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Abstract: Low-cost sensor technology has been available for several years and has the potential to
complement official monitoring networks. The current generation of nitrogen dioxide (NO2) sensors
suffers from various technical problems. This study explores the added value of calibration models
based on (multiple) linear regression including cross terms on the performance of an electrochemical
NO2 sensor, the B43F manufactured by Alphasense. Sensor data were collected in duplicate at four
reference sites in the Netherlands over a period of one year. It is shown that a calibration, using O3

and temperature in addition to a reference NO2 measurement, improves the prediction in terms of
R2 from less than 0.5 to 0.69–0.84. The uncertainty of the calibrated sensors meets the Data Quality
Objective for indicative methods specified by the EU directive in some cases and it was verified that
the sensor signal itself remains an important predictor in the multilinear regressions. In practice,
these sensors are likely to be calibrated over a period (much) shorter than one year. This study
shows the dependence of the quality of the calibrated signal on the choice of these short (monthly)
calibration and validation periods. This information will be valuable for determining short-period
calibration strategies.

Keywords: NO2 sensor; ozone; calibration; validation; measurement uncertainty; multivariate linear
regression; seasonal influence

1. Introduction

Within the framework of the European Air Quality Directive [1], it is possible to
use supplementary techniques for indicative measurements. Emerging low-cost sensor
technology may fulfill this role. Compared to reference instruments, the use of air quality
sensors in monitoring would reduce costs and allow for high-resolution spatial–temporal
coverage [2–4]. However, multiple studies testing the capabilities of air quality sensors
under field conditions indicate highly variable behavior when comparing the sensor-
reference data outputs [5,6]. Sensors react to interfering pollutants or display unrealistic
concentrations at high temperature or relative humidity [7,8]. To overcome this challenging
behavior, calibration algorithms (models) need to be more refined in order to produce
reliable data [9]. Then, after subsequent validation, potential applications of a single or
network of low-cost sensors for air quality monitoring as well as citizen science can be
judged to their full extent [10–14].

The calibration of low-cost sensors can be explored in various ways. Using default
relations provided by the manufacturer sometimes results in non-physical negative con-
centrations and large differences between sensor and reference data. Using multilin-
ear regression models and including the temperature and relative humidity in ambient
air improves the results, indicating that calibration in the field is highly recommended.
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Spinelle et al. [15] showed that O3 sensors behave more reliably when using single re-
gression while NO2 sensors are preferably calibrated by employing supervised learning
techniques, indicating that different approaches might be necessary depending on the type
of sensor. Hasenfratz et al. [16] compared backward and instant calibration to traditional
forward calibration and showed that such an approach improves data accuracy considerably.

In our study, the behavior of individual sensors is discussed by designing several
(multi-)linear regression models. These were constructed for the Alphasense NO2-B43F
sensor [17] to predict continuous reference data and are based on the predictor variables:
NO2 measured by the sensor, temperature, relative humidity and ozone (either by reference
instrumentation or by a sensor) in ambient air. Our analyses also include interaction (or
cross) terms (the product of two or more independent predictor variables). Such terms
describe the effect that the relationship between a given (independent) predictor and the
outcome may also depend on other predictor variables. The performance of such models is
expressed here in several validation metrics including the expanded relative measurement
uncertainty which, following [18,19], was compared with the Data Quality Objectives
(DQO) as defined in the Air Quality Directive.

As far as we know, most research so far has focused on experimental periods shorter
than one year. The data collection in this study covers one year. This allowed for a detailed
assessment of the effect of specific choices for calibration and validation periods on the
sensor performance in detail here. Dividing the dataset into months, it is shown that the
choice of calibration/validation period can affect the performance of a calibrated sensor
considerably. We show, e.g., that in terms of R2, the summer calibration works reasonably
well in winter, but winter calibration does not perform well in summer. Using May 2018
as a calibration dataset to (backwards) predict all other months gives the best results
throughout the year, which can be explained by the optimal ranges for the predictor values
during May 2018.

2. Experimental Setup
2.1. Low-Cost Sensors

The focus of our analysis is on nitrogen dioxide (NO2); ozone is measured by either a
reference instrument or sensor for calibration purposes only. Here, we chose the Alphasense
NO2-B43F, a popular, low-cost electrochemical sensor for measuring ambient NO2. This
sensor is part of the platform developed by the Joint Research Centre (JRC) of the European
Commission: AirSensEUR. It is an air quality monitoring system developed as an open
software/open hardware object and complies with the INSPIRE Directive [20]. Apart from
the Alphasense NO2 sensor, the AirSensEUR configuration used in this experiment also
contained a Membrapor O3/M-5 for ozone measurements and dedicated meteorological
sensors for temperature, air pressure, and relative humidity. In the AirSensEUR, the
T/P/RH board and sensor surfaces are located outside the box directly in the ambient air.

