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Abstract: Tacit coordination games are games in which communication between the players is not
allowed or not possible. In these games, the more salient solutions, that are often perceived as more
prominent, are referred to as focal points. The level-k model states that players’ decisions in tacit
coordination games are a consequence of applying different decision rules at different depths of
reasoning (level-k). A player at Lk=0 will randomly pick a solution, whereas a Lk≥1 player will
apply their strategy based on their beliefs regarding the actions of the other players. The goal of
this study was to examine, for the first time, the neural correlates of different reasoning levels in
tacit coordination games. To that end, we have designed a combined behavioral-electrophysiological
study with 3 different conditions, each resembling a different depth reasoning state: (1) resting state,
(2) picking, and (3) coordination. By utilizing transfer learning and deep learning, we were able to
achieve a precision of almost 100% (99.49%) for the resting-state condition, while for the picking and
coordination conditions, the precision was 69.53% and 72.44%, respectively. The application of these
findings and related future research options are discussed.
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1. Introduction

In tacit coordination games, communication between the players is not allowed or
not possible. In these games, the more salient solutions, that are often perceived as more
prominent [1], are referred to as focal points. While many experiments showed that
players are highly successful in converging on the same focal point (e.g., [1,2]), and even
though several attempts were made to construct theoretical frameworks to explain this
phenomenon (e.g., [3–6]), there is still no generally accepted explanation of how players
manage to converge on the same solution [4].

One of the most prominent cognitive models that attempts to explain behavior in
tacit coordination games is the level-k model, which is based on the cognitive hierarchy
theory [4,7,8]. The model assumes that players’ reasoning depth relies on their subjective
level of reasoning, k. For example, players in which k = 0 (sometimes referred to as L0
players) will choose randomly between the available actions, while L1 players assume
that all other players are L0 reasoners and will act according to this assumption. That
is, L0 players might utilize rules but will apply them randomly (picking), whereas Lk≥1
players will apply their strategy based on their beliefs regarding the actions of the other
players (coordination).

In recent years, there has been a growing interest in examining how people reason in
strategic situations. However, research regarding the level-k model has been conducted in
the context of behavioral game theory, while in this study, we proposed to examine the neu-
ral correlates of different reasoning levels in tacit coordination games. To examine different
levels of reasoning, we have designed a combined behavioral-electrophysiological study
with three different conditions, each resembling a different depth of reasoning: (1) resting
state, (2) picking, and (3) coordination. Each participant underwent the three conditions
in this sequential order. First, the resting-state EEG was recorded from participants while
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they were requested to gaze at a cross in the center of the screen. In the second stage of
the experiment, participants were engaged in a picking task. Participants were presented
sequentially with different sets of four words appearing in Hebrew, and in each of the
trials, they were asked to freely pick a word out of each set. In the third stage, participants
were presented with the same sets of words that were presented in the picking condition.
However, this time participants were engaged in a coordination task. That is, participants
were instructed to coordinate their choice of a word with an unknown partner so that they
would converge on the same word from the set presented to them in each of the trials. EEG
was recorded from participants while they were performing each of the tasks. Before the
start of the actual experiment, participants underwent a training session while wearing the
EEG cap to get them familiar with the picking and coordination tasks.

The overarching goal of our study was to classify EEG continuous data into the level-
k condition they were associated with. This will show that the level-k model can also
be validated by electrophysiological correlates and not only by behavioral indices. This
validation may potentially enable the construction of more accurate models for human–
agent interactions [9]. To that end, we have first used methods of feature extraction and
classification based on conventional machine learning techniques, such as computing the
relative energy in each frequency band and applying standard predictive models such
as random forest (see Appendix D). These techniques were not proven to be sufficient
due to the complexity of the problem and the amount of data such models require. With
that in mind, we have used the transfer learning technique (e.g., [10–12]) with pre-trained
deep learning models trained on large datasets, which we have adjusted to the problem
at hand. Specifically, the learning model was based on a continuous wavelet transform
2D image, which has been fed into a pre-trained network (VGG16 trained on ImageNet).
Since determining the optimal weights of the different EEG channels is a computationally
hard problem, we have defined a relative cost function and optimized the set of weights
using a genetic algorithm. Our multi-channel deep learning method achieved a precision of
almost 100% (99.49%) for the resting-state condition, while for the picking and coordination
conditions, the precision was 69.53% and 72.44%, respectively.

