
sensors

Article

Research on Classification Model of Panax notoginseng
Taproots Based on Machine Vision Feature Fusion

Yinlong Zhu 1, Fujie Zhang 1,2, Lixia Li 1,2,*, Yuhao Lin 1, Zhongxiong Zhang 3, Lei Shi 1, Huan Tao 1 and Tao Qin 1

����������
�������

Citation: Zhu, Y.; Zhang, F.; Li, L.;

Lin, Y.; Zhang, Z.; Shi, L.; Tao, H.; Qin,

T. Research on Classification Model of

Panax notoginseng Taproots Based on

Machine Vision Feature Fusion.

Sensors 2021, 21, 7945. https://

doi.org/10.3390/s21237945

Academic Editors: Friedhelm

Schwenker and Mariofanna Milanova

Received: 1 November 2021

Accepted: 22 November 2021

Published: 28 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology,
Kunming 650500, China; 20192114019@stu.kust.edu.cn (Y.Z.); 20030031@kust.edu.cn (F.Z.);
20202114016@stu.kust.edu.cn (Y.L.); shilei04@stu.kust.edu.cn (L.S.); 20192214014@stu.kust.edu.cn (H.T.);
20192114001@stu.kust.edu.cn (T.Q.)

2 Engineering Research Center of Mechanization of Chinese Medicinal Materials of Yunnan Province,
Kunming 650500, China

3 College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China;
zzx9519@nwsuaf.edu.cn

* Correspondence: lilixia2012@kust.edu.cn

Abstract: The existing classification methods for Panax notoginseng taproots suffer from low accuracy,
low efficiency, and poor stability. In this study, a classification model based on image feature fusion
is established for Panax notoginseng taproots. The images of Panax notoginseng taproots collected in
the experiment are preprocessed by Gaussian filtering, binarization, and morphological methods.
Then, a total of 40 features are extracted, including size and shape features, HSV and RGB color
features, and texture features. Through BP neural network, extreme learning machine (ELM), and
support vector machine (SVM) models, the importance of color, texture, and fusion features for the
classification of the main roots of Panax notoginseng is verified. Among the three models, the SVM
model performs the best, achieving an accuracy of 92.037% on the prediction set. Next, iterative
retaining information variables (IRIVs), variable iterative space shrinkage approach (VISSA), and
stepwise regression analysis (SRA) are used to reduce the dimension of all the features. Finally, a
traditional machine learning SVM model based on feature selection and a deep learning model based
on semantic segmentation are established. With the model size of only 125 kb and the training time
of 3.4 s, the IRIV-SVM model achieves an accuracy of 95.370% on the test set, so IRIV-SVM is selected
as the main root classification model for Panax notoginseng. After being optimized by the gray wolf
optimizer, the IRIV-GWO-SVM model achieves the highest classification accuracy of 98.704% on the
test set. The study results of this paper provide a basis for developing online classification methods
of Panax notoginseng with different grades in actual production.

Keywords: machine vision; machine learning; Panax notoginseng taproot; feature fusion; image
processing; hierarchical model

1. Introduction

Panax notoginseng is one of the most representative traditional Chinese medicines in
Yunnan Province, China, and it is also known as “Jinbuhuan”. It not only has medicinal
values (e.g., promoting blood circulation, removing blood stasis, relieving swelling and
pain, and anti-cancer) but also has health care effects (e.g., enhancing learning and memory,
improving immunity, and delaying aging) [1]. The number of heads of Panax notoginseng
refers to the number of Panax notoginseng taproots per 500 g, which is the main basis for the
classification of Panax notoginseng in the market. The weight of a single Panax notoginseng
is the main factor that determines its selling price [2]. Currently, there are two main
classification methods of Panax notoginseng taproots: manual classification and mechanical
sorting. Manual classification is characterized by high labor intensity and low automation
and efficiency, and it is often affected by subjective factors, causing misclassification and
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omission in the process. The mechanical sorting adopts the method of weighing, and
the classification stability is low. Therefore, rapid and accurate classification of Panax
notoginseng taproots is crucial to improve the commodity value of Panax notoginseng.

