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Abstract: The problem of velocity tracking is considered essential in the consensus of multi-wheeled
mobile robot systems to minimise the total operating time and enhance the system’s energy efficiency.
This study presents a novel switched-system approach, consisting of bang-bang control and consensus
formation algorithms, to address the problem of time-optimal velocity tracking of multiple wheeled
mobile robots with nonholonomic constraints. This effort aims to achieve the desired velocity
formation in the least time for any initial velocity conditions in a multiple mobile robot system. The
main findings of this study are as follows: (i) by deriving the equation of motion along the specified
path, the motor’s extremal conditions for a time-optimal trajectory are introduced; (ii) utilising a
general consensus formation algorithm, the desired velocity formation is achieved; (iii) applying the
Pontryagin Maximum Principle, the new switching formation matrix of weights is obtained. Using
this new switching matrix of weights guarantees that at least one of the system’s motors, of either the
followers or the leader, reaches its maximum or minimum value by using extremals, which enables
the multi-robot system to reach the velocity formation in the least time. The proposed approach
is verified in a theoretical analysis along with the numerical simulation process. The simulation
results demonstrated that using the proposed switched system, the time-optimal consensus algorithm
behaved very well in the networks with different numbers of robots and different topology conditions.
The required time for the consensus formation is dramatically reduced, which is very promising. The
findings of this work could be extended to and beneficial for any multi-wheeled mobile robot system.

Keywords: time-optimal; velocity tracking; consensus formation; switching control; multi-robot systems

1. Introduction

Thanks to the greater functionality and performance of cooperative, mobile robot sys-
tems versus single mobile robots, they are highly beneficial and used in many applications
such as hazardous material handling, surveillance, environment exploration, transportation
of large objects, etc. Although the cooperative nature of these systems may result in greater
efficiency and operational capability compared to a single mobile robot, it introduces a
challenging control problem that must deal with consensus formation. For instance, in
the works presented in [1,2] there are two examples in the domain of formations control
for multi-agent systems in surveillance applications, and the control of spacecraft using
formations control is presented in [3–6].

The study of consensus formation control of multi-agent systems (Figure 1) can be
classified into three categories: a leader–follower approach [7–9], the virtual structure
approach [10,11], and decentralised control [12,13]. The leader–follower approach consists
of a leader agent, a robot/vehicle or human operator who is entrusted to track a specified
trajectory, and the follower agents are designed to follow the leader agent while achieving
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the desired formation and heading consensus. This approach is very useful, especially
in surveillance and exploration applications. The virtual structure approach considers a
multi-agent system as a single rigid robot with multiple input controllers. This approach is
useful for large object transportation. The advantage of such an algorithm is the simplicity
of the controller design. The decentralised approach, which includes the nearest neighbour
approach, allows each robot to decide based on interactions with its neighbours. The
advantage of this approach is its robustness against disturbances which makes it more
suitable for military manoeuvres or automated highway applications [14–18]. Das et al.
in [14] and Cao et al. in [15] nicely reviewed the cooperative search and formation control
methods for multiple autonomous vehicles, which are helpful to learn more about these
methods. Furthermore, a tutorial overview, together with several specific applications
of consensus algorithms, was provided in [16]. Ren et al. in [17] addressed the double
integrator dynamics of the agents in consensus algorithms and discussed the theoretical
and practical aspects of this topic. Zhang et al. in [13] addressed a two-stage cooperative
guidance strategy to achieve a salvo attack in directed topologies of multiple interceptors.
At the first stage, a prescribed-time optimal consensus method was constructed offline. A
novel fixed-time distributed guidance law based on the proportional navigation guidance
law was designed by integrating a consistent control technique into the guidance strat-
egy [19]. As shown in [13,19], the optimal consensus strategy was used along with other
navigation systems for the control of multi-systems, such as for missiles.
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Figure 1. A group of nonholonomic wheeled mobile robots.

