorithm [13], is used to find the best correspondences
between the tracks and measurements from the current frame. After the optimal assign-
ment, the following scenarios were encountered: a track matched with a measurement,
an unmatched track, and an unmatched measurement. In the case of a successful track
measurement assignment, the track and all its parameters are updated with the new infor-
mation coming from the measurement. In the case of an unmatched measurement, a new
track is created, which will remain in an unstable state until it will be tracked for another
five frames and, afterwards, will become stable and will be displayed.

One of the key features of tracking is the persistence of a tracked object even if it goes
undetected or occluded for a number of frames. For this reason, the proposed tracker
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maintained a history counter that counted the number of frames for which a track is not
associated. The position of the track in future frames was predicted using the motion
pattern the tracked object had so far. After a number of frames, if the track remains un-
associated, it entered a drifting stage where it was not displayed anymore, but it was kept
in memory. The track was finally removed when, in the drifting stage, it was not associated
with any new measurements.

Therefore, the tracks that were stable and were not associated for a number of frames
were not removed immediately. The tracked objects were updated and new positions were
predicted using the Kalman Filter [2].

The track history counter threshold used in the proposed solution was 20 and the
drifting history counter threshold was 15. If a track was created and not updated for
five frames, it was removed immediately. In Figure 5, we show a scenario where two
pedestrians are tracked as they are heading towards their vehicle, and a third pedestrian,
in the background, is tracked even when he/she is partly occluded by vegetation. The
bottom right image from Figure 5 shows the past position of each pedestrian path. The
bottom left image shows the tracked objects with their corresponding unique ID. The top
left image illustrates the measurements as they are detected by the object detector, and in
the top right image the corresponding measurements are projected in a virtual image.

Figure 5. Pedestrians in a parking lot. The proposed tracking solution is able to track pedestrians of
different sizes, even when they are partly occluded.

The bounding box of each object has a unique color to highlight its unique identity.
In Figure 6, we illustrate another scenario in which two people cross paths. Even when
the two pedestrians overlap, the proposed tracking solution is able to maintain the correct
identity of each pedestrian and not latch onto the wrong pedestrian.

In Figure 7, multiple pedestrians are tracked as they are walking on the sidewalk.
Even though the pedestrians are close to each other and they are getting smaller as they
are going further from the ego vehicle, no ID switch appears among the tracked objects.
The meaning of the four images presented in Figure 7 remains the same as in Figure 5.



Sensors 2021, 21, 8005 12 of 20

Figure 6. Pedestrians overlapping as they are crossing the street. The tracker is able to maintain
the correct object ID and not latch onto the wrong object. Both the top two and bottom two images
represent the same tracked objects seen at different time stamps.

Figure 7. Multiple pedestrians are tracked. No ID switch appears among the tracked objects.
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3.2.4. Pedestrian Dataset from Thermal Images

Siamese networks extract features from data pairs and generate embedding vectors,
which can be compared using an energy function in order to verify the similarity between
the input pair. In order to train our Siamese networks to differentiate between pedestrians,
we created a dataset consisting of over 200 pedestrian instances that were cropped from
thermal image sequences. The dataset contains over 26,000 images of pedestrians captured
in different weather and light conditions. The conditions in which the sequences were
recorded were specific to driving scenarios and included scenarios for day, night, rain,
fog, clear weather, spring, and winter. The pedestrians were extracted from the recorded
thermal image sequences in three passes. In the first pass, each pedestrian was cropped
from all frames from each sequence, and the cropped images were stored in a folder having
the sequence name. Then, in the second pass, all pedestrian images that represent the
same object instance were grouped in folders. Since some consecutive sequences may have
contained the same instances of pedestrians, in the third and final pass, we cross-checked all
folders from all sequences and placed similar pedestrian instances from different sequence
folders in the same pedestrian instance folder from one of the sequences. We finally placed
all the pedestrian instance folders in a data set folder and we gave each one an order
number. Some samples from the pedestrian data set from thermal images corresponding to
the same pedestrian instance are displayed in Figure 8. This dataset can be used to train
data-driven models in order to aid the pedestrian reidentification (data association) process
in tracking applications. Table 2 shows the attributes of the created dataset. The reason
why some of the images may seem to have a lower resolution compared to the images from
other thermal cameras [35] is that the cropped pedestrians can be farther away from the
vehicle-mounted thermal camera. The created dataset can be downloaded from the link
https://users.utcluj.ro/~mmp/DatasetPaper/ (latest accessed on 29 November 2021)

Figure 8. Sample images from the created dataset extracted for the same pedestrian instance.

Table 2. Attributes of the constructed dataset.