Measurement samples are sent to a host board, which supplements the measurements
with geographical coordinates and then sends all data to a database [21]. In the case
of platform dropout, a manual re-start was performed. The calibration given by the
manufacturer was not used in our study. Sensor measurements are provided as counts from
the A/D converter (corresponding to the 16-bit AD-conversion applied in the AirSensEUR
shield). Currents from the sensors in milliamperes (mA) are converted to digital values
according to the configuration parameters given by the manufacturer. Sensor readings of
temperature, air pressure and relative humidity are converted according to the indication
of the manufacturer to degrees Celsius, millibar and percentages, respectively. The raw
measurement data provided by the sensors are stored in a central database on a 1 min base.

2.2. Field Deployment

For a period of one year (June 2017 until May 2018), eight AirSensEUR platforms were
deployed at four reference sites being part of the of the National Air Quality Monitoring
Network (LML) in the Netherlands (two sensors per site). The types of sites were urban
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background (Veldhoven), street (Utrecht), motorway (Breukelen) and industry (Botlek)
(see Figure 1). Every reference site is equipped with reference gas analyzers for NO2
(chemiluminescence; Teledyne API 200E except Botlek, Thermo 42i) and O3 (UV photome-
try; Thermo 49i except Botlek, Thermo 49C) (Nguyen, 2009). The reference analyzers are
calibrated in the field using filtered zero air and span value.
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2.3. Data Filtering

Due to non- or malfunctioning of the sensor or hardware (sensor systems being
prototypes), there were episodes in the time series with missing or distorted data. These
were visually removed from the dataset. Additional filtering was done to remove suspected
outliers: minute-based measurements lying outside ±10 times the standard deviation range
of the annual average level are discarded. This criterion was used for its simplicity and
effectiveness. The resulting time coverage per sensor of data available for further processing
is given below in Table 1 for each station. The filtering process resulted in an average
data coverage over the year of 68%. From the one-minute sensor, hourly values were
derived to enable a direct comparison with the hourly reference data and to improve the
signal-to-noise ratio.
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Table 1. Data coverage at the measurement sites for each sensor system. Number of hours with valid
hourly averaged sensor output as a percentage of the total number of hours in the measurement
period (one year).

Station/Sensor No. %

Botlek 01 91
Botlek 02 55

Veldhoven 03 59
Veldhoven 04 54
Breukelen 05 38
Breukelen 06 78

Utrecht 07 100
Utrecht 08 71
Average 68

3. Calibration and Validation
3.1. Calibration

Within this study, a (multivariate) regression approach will be used to calibrate the raw
signal of the sensors. The calibration will be performed using hourly averaged predictors.
As meteorology and the presence of ozone in ambient air both affect the response of low-
cost sensors, the following predictors for the NO2 signal of the reference measurements
will additionally be considered:
• Sensor NO2 signal: sensorNO2;
• Reference O3 concentration: refO3;
• Sensor O3 signal: sensorO3;
• Sensor temperature signal: sensorT;
• Relative humidity at the nearest weather station: RH.

Using these predictors, eight multivariate regression variants are examined:

1. refNO2~sensorNO2;
2. refNO2~sensorNO2, sensorT;
3. refNO2~sensorNO2, sensorO3;
4. refNO2~sensorNO2, refO3;
5. refNO2~sensorNO2, sensorT, sensorO3;
6. refNO2~sensorNO2, sensorT, refO3;
7. refNO2~sensorNO2, sensorT, sensorO3, RH;
8. refNO2~sensorNO2, sensorT, refO3, RH.

Each variant is fitted using the sensor datasets collected at the reference sites. When
the regression uses two or more predictors, this regression will also contain cross (or
interaction) terms of these predictors. For example, “refNO2~sensorNO2, sensorT” refers
to a multivariable regression fit that also includes the product of sensorNO2 and sensorT
and the regression “refNO2~sensorNO2, sensorT, sensorO3, RH” contains a product of
sensorNO2, sensorT, sensorO3, and RH.