This paper considers the time-optimal velocity tracking problem of multiple wheeled
mobile robots, extending the single robot case treated in [18]. Despite many previous
works on the optimal control of multi-agent systems [20–27], we strongly believe that the
methodologies and objectives of our work are novel as they differ from the state-of-the-art.
To get a better comparison, the previous representative works in this domain are listed
in Table 1.

To the best of our knowledge, no research has been reported in which the motion time
consensus along the desired formation of a group of mobile robots, to form and maintain a
desired geometric pattern and follow the desired trajectory, is addressed as the objective
function using a switching mechanism based on bang-bang control. In short, the main goal
of this work is to find control inputs of a leader–follower multi-robot system to achieve the
desired consensus velocity tracking formation in the least time.
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Table 1. The representative works on the optimal control of multi-agents.

Ref. Date Proposed Method Objectives

[21] 2014
A gradient-based optimisation algorithm, using
the constraint transcription and a time scaling
transform method.

An optimal parameter selection problem
with continuous state inequality
constraints and free terminal time.

[22] 2016
An improved gravitational search algorithm is
used to optimise the trajectory of the path for
multiple robots.

A multi-robot path planning problem in a
dynamic environment.

[23] 2017

The direction priority sequential selection
algorithm and extension-decomposition
aggregation scheme are applied to solve the
formation control problem and achieve collision
avoidance during the formation manoeuvre.

A collision avoidance strategy based on the
formation control model.

[24] 2017
Based on sliding-mode auxiliary systems, an
adaptive near-optimal protocol is presented to
control multi-agent systems.

A normal near-optimal protocol was
designed by making an approximation of
the performance index.

[25] 2017
A data-based adaptive dynamic programming
method is presented using the current/past
system data.

Used a discounted performance index and
formulated the optimal consensus problem
via the Bellman optimality principle.

[26] 2018
The fixed-time consensus theory and
continuous-time zero-gradient algorithms
are used

Addressed the problem of the global cost
function being the sum of strictly convex
local cost functions.

[28] 2019

A dynamic allocation method is proposed to
increase exploration capabilities, extending them
in both the inclusion phase and consensus phase
of the tasks.

They solved the problems of allocation
approaches that tended to trap in a local
optimal and cannot obtain
high-quality solutions.

[29] 2019

A constrained non-linear optimisation
is combined
with consensus to compute the parameters of the
multi-robot formation.

A distributed method was used to solve
the consensus formation of a team of aerial
or mobile robots navigating with static and
dynamic obstacles, when each robot has a
finite communication and visibility radius.

[30] 2019

An archetypal model of distributed
decision-making is used to study the capacity of
the system to follow a driving signal for varying
topologies and system sizes

Navigating with static and
dynamic obstacles
when each robot has a finite
communication and visibility radius.

[31] 2020

Using the idea of CenterPoint, which is an
extension of the median in higher dimensions,
instead of a Tverberg partition, provides a better
characterisation of the necessary and sufficient
conditions guaranteeing resilient vector
consensus of a multi-agent system.

Resilience guarantees improvement of the
existing consensus algorithms in
multi-agent networks.

[32] 2020

An alternative method to achieve a
distance-based formation that used genetic
algorithms to find
a solution based on the distance and angle, and a
constant velocity while avoiding collisions.

A parallel scheme was extended to
improve the performance and find the best
ways to converge to the desired distances
while avoiding collisions.

2. Dynamics of Wheeled Mobile Robots

This section presents the dynamics of the wheeled mobile robots (WMR) and the
consensus formation of a multi-agent system.

A schematic of a WMR is shown in Figure 2. Following [18], the kinematic model of
the ith WMR with two degrees of freedom can be written as follows

.
xi = vi cos(θi),

.
yi = vi sin(θi),

.
θi = ωi (1)
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where, vi ∈ R and ωi ∈ R denote the forward and angular velocity of the ith WMR, respectively.
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The configuration of the robot is given by (xi, yi, θi) ∈ R3, where (xi, yi) is the
Cartesian position of the centre of mass of the robot and θi is the heading angle of the robot
with respect to the X axis of the fixed coordinate system.