Attribute Value

Video Sequences Used 160

Total Extracted Image Samples 26,153

Pedestrian Instances 207

Camera Position Vehicle Mounted

Pixel Resolution 8 bpp

Original Image Resolution 640 × 480

4. Results

The proposed tracking framework was implemented using C++ and Python, and all
test cases presented in this section were done on a computer having an Intel i7-4770 K CPU
with 3.5-GHz frequency and 8 GB of RAM memory and the GPU used was NVIDIA GeForce
GTX 1080 Ti. The designed tracker was able to track pedestrians having an average running
time on the CPU and GPU of 25 ms (without the object detection part). The proposed
data-driven score was implemented on the GPU, while the feature engineered score was
implemented on the CPU.

https://users.utcluj.ro/~mmp/DatasetPaper/
https://users.utcluj.ro/~mmp/DatasetPaper/


Sensors 2021, 21, 8005 14 of 20

For training the neural networks, the proposed dataset, presented in Section 3.2.4, was
used. Furthermore, the original dataset was augmented using the following operations:
image flip, adding salt and pepper noise in the image, addition of motion blur, addition
of gaussian noise, image sharpening, and contrast normalization. The resulting dataset
was split for training the proposed neural network architectures in the following way: 20%
test data, 10% cross-validation data, and 70% training data. Each model was trained for
40 epochs using a learning rate of 0.0005 and the optimizer used was root mean square
propagation. The results of the proposed models on the test sets were the following: 98.34%
for the model working on the entire image, 96.82% for the neural network working on
the top left image part, 96.61% for the neural network model working on the top right
part of the image, 95.92% for the bottom left part, and 96.01% for the bottom right part.
The object detector employed in our solution was a YOLO [36]-based detector, which was
trained on the FLIR-ADAS [37] dataset and fine-tuned on the CrossIR [21] dataset obtained
with a PathFindIR thermal camera. The CrossIR dataset contains images taken in various
light conditions (day and night) and different weather conditions (sunny, rainy, foggy) and
temperature conditions (cold and warm).

We compared the performance of the proposed tracker with other state-of-the-art
solutions using the PTB-TIR benchmark [38]. In this dataset, there are multiple image
sequences acquired using a thermal camera, each having manual annotations. One com-
parison metric used in this dataset was the center location error (CLE), which is defined as
an average Euclidean distance between the object position and ground truth position for
that object. If the CLE is within a given threshold (20 pixels on the PTB-TIR benchmark),
the track is said to be successful at that frame. Furthermore, the benchmark also offers
results from multiple types of trackers on the given sequences such that the advantages
and disadvantages of each method can be studied comparatively. In the evaluation of the
proposed tracker on the PTB-TIR benchmark, we included only the sequences that were
acquired from a vehicle-mounted camera, since the target application of our solution was
related to intelligent vehicles. The evaluation result of the proposed solution with respect
to the CLE metric on the all the automotive sequences from the benchmark is displayed in
the precision plot in Figure 9. The numerical results and plots from both Figures 9 and 10
were obtained using the PTB-TIR Evaluation Toolkit, which is presented in detail in [38].

Figure 9. Position precision plot on the PTB-TIR benchmark.

For better visibility. the values illustrated in Figure 9 are also displayed in Table 3.
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Table 3. Evaluation with respect to the precision metric.

Method Tracking Precision Score

DeepSTRCF [23] 88.8%
Proposed 86.2%

MLSSNet [33] 83.4%
CFNet [32] 83.3%
VITAL [39] 82.8%
TADT [40] 77.9%

MCFTS [41] 77.6%
HDT [42] 75.8%
HCF [43] 75.6%

SiamFC [25] 74.5%

Figure 10. Plot that measures the overlapping score between the tracked object and ground. truth.

Another interesting score that the PTB-TIR benchmark provided was the overlap
score, which measures the overlap ratio between the bounding box area of the tracked
object and the ground truth. The tracking is labelled successful at that frame if the overlap
score is above a threshold. The success plot is used to rank the tracks with respect to
their overlapping score at the threshold varying from 0 to 1. In Figure 10, the success plot
is displayed.

In contrast to the top solutions from this benchmark, our method was designed
keeping in mind the constraints of the automotive field. The proposed solution was able
to track objects even in occluded scenarios, and in the case of an unknown environment
situation, which was not present in the training set, the method was able to track the object
detections. Moreover, the proposed approach was able to perform multiple-object tracking
not just single-object tracking.

Furthermore, the proposed solution is not very complicated to reproduce, does not
require huge amounts of data for training, and can be easily augmented with other features.

We also display the values from Figure 10 in Table 4 for better visibility.
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Table 4. Evaluation with respect to the success score.

Method Tracking Success Score

DeepSTRCF [23] 67.6%
Proposed 59.8%
TADT [40] 56.4%
VITAL [39] 56.3%
CFNet [32] 53.9%

MLSSNet [33] 53.4%
SiamFC [25] 50.2%
MCFTS [41] 49.3%

HDT [42] 44.6%
HCF [43] 44%

Additionally to the evaluation metrics presented above, we also evaluated the pro-
posed solution using the MOTA (multi-object tracking accuracy) and MOTP (multi-object
tracking precision) metrics. The equation for the MOTA is presented in Equation (12) and
for MOTP in Equation (13).