The contribution of our study is three-fold. First, we have validated the level-k theory
in the context of tacit coordination by using electrophysiological data. Second, we have
demonstrated that the state-of-the-art transfer learning technique can be useful to cope with
a complex classification problem with a low amount of electrophysiological data. Third,
we have managed to predict the class label of EEG segments associated with different
experimental conditions: picking (level-k = 0), tacit coordination (level-k > 0), or no-task
(resting state). The implications of these findings and related future research options
are discussed.

2. Materials and Methods
2.1. Participants

The participants were 10 students from Ariel University that were enrolled in one of
the courses on campus (right-handed, mean age = ~26 years, SD = 4). Each task (picking and
coordination) started with a verbal explanation followed by reading a written instruction
file. Then, participants signed an informed consent form approved by the IRB of Ariel
University. Participants were offered a reward based on the total number of points they
earned in both tasks.

2.2. Experimental Design

Experimental conditions comprised resting-state EEG recordings with eyes open for
two minutes while participants focused on a red cross on the screen overlayed over a grey
background. The next two stages were based on the same set of stimuli and presentation
scheme. The experiment consisted of two sets of twelve different trials each with a different
set of words. For example, game board #1 displays a trial containing the set (“Water”,
“Beer”, “Wine”, “Whisky”) appearing in Hebrew, respectively. Each set of words was
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displayed between two short vertical lines following a slide containing only the lines
without the word set so that participants will focus their gaze at the center of the screen
(Figure 1A,B) (e.g., [4,13]). In the first experimental condition, the task presented to the
players was a picking task, i.e., participants were only required to freely pick a word out of
each set of four words presented to them in each of the 12 trials. Subsequently, participants
were presented with the coordination task, comprising the same set of 12 different trials.
In the coordination condition, participants were instructed to coordinate their choice of a
word with an unknown partner so that they would end up choosing the same word from
the set. Participants were further informed that they will receive an amount of 100 points
for each selection of a word in the picking task, and for each successful coordination in the
coordination task. Each participant sat alone in front of the computer screen during the
entire experimental session. It is important to note that no feedback was given between
the games. That is, the participants were not informed whether they have coordinated
successfully or not with their unknown coplayer. The individual accumulated reward for
each of the participants was calculated by randomly matching each participant with a
coplayer. The reward was presented to each of the participants only after the completion of
the series of games.
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Figure 1. (A) Standby screen. (B) Game board #1 {“Water”, “Beer”, “Wine”, “Whisky”}.

Figure 2 portrays the outline of the experiment. Each slide containing the set of words
(task trials) was preceded by a slide containing only the vertical lines without the word
set (standby slides) to keep the gaze of participants at the middle of the screen throughout
the experiment. Each of the standby slides was presented for U(2, 2.5) s, while each slide
containing the set of words was presented for a maximal duration of 8 s. Following a task
trial, participants could move to the next slide with a button press. The sequence of the
task trials was randomized in each session.
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Figure 2. Experimental paradigm with timeline.

The EEG was recorded from participants while they were performing the tasks. The
EEG was recorded by a 16-channel g.USBAMP bio-signal amplifier (g.tec, Austria) at a
sampling frequency of 512 Hz, and 16 active electrodes were used for collecting EEG signals
from the scalp based on the international 10–20 system. Recording was performed by the



Sensors 2021, 21, 7908 4 of 17

OpenVibe (v3.2.0) [14] recording software. Impedance of all electrodes was kept below the
threshold of 5 K (ohm) during all recording sessions.

Before performing the actual experiment, participants underwent a training session
while wearing the EEG cap, to get them familiar with the application and task. The training
task included a total of five trials (each including a different set of words), as displayed in
Appendix C.