The assumption that the wheels do not slip gives rise to the nonholonomic constraint (2)

.
xi sin(θi)−

.
yi cos(θi) = 0 (2)

In the Equations (3)–(6), let
.
φRi

,
.
φRLi

, 2b, and r be the right wheel angular velocity, the
left wheel angular velocity, the distance between the wheels and the radii of the wheels,
respectively. The relation between the forward and angular velocities to the wheel velocities
can then be presented as follows

vi + bωi = r
.
φRi

(3)

vi − bωi = r
.
φLi

(4)

vi =
r
2

.
φRi

+
r
2

.
φLi

(5)

ωi =
r

2b
.
φRi
− r

2b
.
φLi

(6)

Next, the net torque τRi and τLi need to be applied by motors at the right and left
wheels, respectively. By using Newton-Euler formulations, the dynamics equations of
motion of the ith WMR are given by

mi
.
vi =

1
r

τRi +
1
r

τLi (7)

Ji
.

ωi =
b
r

τRi −
b
r

τLi (8)

where mi and Ji are the mass and the effective rotational inertia about the vertical axis
through the center of mass of the ith WMR, respectively. Thus, the Equations (7) and (8)
can be rewritten in matrix form as[ .

vi.
ωi

]
=

[
1

mi r
1

mi r
b

Ji r − b
Ji r

][
τRi
τLi

]
(9)
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Using Equations (5)–(8) the right and left wheel angular accelerations are[
τRi
τLi

]
= C

..
Φi =

[
c1 c2
c2 c1

][ ..
φRi..
φLi

]
(10)

where c1 = r2

4 mi +
r2

4b2 Ji and c2 = r2

4 mi − r2

4b2 Ji are constant which depend on the mass
and mass distribution of the WMR. The coefficient matrix in Equation (10) is easily seen to
be nonsingular.

For a system of N robots, suppose the dynamics of the robots are described by:

.
Vi = M−1ui (11)

where
.

Vi =
[ .

vi
.

ωi
]T and ui =

[
τRi τLi

]T and M is the inertia matrix. Considering
Equations (9) and (10), we can obtain Equation (12) as follows

..
Φi = C−1M

.
Vi (12)

3. Time-Optimal Control of WMRs

In the time-optimal problem, the cost function is defined initially as

J = t f =
∫ dq

.
q

(13)

According to the Pontryagin Maximum Principle, at each time of the time-optimal
trajectory, at least one of the inputs reaches its extremal [33,34]. Let the inputs τR and/or
τL have the maximum value τM. Thus, the bounds of the torques are:

−τM ≤ τRi ≤ τM, −τM ≤ τLi ≤ τM (14)

By substituting the equations of motion along a specified path (12) into the con-
straint (14), the limitations on the torques are transferred to the limitations on acceleration as:

−c1τM − c2τL

c2
1 − c2

2
≤

..
φRi
≤ c1τM − c2τL

c2
1 − c2

2
(15)

−c2τR − c1τM

c2
1 − c2

2
≤

..
φLi
≤ −c2τR + c1τM

c2
1 − c2

2
(16)

Therefore, there are four boundary angular accelerations of the wheel, and so there
are four time-optimal control inputs when only one of the inputs exert its extremal.