At present, machine vision technology has been widely used in medicine [3], indus-
try [4], agriculture [5–7], aviation [8], and other fields. With the improvement of computing
power and the reduction of hardware cost, a large number of studies have been conducted
on the quality inspection and classification of agricultural products using machine vision
technology. As for foreign studies, Huang [9] obtained the geometric features, color fea-
tures, and defect areas of betel nuts. Then, betel nuts were classified by using neural
network and image processing technology, with an accuracy of 90.9%. Ebrahimi et al. [10]
used the ratio of long diameter to short diameter as regional indicators and hue, satura-
tion, and intensity as color indicators to build an SVM model. The model can classify
parasites and detect thrips with an error of less than 2.5%. Murat et al. [11] developed a
computer vision system to obtain 16 features of bean images. In addition, they established
multilayer perceptron (MLP), support vector machine (SVM), K-nearest neighbors (KNN),
and decision tree (DT) classification models, and these models were compared by10-fold
cross-validation and performance indicators. The overall classification accuracy of MLP,
SVM, KNN, and DT were 91.73%, 93.13%, 87.92%, and 92.52%. Goncalves et al. [12] trained
six convolutional neural network (CNN) architectures to detect coffee leaf miner disease
and two fungal diseases. Among the architectures, Unet and DeepLabv3+ (Xception) per-
formed the best. Wu et al. [13] used ResNet-50, ResNet 101, Xception-65, and Xception-71
to sort hydroponic lettuce. The results showed that ResNet-101 was the best, with a pixel
accuracy of 99.24% and MIoU of 0.8326. In terms of speed, ResNet-50’s segmentation
speed was very fast, achieving 154.0 milliseconds per image. As for domestic studies,
Zhou et al. [14] designed a machine vision classification system based on a v-shaped plane
mirror for online detection and classification of potato size, shape, and defects, with a classi-
fication accuracy of 91.0%. Wang et al. [15] obtained the size of Agaricus bisporus through
image processing and developed a system for classification, with an accuracy of 97.42%.
Dang et al. [16] established a model for the rapid and accurate detection and evaluation of
potato disease degree according to the color, texture, and shape characteristic parameters
of late blight spots on potato leaves. Yao et al. [17] used the improved RetinaNet model to
detect rice canopy pests with an average accuracy of 93.76%. The deep multi-branch model
fusion network proposed by Xie et al. [18] can identify and segment carrot defects. The
experimental results indicated that the network constructed following the U-net structure
achieves the best segmentation effect, with an average pixel accuracy of 96.05%. Quan-
titative evaluation and surface defect repair are of great significance. Yu et al. [19] used
computer vision technology to obtain the image of notoginseng taproots. Then, its features
such as length, width, and projected area were extracted, and a prediction model for the
mass of conical notoginseng taproot and nodular notoginseng taproot was established and
verified by ten-cross verification. The mean error of taproot mass of conical and nodular
Panax notoginseng was 0.3348 and 0.4949 g, respectively. The above research results show
that machine vision technology is feasible in the classification of agricultural products.
However, as for grading Panax notoginseng taproots through machine vision technology,
the amount of data is relatively small, and the feature extraction is relatively simple. In
terms of the irregularity of the shape of Panax notoginseng taproots, accurate grading of
Panax notoginseng requires a comprehensive consideration of various factors, such as the
size, shape, texture, and color of Panax notoginseng taproots.

After selecting the characteristic indexes of Panax notoginseng taproots, this paper
constructed a classification model of Panax notoginseng roots based on machine vision
feature fusion by using traditional machine learning and deep learning techniques. Then,
the prediction results of several evaluation models were compared. This method proposed
in this study can classify Panax notoginseng of different grades accurately and rapidly, and
it provides a reference for applying machine vision technology to the classification of
Panax notoginseng taproots.
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2. Materials and Methods
2.1. Test Materials

This study takes Panax notoginseng planted in Wenshan City, Yunnan Province, as the
research object. According to the market research, it is known that more than 90% of Panax
notoginseng sold in the market have between 20 and 60 heads. Therefore, after preliminary
treatment, 450 three-year-old “spring” Panax notoginseng samples with 20 heads (grade I),
30 heads (grade II), 40 heads (grade III), and 60 heads (grade IV) were selected, and the
moisture content of these samples was less than 13%. The samples of different grades were
weighted one by one before image information collection. The four different grades of
Panax notoginseng main roots are shown in Figure 1.
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Figure 1. Schematic diagram of four different grades of Panax notoginseng.

2.2. The Grading Standard of Panax notoginseng Taproots

According to the national standard of Wenshan Panax notoginseng [20] (gbt19086-2008),
the grading specifications of the four grades of the main root of notoginseng are shown in
Table 1.

Table 1. Grading specification of taproot of Panax notoginseng.

Grades Root Weight/g Number of Heads/pcs

Grade 1 ≥25.0 ≤20
Grade 2 ≥17.0 ≤30
Grade 3 ≥12.5 ≤40
Grade 4 ≥8.5 ≤60

2.3. Image Acquisition System Introduction

As shown in Figure 2, the image acquisition system consisted of a computer (Lenovo-
T480), a Hikvision industrial camera (model: MV-CA013-20GC, lens: MVL-HF0828M-6MP,
with a resolution of 1280 × 1024), a test chamber (400 mm × 400 mm × 400 mm), a stage,
a ring-shaped LED shadowless lamp, a USB cable, and other components. The camera
was fixed at the center of the top of the test box; the annular LED shadowless lamp was
used as the light source, and the white high contrast was used as the background of the
overhead camera; the object distance was adjusted to 27 cm, and the focal length was set
to 2.8 mm. Then, the Panax notoginseng taproots of different grades were placed one by
one on the central position of the object platform, and the shooting mode was started.
The collected image data were transmitted to the computer through a USB cable, and the
collected image was preprocessed using the Python language and the OpenCV machine
learning framework.
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Figure 2. Schematic diagram of Panax notoginseng taproot image acquisition system. 1. Industrial
camera, 2. light source, 3. camera bellows, 4. stage, 5. communication interface, 6. computer.