Terms in the regression containing only one predictor are known as the ‘additive’
model and investigate only the main effects of the predictors (where it is assumed that
the relationship between a predictor variable and the outcome is independent of other
predictors). The incorporation of a product of two or more (independent) predictors in a
regression is motivated by the occurrence of an ‘interaction effect’. These interactions occur
when the effect of an independent predictor variable on a dependent variable changes,
depending on the value(s) of one or more other predictor variables. The understanding
of the physical significance of cross terms is quite challenging. Some cross terms seem
to improve the performance of the calibration model, while for others the improvement
seems negligible. Within this study, it was decided to include these cross products in the
calibration in order to make use of the possible added value. Additional study of the
relevance of individual cross terms is not presented in this article.
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3.2. Validation

To evaluate the sensor performance after applying the different calibration models, the
calibrated sensor data were then validated with NO2 data from the reference equipment by
orthogonal regression. As validation metrics, R2 (coefficient of determination), slope and
intercept, prediction error (RMSE) and the measurement uncertainty were calculated. The
measurement uncertainty is compared to the Data Quality Objective (DQO) for indicative
methods that corresponds to a relative expanded uncertainty of 25% for NO2 at the limit
value set by the European Directive [1]. The estimation of the uncertainty, which corre-
sponds to the relative expanded uncertainty Ur, is carried out following Equation (1) using
the slope and intercept of the orthogonal regression equation and the sum of the square of
the residuals:

Ur(Yi) =
2
√

1
n−2 ∑i(Yi − (intercept + slopeXi))

2 − u2(Xi) + (intercept + (slope − 1)Xi)
2

Yi
(1)

with u(Xi) = 1.8% × Xi being the between-sampler uncertainty of the reference equipment.
Details of the calculation of the orthogonal regression can be found in the Guide for the
Demonstration of Equivalence [22].

4. Results and Discussion
4.1. Presentation of the Dataset

To show the variability over location and time of the predictors used in the calibrations,
box plots are presented on a monthly basis (Figure 2). The lines extending vertically from
the boxes indicate the variability outside the upper and lower quartiles (denoted by 5th and
95th percentiles). The variables included are the raw sensor NO2 data (counts), reference
measurement of NO2 (refNO2 in µg/m3) and O3 (refO3 in µg/m3), temperature (sensorT
in ◦C) and relative humidity (RH in %) measured at the nearest weather station. Only
months with at least 200 h (8 days) of measurement data are included (leading to the loss
of monthly statistics at Veldhoven and Breukelen).

The time series of sensorT and RH indicate that the meteorological behavior at the four
sites is quite similar to the monthly (median) temperatures ranging between 0 and 20 ◦C
and 65–95% RH. This was anticipated in a dominant maritime climate (mild winters, cool
summers) and the limited distances (<100 km) between measurement sites. The annual
cycles of sensorT and RH show maximum temperatures in the period May–August and a
minimum relative humidity in May at all four sites.

Still recognizable is the annual variation of NO2 and O3 (measured with reference
instruments). As expected, both pollutants behave oppositely throughout the year. This is
most apparent at the Utrecht site where the lowest NO2 (and highest O3) median levels
occur in May and June (coinciding with high temperatures). On average, the highest NO2
concentrations occur at the industrial site Botlek, probably due to the local emissions from
heavy industry and transport. Figure 2 shows that concentrations of NO2 are lowest at
the urban background site Veldhoven (with relatively high levels of ozone), whereas the
traffic-dominated sites Breukelen and Utrecht show intermediate values. For ozone, the
annual behavior appears comparable at the four sites.
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4.2. Linear Regression (LR)

Single linear regression is used to calibrate the sensor data using all available sensor
and reference measurements. Subsequently, a univariate orthogonal regression has been
used to determine the slope and intercept of the calibrated sensors with respect to the
reference measurements. In this case, the validation dataset equals the calibration data.
Validation metrics are given per sensor in Figure 3 (and summarized in Table 2). The color
of the data points indicates whether ozone concentrations are high or low (darker means
higher). The dashed line represents Y = X and the solid line follows from the orthogonal
fitting between the calibrated sensor and reference concentration data.

The performance of a prediction, based on a single linear regression between the
reference and sensor measurements, proves to be of poor quality. The relative spread
between the sensor and reference measurements seems to decrease with increasing NO2 and
decreasing O3. This could be explained by the measurement error of the NO2 sensor itself
and cross-sensitivity of the NO2 sensor to O3. A univariate calibration model obviously
cannot correct for the interference by ozone. High NO2 and low ozone levels predominantly
occur during wintertime. This is also the case when the prediction based on single linear
regression performs best. We will discuss this in more detail below.