EXT1 : τR = τM ⇒
..
φRi

=
c1τM − c2τL

c2
1 − c2

2

EXT2 : τR = −τM ⇒
..
φRi

=
−c1τM − c2τL

c2
1 − c2

2

EXT3 : τL = τM ⇒
..
φLi

=
−c2τR + c1τM

c2
1 − c2

2

EXT4 : τL = −τM ⇒
..
φLi

=
−c2τR − c1τM

c2
1 − c2

2

Moreover, it is possible that both motors are in extremals at the same time. By
considering Equation (10), we see that these conditions will occur when the terms J become
zero or τRi = τRi = τM . This means that (i) the path does not have any curvature during
this time, and therefore the WMR is moving in a straight line, or (ii) the path is irregular and
the centre of mass stops at a stationary point and the robot is just rotating counterclockwise
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(CCW) or clockwise (CW) about the vertical axis. Therefore, the four additional extremal
conditions are as follows:

EXT5 :
..
φRi

=
c1τM − c2τM

c2
1 − c2

2
and

..
φLi

=
c1τM − c2τM

c2
1 − c2

2

the WMR is moving along a straight line and accelerating.

EXT6 :
..
φRi

=
−c1τM − c2τM

c2
1 − c2

2
and

..
φLi

=
−c1τM − c2τM

c2
1 − c2

2

the WMR is moving along a straight line and decelerating.

EXT7 :
..
φRi

=
c1τM − c2τM

c2
1 − c2

2
and

..
φLi

=
−c1τM − c2τM

c2
1 − c2

2

the WMR is rotating CCW about its centre of mass.

EXT8 :
..
φRi

=
−c1τM − c2τM

c2
1 − c2

2
and

..
φLi

=
c1τM − c2τM

c2
1 − c2

2

the WMR is rotating CW about its centre of mass.

4. Time-Optimal Consensus Algorithm Strategies

This section presents a time-optimal consensus algorithm that is designed and im-
plemeted to reduce the convergence time in a multi mobile two-wheeled robot system. The
consensus algorithm is used to impose similar dynamics on the information state of each
robot in a group of robots. Every robot updates the value of its information state based on
the information states of its neighbours. The goal of the consensus algorithm is to design a
control law so that the information states of all of the robots converge to a similar value.

The communication among agents can be represented by directed or undirected
graphs. A directed graph consists of a formation control graph G = (N, E, D), where
N = {1, 2, . . . i, j, . . . , n} is a finite set of n vertices and a map dedicates to each vertex, a
control system

.
xi = fi(t, xi, ui), a set of corresponding edges E =

{
eij , (i, j) ∈ N × N

}
,

and a collection D={dij} of each edge j : eij ∈ E that defines its control objective for
some i ∈ N.

The edge eij ∈ E denotes the agent j can obtain information from agent i, but not
necessarily vice versa. In undirected graphs, robots i and j are defined as neighbours
of each other if there is an edge between them. In a system with n agents, suppose the
dynamics of the agents are given by

.
qi = C−1ui , i = 1, 2, . . . , n, qi, ui ∈ Rn (17)

where
.
qi denotes the acceleration of the ith agent and the ui is its input. The formation is

described by
D =

{
dij := qid − qjd

}
(18)

where qid and qjd are the desired velocity states of agents i and j, who are neighbours of
each other. The n× n adjacency matrix A =

[
aij
]

of a weighted graph is defined as aii = 0
and aij = 1 if i 6= j, (i, j) ∈ E. Laplacian is defined as L =

[
lij
]

where lii = ∑
j 6=i

aij and

lij = −aij i f i 6= j. Thus the Laplacian matrix is

L = D− A (19)

Suppose the robot r is designated as the leader and the other robots are the followers.
We assume that a robot leader has direct access to the reference velocities (vr, ωr). Other
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robots (followers) use their neighbouring leader information to accomplish the formation
tracking task. Regarding the consensus algorithm, the velocity tracking control for robot i is

qi =
[ .

φRi

.
φLi

]T

.
qi =

.
qr − αilii(qi − qr)− ∑

j∈E
lij(qi − qj)

.
Pe = −KEXT(L⊗ I2)Pe

pei = qi − qr

(20)

where KEXT = αI2n is the positive coefficient matrix so that

α =
τM

Max
{∣∣τR1

∣∣ ,
∣∣τL1

∣∣ ,
∣∣τR2

∣∣ ,
∣∣τL2

∣∣, . . . , |τRn | , |τLn |
}

The whole algorithm is shown in Figure 3. Using the diagonal coefficient matrix KEXT
in Equation (16), at least one of the right or left motors of the follower robots works at a
maximum angular acceleration or deceleration. Therefore, the bang-bang controls take
their extremals throughout the whole motion to minimise the manoeuvre time.