2.4. Image Preprocessing

To facilitate feature extraction and improve the algorithm efficiency, in this study, the
resolution of the original image (Figure 3a) was adjusted from 1280 × 1024 to 512 × 512.
Then, the image was denoised with a Gaussian filter (Figure 3b), and the filtered image
was converted to grayscale (Figure 3c). Next, an open (corrode) operation with a 5 × 5
kernel function and a closed (dilate) operation were used to remove image noise, and the
holes in the target were filled. Finally, the grayscale image was binarized using the Great
Law (Otsu) threshold value (Figure 3d).
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2.5. Feature Extraction

The Panax notoginseng taproots of different grades have obvious differences in shape,
size, surface color, and texture [21,22]. Therefore, the shape, size, color, chromaticity,
brightness, and saturation were selected for characterization.

2.5.1. Shape and Size Feature Extraction

The shape and size features [23,24] are the basic features of the image. These features
will not be affected by scaling, rotation, and translation, and they have been widely used
in computer vision recognition systems. Based on the OpenCV library of Python, nine
two-dimensional plane features of the Panax notoginseng taproots were extracted, including
the mapping perimeter (the pink line in Figure 4b), the mapping area (Figure 4c), the width
and height of the circumscribed rectangle (the green line in Figure 4d), and the smallest
circumscribed rectangle (the width and height of the blue line in Figure 4d), the slender
length (the height/width of the smallest circumscribed rectangle), the duty cycle (the area
of the contour area divided by the area of the smallest circumscribed rectangle), and the
radius of the smallest circumscribed circle (the green line in Figure 4d). These shape and
size features were stored in the feature vector and provided to the classification model.
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2.5.2. Color Feature Extraction

In this study, the color moment method was adopted to extract the color features of the
Panax notoginseng samples through two color-space models, RGB and HSV [25–27]. Because
the color information is mainly distributed in low-order moments, the color distribution of
Panax notoginseng taproot images was expressed by first-order moments (mean), second-
order moments (variance), third-order moments (skewness), and fourth-order moments
(kurtosis). Therefore, a total of 24 color features of R (Figure 5a), G (Figure 5b), B (Figure 5c)
and H (Figure 5d), S (Figure 5e), and V (Figure 5f) were obtained. A visualization of a
Panax notoginseng sample is shown in Figure 5.
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The calculation formulas of RGB and HSV color characteristic parameters are as follows:

mean = µi =
1
N

N

∑
j−1

Pij (1)

variance =

(
1
N

N

∑
j=1

(
Pij − µi

)2
) 1

2

(2)

skewness =

(
1
N

N

∑
j=1

(
Pij − µi

)3
) 1

3

(3)
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kurtosis =

(
1
N

N

∑
j=1

(
Pij − µi

)4
) 1

4

− 3 (4)

In the formulas, i represents the three color channels R, G, and B; j represents the
pixel value; N represents the number of pixels in the image; Pij represents the i-th color
component of the j-th pixel of the color image, and µi represents the average value of each
color channel.

2.5.3. Texture Feature Extraction

The texture feature of the image [28–30] reflects the external structure and organization
characteristics of periodic changes on the object surface. This kind of feature is common but
difficult to describe. The gray-level co-occurrence matrix (GLCM) reflects the comprehen-
sive gray-level information about the direction, adjacent interval, and change amplitude
of an image. It is widely used to convert gray values into texture information. Based
on the GLCM, this study extracted seven texture features to quantitatively describe the
Panax notoginseng taproots, including homogeneity, contrast, dissimilarity, entropy, energy,
correlation, and auto-correlation. A visualization of the above seven texture features is
shown in Figure 6.
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The calculation formulas for the seven texture features are as follows:

Homogeneity =
M−1

∑
i=0

N−1

∑
j=0

f (i, j, d, θ)

1 + (i− j)2 (5)

Contrast =
M−1

∑
i=0

N−1

∑
j=0

(i− j)2 f (i, j, d, θ) (6)

Dissimilarity =
M−1

∑
i=0

N−1

∑
j=0
|i− j| f (i, j, d, θ) (7)

Entropy = −
M−1

∑
i=0

N−1

∑
j=0

f (i, j)log10 f (i, j, d, θ) (8)
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Energy =
M−1