2.3. EEG Preprocessing and Feature Extraction Using CWT

Based on the literature (e.g., [15–19]), we focused on the following cluster of frontal
and prefrontal electrodes (Fp1, F7, Fp2, F8, F3, and F4). The preprocessing pipeline (see
Figure 3) consisted of finite impulse response (FIR), band-pass filtering (BPF) (1,32) Hz,
and artifact removal following iCA. The data were re-referenced to the average reference
and down-sampled from 512 to 64 Hz following baseline correction. Data were analyzed
on a 1 s epoch window from the onset of each game. In the resting-state condition, a 30 to
90 s epoch was extracted from the entire 120 s from trial onset, resulting in 60 1 s epochs
per participant. However, in the picking and coordination conditions, there was a total of
12 decision points per participant.
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Figure 3. Preprocess pipeline.

Then, to extract the features on which the processing will be performed, which in this
case is an image, we performed the continuous wavelet transform (CWT) calculation. The
CWT is a mathematical transformation that gives the signal a complete two-dimensional
representation of time and scaling using a wavelet function that receives a continuously
changing scale value [20]. We have used the Symlet (e.g., [21,22]) wavelet filter with a
scaling factor ranging from 1 to 32. In addition, to obtain optimal results, we examined
filters of the order 2, 4, 6, 8, and 10, and the best one according to the cross-entropy (CE)
loss function (see Equations (3) and (4)) turned out to be a sixth-order Symlet filter (see
Appendix A).

2.4. Software Tools and Work Environments

In this study, we used a variety of different tools and environments to perform
data collection and analysis. The EEG was recorded by a 16-channel g.USBAMP bio-
signal amplifier (g.tec, Austria) using 16 active electrodes based on the international 10–20
system. EEG was recorded by using OpenVibe [14]. The experimental application was
developed in Java and included a communication interface based on the TCP-IP protocol
to handle triggers.

The pre-processing pipeline (Figure 3) was implemented using EEGLAB [23] (v14.1.1).
The CWT and DWT transformations were carried out by the Wavelet Toolbox and Signal
Processing Toolbox in MATLAB 2016a. The transfer learning deep models were constructed
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by using the Keras python package. The optimization process was implemented using the
NumPy package in python.

3. Results

Figure 4 shows the CWT conversion results of channel 1 (Fp1) of player #3 in all
three experimental states (resting, picking, and coordination). The presented coordination
and picking epoch were taken from the same experimental trial containing the same set
of words. The x-axis represents the time of the epoch, [0, 1] (s), which is equivalent to
64 samples, while the y-axis represents the CWT value of the corresponding wavelet scaling
factor in the range of (1, 32). The wavelet scale corresponds to the frequency of the signal.
Note that the higher the scaling factor, the lower the corresponding wavelet frequency.
The whole presented analysis can also be seen graphically in Figure 5, which shows the
distribution of the average CWT values from Figure 4 according to the time (upper row)
and CWT scale (lower row) variables.
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Figure 4. CWT results in different experimental states (resting, picking, and coordination).

Analyzing the differences between the various modes based on the timeline, it can be
seen (Figures 4 and 5, upper row) that in the resting-state mode, there is almost no energy
increase throughout the epoch. However, in the picking task (level-k = 0), a prominent
peak appears after 330 milliseconds (sample 21 out of 64), while in the coordination task
(level-k > 0), several prominent peaks, indicating an increase in the signal energy, appear
throughout the entire epoch. It can also be observed that the higher frequencies (which are
related to smaller CWT scale values) are more dominant in the coordination tasks compared
to the picking task and resting-state conditions. This result is consistent with previous
studies (e.g., [24,25]) that show that the beta frequency domain (13–30 Hz), especially in
the prefrontal brain area, is directly related to brain activity associated with top-down
processes associated with prediction and expectation [26].