Following the α calculation step, the optimal control problem is now to find a control
strategy to transfer the system state from the initial to the desired final state, in the least
time (Figure 4). Since the Pontryagin principle demonstrates that at any point of a time-
optimal trajectory, at least one of the actuators exerts a maximum or minimum input, the
problem of finding the optimal control is reduced to finding the switching points. Therefore,
the trajectory must be at each point tangent to one of the eight extremals described in
Section 3, at least for one of the robots. Figure 5 shows an example of using the proposed
algorithm. As can be seen, there are several switching points that occurred between
actuators and extremals.

Having
.
q versus q, the minimum time can be obtained using Equation (13). Then,

from Equations (3)–(6) and (10), the angular accelerations and velocities of the wheels are
obtained versus the time for the optimum trajectory.

Theorem 1. The time-optimal consensus algorithm (20) solves the formation velocity tracking
problem if the formation graph G has a spanning tree.

Proof. As shown in [16,35,36], when the network topology of the multi-robot system
contains a directed spanning tree, the rank of the Laplacian matrix L is n–1, zero is a simple
eigenvalue of L with associated vector b = [1 · · · 1]−1 and all other eigenvalues are positive,
and the consensus is reached asymptotically for the system

.
Pe = −(L⊗ I2)Pe . It follows that lim

t→∞
e−(L⊗I2)t → 1Pe(0) = 0.

In this proposed algorithm KEXT is a diagonal matrix in which all the diagonal ele-
ments are positive and also equal to or bigger than 1 (α ≥ 1). Thus, it is a positive definite
matrix, and the system asymptotically converges to the desired velocity configuration.
Because of the time-optimal matrix coefficient component

α =
τM

Max
{∣∣τR1

∣∣ ,
∣∣τL1

∣∣ ,
∣∣τR2

∣∣ ,
∣∣τL2

∣∣, . . . , |τRn | , |τLn |
} ≥ 1

Using the KEXT matrix instead of the identity matrix in the consensus algorithm (20)
guarantees that at least one of the actuators of either the leader or followers works on the
extremum conditions (EXT1 to EXT8 described in Section 3), the lim

t→∞
e−eKEXT(L⊗I2)t goes to
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zero faster, and the system asymptotically converges to the desired velocity configuration
in the shortest time. �
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to the motor constraints, is marked in a yellow colour.

5. Simulations
5.1. Comparison of the Performance of Velocity Tracking Consensus Formation with and without a
Time-Optimal Strategy

In order to validate the proposed time-optimal algorithm, a computer program in
Matlab software was developed to simulate two examples. All the conditions in these
two examples are considered to be similar, including the initial conditions, the dimensions
of the robots, the geometry of the desired path, and the topology of the robots’ network
(Figure 5).
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In the first simulation, where the time-optimal control strategy is not considered, the
consensus velocity tracking algorithm is used whereas the time-optimal coefficient α is
equal to 1, and the diagonal matrix KEXT is chosen as the identity matrix. As can be seen in
Figure 6, the angular velocities and angular accelerations reach a consensus in 1.5 s.
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In the second simulation, where the time-optimal control strategy is considered, the
result of angular velocities and angular accelerations are shown in Figure 7. As can be
seen, the proposed algorithm, based on consensus and bang-bang control, drives the motor
torques to extremum values several times to achieve time-optimal control. According to
Figure 7, the angular velocities and angular accelerations reach consensus in 0.4 s.
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In order to compare the results of both simulations, Figure 8 shows the performance
of the time-optimal consensus velocity tracking algorithm. The dashed lines show the
normal consensus algorithm results, and the solid lines show the results of the proposed
time-optimal consensus algorithm.
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To make the performance of our simulations closer to the performance in the real-
world setting, we considered adding some random disturbances into the systems. Figure 9
shows the results of the proposed time-optimal consensus algorithm in the presence of
some random noises. The results show great stability of the consensus process on the
discontinuity of switched controllers in the presence of noise. When the noise exists, there
is less than a 10% error for remaining in angular acceleration and less than a 2% error in
the angular velocity; however, the convergence is fine.