∑
i=0

N−1

∑
j=0

f (i, j, d, θ)2 (9)

Correlation =
M−1

∑
i=0

N−1

∑
j=0

(i− µ)(j− µ) f (i, j, d, θ)2

δ2 (10)

Auto_Correlation =
M−1

∑
i=0

N−1

∑
j=0

(ij) f (i, j, d, θ) (11)

In these formulas, d represents the relative distance between the gray levels of two
pixels, and it was set to 2; θ represents the four directions of the GLCM, i.e., 0◦, 45◦, 90◦,
and 135◦. For the four directions, the average of the eigenvalues was taken as the final
eigenvalue of the co-occurrence matrix. i, j = 0, 1, 2, . . . , L − 1; L ∈ (M, N) represents the
gray level, and it was set to 64; M and N represent the size of the GLCM; µ represents the
square root of the mean square sum in the x-axis and y-axis direction; the size of the sliding
window was set to 7 × 7. Additionally, all images in the θ direction were separated by δ.

2.6. Data Processing and Model Evaluation
2.6.1. Pretreatment and Dimensionality Reduction of the Panax notoginseng
Taproot Features

After feature extraction, a total of 40 features and 1800 pieces of feature data were
obtained for the 450 Panax notoginseng samples. However, the use of all features of Panax no-
toginseng taproots will cause data redundancy, reduce the robustness of the model, and
increase the calculation amount. Feature selection can reduce the calculation amount by
reducing the data dimension without affecting the prediction accuracy. In this study, three
characteristic variables were adopted for feature selection, including iterative and Retaining
informative variables (IRIVs), variable iterative space shrinkage approach (VISSA), and
stepwise regression analysis (SRA).

IRIV [31] can statistically divide all variables into four categories: strongly sensitive
variables, weakly sensitive variables, insensitive variables, and interference variables.
Then, it retains strongly sensitive variables and weakly sensitive variables until there are
no insensitive variables and interference variables. Based on model cluster analysis (MPA),
VISSA [32] gradually optimizes spatial variables in each iteration and finally selects the
optimal variable combination. The algorithm judges the error between the real value and
the predicted value through interactive verification of root mean square error (RMSECV).
SRA [33] eliminates insignificant variables by introducing variables into the characteristic
equation one by one until all variables involved in the regression equation are significant.

2.6.2. Modeling Method and Model Evaluation

The models based on traditional machine vision classification, including established
BP (backpropagation) neural network [34], extreme learning machine (ELM) [35], and
support vector machine (SVM) [36], and the deep learning models, including the segmented
U-net [37], PSPNet [38], and DeepLabv3+ [39], are used as the main root classification
models for different head numbers.

SVM is a supervised classification method with good generalization ability. It can
effectively deal with linear and nonlinear data and can be used for regression, classification,
etc. In this paper, radial basis function (RBF) was used as the kernel function of SVM. The
parameters were optimized using genetic algorithm (GA), particle swarm optimization
(PSO), and gray wolf optimizer (GWO). The three intelligent optimization algorithms all
use five-fold cross-validation.

PSPNet is a classic semantic segmentation network, and it can effectively extract and
classify image data features. The core module is the pyramid pooling module, which can
aggregate the context information of different regions, thereby improving the acquisition
of global information. In this article, PSPNet automatically extracted and classified the
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characteristics of the main roots of Panax notoginseng. The quality of the model was
evaluated by average pixel accuracy (MPA) and average intersection and ratio (MIoU).

MATLAB 2019a, PyCharm, and OpenCV software were used for sampling, feature
extraction, feature selection, model establishment, and analysis of the original data. Predic-
tion accuracy was taken as the performance evaluation metric of the models. The higher
the value of prediction accuracy, the better the performance of the model.

3. Test Results and Analysis
3.1. Comparison of Fusion Feature Classification Models in Different Dimensions

In this paper, there were 1800 samples in total, and the ratio of the training set to test
set was 7:3. Thus, 1260 training set samples (315 Panax notoginseng taproots at different
grades) were randomly selected, and the remaining 540 samples were used as test set
(135 Panax notoginseng taproots of different grades). Through the three network models
of BP, ELM, and SVM, shape and size (9 features); shape, size, and texture (16 features);
shape, size, and color (33 features); and shape, size, texture, and color (40 types of features)
were respectively analyzed. The fusion features of four different situations and different
dimensions were compared and analyzed, and the results are shown in Table 2.

Table 2. Comparison of classification models based on different fusion dimensions.