MOTA = 1− ∑t(FPt + FNt + IDSWt)

∑t GTt
(12)

MOTP =
∑t,i dt,i

∑i ct
(13)

The MOTA metric serves as a general error rate for trackers that takes into account
all object configuration errors that were made by the tracker, like false positives, misses,
mismatches, and over all frames. The maximum MOTA achievable is 1, which would
indicate that a tracker has no errors. The second metric, MOTP, evaluates the precision of
the bounding boxes. Between all track hypotheses and ground truth bounding boxes a
distance metric is computed and divided by the number of matched objects to compute an
average precision. These values are then summed over all frames from the testing sequence
to compute the MOTP. The essential difference between the two metrics is that MOTP takes
into account bounding box accuracy over time for tracked and matched objects, while
MOTA summarizes tracking errors over time, including tracks that go unmatched. An
IDSW(id switch) occurs when a track is lost and re-initialized with a new id or when the
object identity is incorrectly swapped because of a wrong track and detection association.
In Table 5 we illustrate the evaluation using the MOTA, MOTP, and IDSW of the proposed
tracker in the context of multiple pedestrian tracking on the CrossIR dataset [21].

Table 5. Evaluation with respect to different metrics.

Method MOTA MOTP IDSW

Proposed 86.14% 88.63% 134
Base Solution 81.36% 83.17% 143

TADT 80.3% 81.7% 121
MLSSNet 79.8% 82.3% 269
SiamFC 76.4% 82.1% 343

The proposed solution was able to accurately associate detections to tracks and per-
form multiple pedestrians’ tracking in thermal images regardless of the weather conditions
or if the object became occluded. By combining the data-driven and feature engineered
scores, we ensured that the tracker could adapt to unknown traffic situations, thus becom-
ing more robust.

To illustrate how much the proposed tracker improves the detection process, we will
define several metrics. We say that an object is correctly identified if its position differs
from the position of the ground truth with at most 10 pixels (on the x or y axis). Precision is
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defined as the number of correctly identified objects divided by the number of total objects
from the ground truth for a frame. Recall is the number of correctly identified objects
divided by the number of total detected objects for that frame. The accuracy of the tracker
and detector is defined as the number of correctly identified objects reported to the number
of total objects from the ground truth. The detector and the tracker were evaluated on over
100 sequences having multiple objects, which contained different weather and lighting
conditions obtained from real traffic scenarios.

The evaluation presented in Table 5 was performed on the CrossIR dataset introduced
in [21]. We performed this evaluation to illustrate the performance of the proposed algo-
rithm in the presence of multiple objects, in various weather conditions. It is a known
fact that object detectors may fail to detect some objects when they are occluded or be-
cause of the accuracy of the detector. In this evaluation we aimed to illustrate the fact
that the object tracking is improving the overall detection of pedestrians, being able to
maintain an identified object even when the object detector is not able to accurately identify
a pedestrian.

The comparative evaluations are presented in Table 6. The proposed method was
built upon the base solution presented in [21]. In Table 6, we made an ablation study
and show the performance of the base solution and each of the proposed contributions
individually. We also illustrate the fact that the results obtained using the fusion of the
proposed data-driven and the feature engineered costs, added to the base solution, improve
the tracking performance in all the metrics presented below.

Table 6. Ablation study with respect to several metrics.

Average Precision Average Accuracy Average Recall

Object Detector 75.98% 66.47% 98.67%

Base Solution 80.01% 76.4% 95.8%

Base with only
Data-Driven Score 86.15% 79.22% 93.21%

Base with only
Engineered Score 83.25% 78.43% 93.71%

Base with all Fused
Scores (proposed) 88.61% 80.02% 94.8%

As can be seen, the proposed solution improved the performance of the object detector,
leading to better overall results. Furthermore, it is worth noting that the feature engineered
score can also be applied to other object classes, such as vehicles; but, illustrating this was
out of the scope of the paper.

5. Conclusions

In this paper, we presented a novel data association solution useful in multi-object
tracking, which can efficiently track pedestrians in thermal images. To address the main
issues of the data association problem in thermal images, we created a hybrid data asso-
ciation function that fuses data-driven scores with feature engineered scores in order to
obtain a high-quality and adaptable tracking approach. Specifically, we created a family of
five Siamese Neural Networks that were trained on the image boxes corresponding to the
detected objects and on their parts, which generated similarity scores for input images. The
data-driven similarity scores between the detected objects and the tracks were obtained us-
ing a weighted combination between the scores from the Siamese Networks. Furthermore,
to better capture the texture of objects and make our solution more adaptable to unknown
scenarios, we introduced a descriptor that encapsulates the edge information in a uniform,
local, binary pattern histogram that can be used to compare the objects’ interest. The final
appearance score from the data association function combined the feature engineering
and the data-driven score to create a robust tracker for objects in thermal images. We also
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created and made publicly available a pedestrian dataset from thermal images, which
can be used for training data-driven models to learn features from these images. The
proposed approach obtained 86.2% precision on the PTB TIR benchmark and ran in 25 ms,
achieving real-time performance. In future approaches, we will work on improving the
quality of the proposed tracker by automatically finding the weighting parameters, used
when combining features, in an unsupervised manner for each feature.
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