To check for possible time-linear drift of the calibrated sensors, the difference between
the monthly averages of the calibrated sensors and the reference equipment is given in
Figure S1 of the supplementary materials. Because of the large fluctuation of this difference
throughout the year, it is hard to discern a linear trend, indicative of such a drift.
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Table 2. Calibration performance expressed in R2, RMSE, slope and intercept. Numbers in parenthe-
ses are the results from single linear regression.

MLR (LR) Sensor Slope Intercept R2 RMSE

Botlek 01 0.87 5.41 0.78 9.66
(0.47) (22.39) (0.38) (16.51)

02 0.86 5.89 0.76 10.04
(0.64) (14.73) (0.52) (14.37)

Veldhoven 03 0.85 2.57 0.75 5.32
(0.24) (13.63) (0.2) (10.29)

04 0.8 3.32 0.69 6.25
(0.03) (16.34) (0.03) (11.1)

Breukelen 05 0.86 3.78 0.77 8.64
(0.25) (20.83) (0.21) (16.03)

06 0.84 4.55 0.74 8.84
(0.54) (12.81) (0.43) (12.88)

Utrecht 07 0.91 2.39 0.84 6.62
(0.17) (21.71) (0.15) (15.11)

08 0.91 2.36 0.84 6.44
(0.49) (13.48) (0.4) (12.62)
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4.3. Multivariate Linear Regression (MLR)
4.3.1. Performance Metrics

After applying the various multivariate regression models for the calibration, coef-
ficients of determination (R2) were calculated to estimate the variance in the dependent
variable (refNO2) that is predictable from the (independent) variables (predictors). The
results are shown in Figure 4. As our focus is on the behavior of the NO2 sensor, it is of
interest to estimate to what extent the outcome of the regressions is determined by the
sensor itself. Therefore, the vertical bars are divided into two parts to distinguish between
the variances explained by the sensor predictor (dark blue) and by the remaining predictors
(light blue). The light blue part of the bar thus shows the performance of the regression
model without actually making use of NO2 sensor data.

As expected, MLR models perform better than the LR model (given by the first bar on
the left in Figure 4: model 1). Including the temperature in the model as a predictor variable
improves R2 (model 2). The improvement (compared to model 1) is even larger when
ozone data (either measured by the O3 sensor or derived from the reference instrument:
models 3 and 4) is added to the calibration confirming (again) that part of the explained
variance is due to the cross-sensitivity of the NO2 sensor to O3. The inclusion of reference
O3 data instead of sensor O3 data always leads to a better agreement. This is (partly)
because the ambient O3 concentrations anti-correlate relatively strongly with ambient NO2
concentrations (Figure 2).
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Figure 4. R2 (coefficient of determination) for the reference NO2 concentrations versus eight cal-
ibration models (horizontal axis). The light blue part in each bar shows the calculated R2 of the
calibration model with the NO2 sensor data excluded. The dark blue part represents the variance
explained by the NO2 sensor.

Adding the sensor temperature variable (models 5 and 6) improves the results even
more. The incorporation of the relative humidity parameter (seventh and eight bar) only
produces a minor improvement (if any). Apparently, the use of the temperature variable
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within the models accounts sufficiently for the explained variance, which can be understood
from the similar but opposite temporal behavior of these meteorological variables.

The difference between monthly averages of the sensors, calibrated using model 6 and
the reference equipment is given in Figure S2 of the supplementary materials. The figure
does not indicate a time-linear drift between calibrated sensors and reference equipment.

Figure 4 shows that the inclusion of NO2 sensor data in the calibration models indeed
improves the predictive quality. Even when a large part of the variability can be explained
by the correlation of NO2 with O3 alone, the NO2 sensor is still able to establish a significant
increase in R2. One of the best performances is observed when the MLR regression
incorporates reference O3, sensor temperature and sensor NO2 data (model 6). This is
demonstrated in more detail in Figure 5 where (like in Figure 3) orthogonal regression is
used to validate the performance of the calibration model. The coloring of the data points
indicates the level of the ozone concentrations.
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Compared to Figure 3 (single linear regression approach), the calibration performance
improves considerably in terms of R2, RMSE, slope and intercept. Additionally, note in
Figure 5 that the spread in the dataset is reduced. The improvement from LR to MLR with
predictor variables sensorNO2, sensorT and refO3 data is summarized in Table 2. A similar
figure, but now for a calibration using sensorNO2, sensorT and sensorO3 has been added
to the supplementary materials (Figure S3).
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4.3.2. Relative Measurement Uncertainty