Model Fusion Feature Feature
Number/pcs

Training Set
Accuracy/%

Test Set
Accuracy/%

BP Shape, size 9 67.963 65.234
ELM Shape, size 9 41.825 35.185
SVM Shape, size 9 76.746 75.185
BP Shape, size, texture 16 83.889 80.016

ELM Shape, size, texture 16 53.095 52.407
SVM Shape, size, texture 16 89.508 90.407
BP Shape, size, color 33 89.630 88.542

ELM Shape, size, color 33 73.254 71.482
SVM Shape, size, color 33 90.793 91.296
BP Shape, size, texture, color 40 90.741 90.021

ELM Shape, size, texture, color 40 79.683 76.617
SVM Shape, size, texture, color 40 91.191 92.037

The following observations can be made from Table 2:

(1) When shape and size were taken as the features, among the three classification models,
SVM achieved the highest accuracy, with an accuracy of 76.467% on the training set
and an accuracy of 75.185% on the test set.

(2) When shape, size, and texture were taken as the features, on the test set, the accuracy
of the BP neural network was 14.782% higher than that without texture features; the
accuracy of ELM was 17.222% higher than that without texture features; the accuracy
of SVM was 15.222% higher than that without texture features. Thus, texture features
were important in the main root classification of Panax notoginseng. Among the three
classification models, SVM achieved the highest accuracy on the training set and
test set.

(3) When shape, size, and color were taken as the features, on the test set, the accuracy
of the BP neural network was 23.309% higher than that without color features; the
accuracy of ELM was 36.297% higher than that without texture features; the accuracy
of SVM was 16.111% higher than that without texture features. Thus, color features
were important in the classification of the main root of Panax notoginseng. Among the
three classification models, SVM achieved the highest accuracy on the training set
and test set.

(4) When shape, size, texture, and color were taken as the features, on the test set, the
accuracy of the BP neural network was 1.47% higher than that with color features
without texture features, and it was 10.005% higher than that with texture features
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without color features; the accuracy of ELM was 5.135% higher than that with color
features without texture features, and it was 24.21% higher than that with texture
features without color features; the accuracy of SVM was 0.741% higher than that
with color features without texture features, and it was 1.63% is higher than that with
texture features without color features.

The above results show that the Panax notoginseng main root classification model
established on fusion features was the best, and the accuracy of the SVM model on the
training set and test set was, respectively, 91.191% and 92.037%, both of which were the
highest. Therefore, SVM was selected as the classification model of the main root of
Panax notoginseng.

3.2. Comparison and Analysis of Different Feature Selection Methods

If there are too many features in the process of model building, the robustness of the
model will be reduced. Moreover, too much redundant information will be introduced,
which will prolong the time of data processing. If there are too few features, it will
cause information loss and reduce the prediction accuracy of the model. Therefore, the
extracted feature data were optimized first, and the best feature combination was selected
for model building.

3.2.1. Selection of Characteristic Variables Based on IRIV

This study exploited the IRIV algorithm to reduce the dimensions of the shape, size,
color, and texture features of the taproots of different grades. The result is shown in
Figure 7. After four iterations, the feature variables were reduced from 40 to 22. Then, the
elimination strategy was performed on the remaining features to calculate the RMSECV.
When the smallest RMSECV was achieved, the remaining features were eliminated from
22 to 12. Finally, ten feature variables were determined, which were projected area (A),
slender length (E), R skewness (Rs), R kurtosis (Rk), B average (Bmean), S average (Smean),
S variance (Svar), S skewness (Ss), contrast, and auto-correlation.
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The calculation formula of RMSECV is as follows:

RMSECV = sqrt

(
sum

(
(Y−Yv)

2

n

))
(12)

where Y is the real value; YV is the predicted value during cross-validation, and n is the
number of samples.
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3.2.2. Selection of Characteristic Variables Based on VISSA

In VISSA feature selection, the variable subset generated by weighted binary sampling
(WBMS) was set to 500. In this case, the initial sampling weight was 0.5, and the proportion
of the subset model was 5%, leading to the best feature combination. It can be seen from
Figure 8 that when the number of characteristic variables was less than 13, the RMSECV
gradually decreased as the number of selected variables increased. When the number of
feature variables was between 13 and 21, RMSECV remained at 0.2639. When the number
of features was greater than 21, RMSECV increased. Therefore, 13 to 21 features could
be selected. Through VISSA feature selection, it was found that the following 21 feature
combinations were optimal, i.e., the projected area (A), the width of the smallest bounding
rectangle (Min_w), the slender length (E), the skewness of R (Rs), and the variance of
G (Gvar), the variance of B (Bvar), the skewness of B (Bs), the variance of H (Hvar), the
skewness of H (Hs), the average of S (Smean), the variance of S (Svar), S skewness (Ss), S
kurtosis value (Sk), V mean value (Vmean), V skewness (Vs), V kurtosis value (Vk), energy,
contrast, homogeneity, dissimilarity, and auto-correlation.
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3.2.3. Selection of Characteristic Variables Based on SRA