5.2. The Effect of Network Topology and the Number of Agents on the Convergence Time

In order to validate the proposed method in much more complex situations, the
proposed method is implemented for a different number of robots. Figure 10 shows the
effect of the number of robots on the convergence time of the velocity tracking control
consensus formation with and without the time-optimal algorithm. Following the state-
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of-the-art findings in this field, we learned that the convergence time depends on several
factors, such as the network topology, initial condition, formation control, number of robots,
etc. Therefore, to explore the effect of the number of robots on the final convergence time,
the initial conditions of all agents are considered to be similar in every simulation trial.
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In every simulation trial, the robot network is considered fully interconnected, which
means that every agent can send and receive information to all the other agents. Our
findings demonstrated that the convergence time is reduced by increasing the number of
agents. One reason for this could be the dimension and values of the gain matrix elements,
which increase when the number of robots increases. As shown in Figures 10 and 11 (right
column), the time-optimal velocity tracking consensus formation converged faster, in all
those examples, than the standard consensus formation without applying the time-optimal
algorithm (Figures 10 and 11, left column).

The results of the previous trial (Figure 10) show an increase in the convergence time
when the number of robots increases. In order to investigate further the relationship be-
tween the graph connectivity and the convergence speed of consensus algorithms, a second
trial was implemented. In this trial, the effect of the robot’s network topology and intercon-
nectivity on the convergence time was investigated. Figure 11 compares the results of the
consensus formation of two different topologies. Figure 11a shows a robot network with
a fully interconnected structure, while Figure 11b shows a partially interconnected robot
network where two connections are missing. As shown, the connections between robot
number 6 and the robots numbered 4 and 5 are missing. Comparing these two topologies
shows that the convergence time will increase when the network is not fully interconnected.
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As Figure 11c shows, the connections between four pairs of robots are missing. Although
the proposed method managed to handle the convergence, it demonstrated an oscillatory
behaviour in the angular velocity of the wheels. In other words, the developed bang-bang
algorithm provides better support and convergence when the topology is fully connected.
It tends to give more oscillatory results when the topology is not fully interconnected.
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Comparing the results achieved in this section (shown in Figures 10 and 11), it can be
concluded that the convergence time is mainly influenced by two factors i.e., the number of
robots in the network and also the network topology. However, as examined, the proposed
time-optimal method is efficient if used when both of these factors are changed and it
dramatically reduces the convergence time.

6. Conclusions

In this paper, an optimal time velocity tracking of consensus formation algorithm for
multiple nonholonomic wheeled robots is proposed. To apply the motors’ extremum condi-
tions for finding the time-optimal trajectory, firstly, the equation of motion along a specified
path is obtained versus the left- and right-hand motors’ angular acceleration and angular
velocities. Then by developing a hybrid Pontryagin principle of time-optimal control and
a consensus algorithm for the multi-agent system, the novel switched system algorithm
is introduced, and the time-optimal control problem is solved. By using the proposed
method, the system achieved the desired velocity tracking formation in the optimal time.
The simulation results of this novel switched-system approach and a typical consensus
formation algorithm are provided and compared to demonstrate the effectiveness of the
proposed approach. In addition to testing the performance of the proposed method, the
effect of the robot network topology as well as the number of robots in a network are
explored. The numerical simulation results demonstrated that the time-optimal consensus
algorithm behaved very well and reduced remarkably the consensus formation time.
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