In addition to the abovementioned performance metrics, corresponding measurement
uncertainties estimated using Equation (1) are compared with the Data Quality Objectives
(DQO) for indicative measurements (i.e., 25% for the 95% confidence level at the limit value
of 40 µg/m3). The measurement uncertainties were calculated using the full dataset. The
result is given in Figure 6 for every model as a function of the level of the NO2 concentration
(as measured at the reference stations).
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For most models, the DQO for indicative measurements is not met. Clearly, calibration
models including an ozone predictor (sensor or reference) perform significantly better,
especially at higher concentrations. As might be anticipated from the previous results, the
calibrations using all available predictors (based on models 7 and 8 with ozone either from
the sensor or from the reference) yield the lowest relative expanded measurement uncer-
tainty at every measurement site. For these models, the uncertainties estimated at some
stations appear very close to, or even comply with the DQO for indicative measurements.

Since each measurement location is equipped with two sensor units, a comparison
between sensor data provides an indication of the sensor-to-sensor variability. For the
(uncalibrated) NO2 sensor signals such a comparison is presented in Figure S4 of the sup-
plementary materials. Although beyond the scope of the work presented here, this could
be used to break down the estimated uncertainty of the calibrated sensors into components
associated with, e.g., the sensor-to-sensor variability and the calibration uncertainty.
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4.3.3. Calibration and Validation by Monthly Datasets

So far, the testing of the sensor models’ performances has been restricted to the one-
year datasets with calibration and validation periods overlapping in time. Although not
systematically investigated, the lifetime of an electrochemical sensor is reported to be
1–2 years. Therefore, calibrations should be conducted at shorter time intervals, e.g., one
month (also for practical reasons). In addition, it is of interest to validate the calibrated
sensors for shorter time spans to investigate whether they perform better or worse in
different validation periods (e.g., the entire measurement period of one year or a specific
month). To study this, model 6 is applied to monthly subsets of the measurement data (each
consisting of at least 200 hourly values). To visualize how this works out, Figure 7 shows
predictions based on two different calibration/validation month combinations compared
with reference concentrations. In this example, the data from the Utrecht measurement site
and sensor 07 have been used.
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The top part of Figure 7 shows that a model ‘trained’ with data from January can
make good predictions for February. Trained with data from April, the model overpredicts
the measured concentrations in May from the second half of the month (bottom part of
Figure 7). This could be explained by different reference concentrations and meteorological
circumstances from those encountered in the calibration month.
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The combined results of this approach for all stations and available months are
presented in Figure 8 where performances are expressed in terms of explained variance (R2).
The title in each subgraph corresponds to the month providing the calibration data. The
X-axis corresponds to the (monthly) period for which the validation is done, i.e., the top-left
graph shows the R2 between the NO2 of the sensors and that of the co-located reference
measurements for the months July 2017–June 2018, when the sensors were calibrated
using the data from July 2017. The vertical gray line indicates when the calibration and
validation month coincide. Results to the right of this line are based on a calibration that
was determined before the validation was performed. Results to the left of the line indicate
how the calibrated sensor predicts the concentrations per month when it is calibrated using
the dataset from a future month. The last tick mark on the X-axis gives the R2 when the
entire year is used as validation data (discussed in previous paragraphs).
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In general, it can be concluded that the validation period itself is the most important
factor determining the quality of the calibration based on MLR (model 6). Irrespective
of the calibration month, the period November until February systematically shows the
highest explained variances. When calibration is carried out in a winter month, the
validation shows the most accurate results for the winter period but is accompanied by a
relatively (very) low performance in the summer. Using a calibration based on the period
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May–August, the performance in winter remains accurate while acceptable (R2 > 0.5)
performance is observed for the remaining validation months. The calibration using
the entire measurement dataset (last subgraph) also performs best in wintertime. More
specifically, when studying the results per month, calibrating the sensor in May yields the
best result for every month of the year and is rather similar to the results of a calibration
based on the entire year. This could be explained by the predictor variables all having a
high variability during this month. Due to annual meteorological variability, this may be
different for other years and will obviously change in other climate zones.