Based on the independent variable’s influence on the dependent variable, SRA in-
troduces significant independent variables into the regression equation and eliminates
insignificant independent variables from the regression equation one by one until no vari-
ables are introduced or eliminated. As shown in Figure 9, when there were 22 characteristic
variables, RMSE was the minimum. This indicates that the fitting effect between the ob-
served values and real values was good and that the 22 features had a great influence on
classifying Panax notoginseng taproots. Therefore, these 22 features were extracted through
the SRA algorithm as the optimal combination of feature variables, including projected
area (A), the slender length (E), the radius of the smallest circumscribed circle (Radius), the
average value of R (Rmean), R variance (Rvar), G average (Gmean), G variance (Gvar), G
skewness (Gs), B average (Bmean), H average (Hmean), H variance (Hvar), the skewness
of H (Hs), the kurtosis value of H (Hk), the variance of S (Svar), the kurtosis value of S
(Sk), the average value of V (Vmean), the value of V Variance (Vvar), V skewness (Vs), V
kurtosis (Vk), entropy, contrast, and auto-correlation.
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3.3. Establishment of the Classification Model
3.3.1. Establishment of SVM Classification Model Based on Feature Selection

IRIV, VISSA, and SRA were, respectively, adopted for feature selection to establish
an SVM classification model for Panax notoginseng taproots. The established models were
compared and analyzed, and the results are listed in Table 3.

Table 3. Comparison of SVM classification models based on feature selection.

Model Model
Size/kb

Training
Time/s

Feature
Number/pcs

Training Set
Accuracy/%

Test Set
Accuracy/%

IRIV-SVM 125 3.4 10 94.048 95.370
VISSA-SVM 264 0.371 21 92.222 92.778

SR-SVM 270 0.318 22 91.984 92.963

It can be seen from Table 3 that after feature selection, the number of feature variables
was reduced, and the accuracy of the model on the training set and test set was higher
than that of the model established with full features. Therefore, feature selection for full
features was essential. In addition, the IRIV-SVM model achieved an accuracy of 95.370%
on the test set, which was higher than that of VISSA-SVM and SRA-SVM. It shows that
the combined feature variables extracted by IRIV could better reflect the characteristics of
Panax notoginseng taproots of different grades. Therefore, this paper choose IRIV-SVM as
the classification model for Panax notoginseng taproots.

3.3.2. The Establishment of Deep Learning Network Model Based on Semantic Segmentation

In recent years, deep learning methods have performed well in the classification,
detection, and segmentation of agricultural products. Compared with traditional machine
learning technology, deep learning networks can automatically extract image features
layer by layer from images and then classify and recognize the features through classifiers,
which avoids the data preparation and manual feature selection of traditional machine
learning algorithms. Furthermore, the extracted image features are richer, and the model
performance is better.

In this paper, three semantic segmentation networks, PSPnet, U-net, and DeepLabv3+
were selected as the classification models for Panax notoginseng main root with different
head counts. Meanwhile, three types of convolutional neural networks, including ResNet50,
VGG16, and MobileNetV2, were used as feature extraction networks. Among them, VGG16
consists of 13 convolutional layers and 3 fully connected layers, a total of 16 floors. ResNet50
introduces the residual network, and there are two basic blocks, i.e., Identity Block and
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Conv Block. Identity Block uses 1 × 1 convolution to reduce the dimensionality before the
3 × 3 network structure and uses 1 × 1 convolution to increase the dimensionality after
the 3 × 3 network structure. Compared with the direct use of 3 × 3 network convolution,
Identity Block achieves a better effect with fewer parameters. Moreover, the input and
output have the same dimension, and they can be connected in series to deepen the network.
The input and output of Conv Block have different dimensions and they cannot be directly
connected in series. The function of Conv Block is to change the dimension of the network.
The MobileNetV2 network uses an inverted residual structure. It uses 1 × 1 convolution to
increase the dimension before the 3 × 3 network structure and uses 1 × 1 convolution to
reduce the dimension after the 3× 3 network structure. All model training and testing were
performed under the same hardware and software environment. The hardware platform
was equipped with Intel(R) Xeon(R) Gold 5218 CPU, 64GB RAM, 512GB SK hynix SC401
SATA disk, and NVIDIA RTX 2070 GPU. The software included Tensorflow-GPU 1.13.2
deep learning framework, Python 3.6 language, and Windows operating system. There
were 1800 samples in total, and the ratio of the training set to test set was determined to be
8:2 by experimentation. The loss curve of the three models is shown in Figure 10.
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As can be seen from Figure 10, the U-net model was quickly fitted in the first five
iterations, and the loss value decreased rapidly. During 5–61 iterations, the loss value
decreased slowly, and the variation was extremely large during 34–36 iterations. After
61 iterations, the loss value gradually stabilized at about 0.56. The PSPNet model was
quickly fitted in the first 31 iterations, and the loss value decreased rapidly. During
31–80 iterations, the loss value decreased slowly and the variation was extremely large
during 50–60 iterations. After 80 iterations, the loss value gradually stabilized at about 0.344.
Before the 50th iteration, the loss value of the DeepLabv3+ model gradually decreased, and
the model gradually converged. After the 50th iteration, the loss value gradually stabilized
at about 0.019.

In the training process, a total of 100 weights were output in each iteration. It is not
that the model performance increases with the number of iterations, but too much training
may lead to overfitting, so the trained model needs to be tested and evaluated. Taking
category pixel average accuracy rate (MPA) and average interaction ratio (MIoU) as the
metrics, the evaluation results are listed in Table 4.
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Table 4. Comparison of three different semantic segmentation networks.

Model Model Size/G Training Time/h MPA/% MIoU/%

U-net 0.21 5.5 69.21 80.89
PSPNet 0.65 9 77.98 88.97

DeepLabv3+ 1.05 11.5 75.89 86.24

It can be seen from Table 4 that PSPNet achieved the best overall performance, and the
MPA and MIoU were, respectively, 77.98% and 88.97% on the test set. Although PSPNet
did not have the decoder module of the DeepLabv3+ model feature extraction network,
and the number of feature extraction network layers was relatively small, it achieved
2.73% higher accuracy than DeepLabv3+ with fewer feature extraction network layers and
parameters. This result indicates that too many network layers will indeed extract a lot of
features, but the network model is large, and the training time is long; also, there are too
many features that are useless for classifying the main root of Panax notoginseng. This leads
to a decrease in the accuracy of the network. The MIoU of U-net was only 80.98%, which
was lower than that of PSPNet and DeepLabv3+. This was because U-net had fewer feature
extraction network layers. Though DeepLabv3+ had a large model, its performance was
moderate in terms of MPA and MIoU. To sum up, as a segmentation network for the main
roots of different grades, the ResNet50 convolutional neural network in the PSPNet model
achieved better performance and was suitable for grading the main roots of notoginseng.

3.4. Model Comparison

According to Section 3.3.1, among the traditional machine learning models based on
feature selection, the IRIV-SVM model achieved an accuracy of 94.048 on the training set
and an accuracy of 95.370% on the test set, both of which were the highest. According to
Section 3.3.2, among the deep learning models based on semantic segmentation, PSPNet
achieved an MPA of 77.98% and an MIoU of 88.97%, both of which were the highest.

Compared with IRIV-SVM, PSPNet automatically extracts features from the image
layer by layer, so it can avoid the problem of manual feature selection. However, the model
size of PsPNet was 0.65 G, and the training time was 9 h, which has a high requirement on
the hardware platform. Though the IRIV-SVM algorithm involves data preparation and
manual feature selection, its model size was only 125 kb, the training time was 3.4 s, and
the accuracy was high. Therefore, IRIV-SVM was chosen as the classification model for
Panax notoginseng taproot.

3.5. Optimization of IRIV-SVM Hierarchical Model

Since the classification accuracy of SVM is determined by c (penalty factor) and g
(kernel function parameter) [40], the default setting of c and g may not lead to the best
performance. Therefore, the interference to the model performance can be eliminated by
adjusting the values of c and g. In this paper, the IRIV-SVM model was optimized by
five-fold cross-validation and three intelligent optimization algorithms, i.e., GWO, GA, and
PSO. After experimentation, the maximum number of iterations of the three optimization
algorithms was set to 100, and the population size was set to 20. In GWO, the search range
of c and g were both set to [0.01, 100]. In GA, the search range of c was set to [0, 100], and
the search range of g was set to [0, 1000]. Furthermore, the crossover probability was set to
0.6, and the mutation probability was set to 0.03. In PSO, the search range of c was set to
[0.1, 100], and the search range of g was set to [0.01, 1000].

It can be seen from Figure 11 that after 100 iterations, the three optimization algorithms
all achieved the best fitness. The GWO algorithm converged to the best fitness of 98.704%
in the 19th iteration; the GA algorithm converged to the best fitness of 97.220% in the 25th
iteration, and the PSO algorithm converged to the best fitness of 96.67% in the 44th iteration.
Comparative analysis indicates that the GWO algorithm had the fastest convergence speed
and the best adaptability.
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Figure 11. Comparison of fitness trends of three intelligent optimization algorithm construction models.

It can be seen from Table 5 that after optimization by the three optimization algorithms
of GWO, GA, and PSO, the accuracy of the IRIV-SVM model on the test set increased by
3.334%, 3.149%, and 2.408%, respectively. Comparative analysis indicates that IRIV-GWO-
SVM achieved an accuracy of 98.703% on the test set, which was higher than that of
IRIV-GA-SVM and IRIV-PSO-SVM. Therefore, this study chose the IRIV-GWO-SVM model
for Panax notoginseng taproot classification.

Table 5. Comparison of the IRIV-SVM models optimized by different intelligent optimization algorithms.