Comparing Figures 2 and 8, it is noted that the quality of the prediction in terms of
R2 corresponds with the average levels of the NO2 concentrations as well as the average
ozone concentrations and sensor temperatures. Months with high sensorNO2 levels in
combination with low ozone levels and sensor temperature generally yield the highest
values of R2. Because these predictors are highly intercorrelated, the variance explained
by the individual predictors is given below (Figure 9) in the left and middle subgraphs,
equaling around 0.75 at the highest. In this case, the prediction model that is validated with
the month on the X-axis is based on a calibration using data from all months preceding
this validation month. The explained variance of the combined predictors is shown in the
right graph, revealing considerably larger values for R2 (up to 0.95). Just as was already
demonstrated using the full (one year) dataset in Figure 4, the sensorNO2 signal has an
important role in explaining reference NO2 levels on a monthly basis.
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5. Discussion and Conclusions

In this study the performance of low-cost sensors, calibrated using (multiple) linear
regression, is investigated in two ways. First, by varying the set of predictor variables
used in the calibration while allowing for the products of predictor variables. Second, by
varying calibration and validation month, given that the full extent of the dataset covers
one year.

The performance of a prediction, based on linear regression between reference and
sensor measurements, proves to be of poor quality; the coefficients of determination (R2)
are less than or equal to 0.54. To improve these predictions, a MLR modelling approach
using predictors like temperature, relative humidity and ozone in ambient air is examined.
Possible interaction effects are approximated by adding the product of predictor variables
to the calibration equations. For these kinds of calibration models, R2 increases to 0.69–0.84,
substantially higher than with the linear regression approach.

The best performing calibrations always include an ozone predictor (either from
reference measurements or sensor measurements), which accounts for the part of the
explained variance that is due to the cross-sensitivity of the NO2 sensor to ambient O3.
The use of reference O3 data instead of sensor O3 data in the calibration improves the
performance, which is most likely due to the cross-sensitivity of the ozone sensor for
NO2. Adding the temperature to the calibration equation improves R2 even further. The
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incorporation of the relative humidity parameter in the calibration only results in a minor
improvement (which is probably caused by the strong anti-correlation with temperature).
We therefore conclude that ambient ozone concentrations and temperature must be taken
into account in the calibration of the low-cost NO2 sensors discussed here.

Compliance with the Data Quality Objective for indicative methods (95% CI uncer-
tainty of 25% for yearly average NO2 at the limit value (40 ug/m3) set by the European
Directive) is also investigated using data from the full (one year) measurement period. The
uncertainties estimated at some stations (urban background or in a street) turn out to be
very close to or in compliance with the Data Quality Objective.

The testing of the sensor calibration usually involves calibration and validation periods
shorter than one year. We show that the choice of calibration/validation period can affect
the performance of a sensor considerably. When sensors are calibrated in a winter month
(using the best performing calibrations in this study), optimal results are obtained for the
remaining winter months, but the summer period shows a (very) low performance in
this case. This might be due to the low ozone concentrations during wintertime. When
using a calibration based in summer, performance in terms of R2 in winter remains quite
good and performances for the remaining months remain acceptable. Possibly valuable for
practical use is the observation that for the specific meteorological conditions and ambient
NO2 and O3 concentrations in the dataset, a sensor that is calibrated in May yields the
most accurate results for the remaining 11 months and is, in addition, rather similar to the
results of a calibration based on the entire year. One possible explanation is that during the
month of May the important predictor variables (NO2, O3, T, RH) show the large variations
needed for an adequate calibration. Conditions in the month of May 2018 seem sufficiently
representative for both winter and summer variability in atmospheric behavior.

It is worth noting that the O3 reference measurements that were input into the optimal
calibrations in this paper will, in practice, not be available at the location of the low-cost
sensors. In future, it should therefore be investigated to what extent using a nearby O3
station or an interpolation map of high-quality O3 information in the calibration algorithms
influences the quality of the calibration (compared to the use of a local O3 sensor).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21237919/s1, Figure S1: Monthly averaged difference between the NO2 sensor, calibrated
using simple linear regression and the reference NO2 concentration. Figure S2: Monthly averaged
difference between the NO2 sensor, calibrated using multivariate linear regression (based on the
sensor NO2 signal, the sensor temperature and the reference O3 concentration) and the reference
NO2 concentration. Figure S3: Scatterplots for sensors, calibrated with the NO2 sensor signal, the
sensor temperature and the O3 sensor signal. Figure S4: Scatter of NO2 sensor signal of co-located
sensor pairs at the four measurement locations.
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