Model Training Set Accuracy/% Test Set Accuracy/% Best c Best g

IRIV-GWO-SVM 97.460 98.704 67.889 0.201
IRIV-GA-SVM 97.540 98.519 60.138 0.224
IRIV-PSO-SVM 97.937 97.778 100.000 0.836

3.6. Model Validation

The confusion matrix of IRIV-GWO-SVM for classifying the Panax notoginseng tap-
roots at different grades is shown in Figure 12. The accuracy of IRIV-GWO-SVM for
classifying grade-I, grade-II, grade-III, and grade-IV Panax notoginseng taproots was, respec-
tively, 99.259%, 99.259%, 98.510%, and 98.510%, with an average classification accuracy of
98.8845%. In summary, the IRIV-GWO-SVM model achieved good classification accuracy
for Panax notoginseng taproots of different grades.
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4. Discussion

In this study, 450 Panax notoginseng taproots at four different grades were selected.
The use of sufficient and diverse samples makes the model more convincing. Considering
the irregularity of the shape of Panax notoginseng taproot, the characteristics of size, shape,
texture, color, and other characteristics that affect the classification of Panax notoginseng
taproot were extracted. This solves the problem that the previously extracted features are
relatively simple and cannot accurately express the characteristics of Panax notoginseng
taproots. Deep learning can automatically extract image features layer by layer from images
through convolutional neural networks and then perform classification and recognition
through classifiers. This research established a deep learning classification model based
on PSPnet, U-net, and DeepLabv3+ for semantic segmentation of different heads and
notoginseng roots. Meanwhile, three types of convolutional neural networks including
ResNet50, VGG16, and MobileNet were used as feature extraction networks. Taking the
category average pixel accuracy and average interaction ratio as evaluation indicators,
the traditional machine learning and deep learning grading models were compared and
analyzed, and the best model was selected and optimized. The accuracy of the optimized
model reached 98.704% on the test set.

5. Conclusions

In this study, the IRIV-GWO-SVM classification model achieved rapid and non-
destructive classification of Panax notoginseng taproots, which provides an effective method
for the classification of irregular agricultural products.

(1) A model based on image feature fusion was established for classifying Panax noto-
ginseng taproots. By preprocessing the taproot images of Panax notoginseng collected
using a CCD camera, 40 features such as shape, size, color, and texture were extracted.
Through the classification accuracy of the three classification models of BP, ELM, and
SVM, the importance of color, texture, and fusion features to the classification model
of Panax notoginseng root was proved. Three feature selection algorithms, i.e., IRIV,
VISSA, and SRA, were used to reduce the dimension of the whole feature. After
feature selection, 22, 21, and 10 optimal feature variable combinations were obtained
respectively, and redundant feature data were eliminated.

(2) Deep learning can automatically extract image features layer by layer from images
through convolutional neural networks and then perform classification and recog-
nition through classifiers. This research established a deep learning classification
model for Panax notoginseng taproots and selected PSPnet, U-net, and DeepLabv3+
for semantic segmentation. Meanwhile, three types of convolutional neural networks
including ResNet50, VGG16, and MobileNet were used as feature extraction networks.
Additionally, the average pixel accuracy and average interaction ratio of the categories
were used as evaluation indicators. The results show that the PSPNet model achieved
the best overall performance, with MPA of 77.98% and MioU of 88.97% on the test set.

(3) The traditional machine learning SVM classification model based on feature selection
and the deep learning model based on semantic segmentation were established.
Among the traditional machine learning SVM classification models, the IRIV-SVM
model achieved an accuracy of 94.048% on the training set and an accuracy of 95.370%
on the test set, both of which were the highest. Among the deep learning models,
PSPNet achieved a MAP of 77.98% and a MioU of 88.97%, both of which were the
highest. Compared with IRIV-SVM, PSPNet automatically extracts image features
layer by layer. It avoids manual feature selection, but its model size was 0.65 G, and
the training time was 9 h, which has high requirements for the hardware equipment.
Though IRIV-SVM involves data preparation and manual feature selection, its model
as only 125 kb, and the training time was 3.4 s. While the number of features was
reduced, it effectively increased the efficiency and accuracy of the model. Therefore,
IRIV-SVM was chosen as the classification model of Panax notoginseng taproot.
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(4) The GWO, GA, and PSO algorithms were introduced to optimize the IRIV-SVM
model. The results show that the IRIV-GWO-SVM classification model achieved the
best optimization effect. The classification accuracy was 98.704% on the test set, and
the optimization effect was increased by 3.334%.

In this study, a new classification method of Panax notoginseng taproot is proposed,
and a classification model based on machine vision feature fusion is established for Panax
notoginseng taproot of different grades. The results show that the proposed model is feasible,
which provides a theoretical reference for the subsequent development of Panax notoginseng
taproot classification system based on machine vision.
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