3.1. Cognitive Level Classification Using a Single EEG Channel

To classify the subject’s experimental condition (resting, picking, and coordination)
based on the player CWT image during the cognitive task, we have constructed a classifica-
tion model. However, the small amount of data we have, which includes 840 observations
per EEG channel (120 picking epochs, 120 coordination epochs, 600 RS epochs), presents
a challenge as it does not allow us to produce a highly complex model. To deal with
the problem of the small number of observations in such a complex task, we will take
two algorithmic-architectural steps. First, we will implement our classifier according to a
one-versus-all approach [27,28]. That is, we will create three different classifiers, each for
predicting one of the tree specific labels (resting, picking, and coordination). This approach
reduces the complexity of each classifier because its purpose is to identify a single label,
which is a more reasonable task given the small number of observations. Consequently, we
are now required to train three models instead of one when each model receives a different
dataset in which the target images are given the label “1” and all other images the label “0”.
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The final predicted label will be determined by the highest probability predicted by each of
the three models (using an Argmax function). The complete classification architecture for a
single electrode based on three one-versus-all classifiers is presented in Figure 6.
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Second, we will use a transfer learning method (e.g., [29,30]) that focuses on the
use of knowledge generated in a particular problem to solve another problem that has
similar characteristics. This enables developing complex models with a low amount of
observations [31]. The database used for transfer learning is taken from the ImageNet
project [32,33], a visual database used for visual object recognition research that includes
more than 14 million tagged images with over 20,000 possible classes.

To produce an optimal prediction model for our problem, classification of the cognitive
level (level-k), we will examine three different pre-trained models: InceptionNet V3 [34],
ResNet50 [35], and VGG16 [36]. The weights of each pre-trained network were originally
calculated to detect one of each of the 1000 different classes (for example zebra, ox, sub-
marine, ambulance, lemon, etc.). The training set on which the networks were trained
included about 1.2 million images, while in addition, there were about 50,000 images for
validation and about 100,000 images for testing.
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In the model training process (Figure 7), we used the abovementioned pre-trained
networks to extract the features from the CWT image. The weights of each network were
frozen so that they would remain unchanged even at the end of the training process, after
which we added a single neuron and a sigmoid activation function after the last pooling
layer to obtain a prediction for our problem. The embedding features were taken out
of the last pooling layer of the network and not from the output layer because of the
difference between the testing set (images of EEG segments) and the transfer learning
network training set (ImageNet). When the training set and the testing set comprise
images of similar context, it is possible to take the features that are closer to the output
layer. However, when the sets are from completely different domains, it is recommended
to a take the features from pooling layers residing closer to the middle of the network,
which represent basic shapes such as lines, circles, and trends [37]. We preferred using a
single-neuron model to more complicated multi-layered architectures due to the size of the
training set (for detailed results, see Appendix E). To avoid overfitting, we worked with a
four-fold cross-validation method so that the training set included 630 samples at a time
(three-fold) and the test set included 210 samples (one-fold). We repeated this process three
times to obtain a reliable prediction of all the samples in the test group. The cost function
used for the training process was binary cross-entropy (BCE) with balanced weights to
overcome the amount of unbalanced observations between the different labels (as there is a
1 to 5 ratio between games and resting-state epochs).
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As mentioned in Section 3.1, for each network, we performed five different training
sessions. In each training session, we used different sets of CWT images as input. Each
set was calculated using a Symlet wavelet of the following different orders: {2, 4, 6, 8, 10}.
Therefore, in total, we had 15 configurations for the model (5 wavelets times 3 pre-trained
networks). The configuration with the best classification performance for a single channel
was obtained by the VGG16 network with a sixth-order Symlet wavelet.

Table 1 presents the classification accuracy results for the different channels. In all
channels, the accuracy of the model was higher than the chance level (33.33%). The
difference between the best (F3) and worst channels (F7) was 9.65% in the total level of
accuracy (81 correctly predicted observations). Finally, there is symmetry between the left
side of the scalp and the right side. For each homologous interhemispheric electrode pair
(i.e., F7–F8, Fp1–Fp2, F3–F4), the same level of total prediction accuracy can be observed.

Table 1. Classification accuracy as a function of channel number—VGG16 with symlet6 wavelet.

Channel Number
(Name) 1 (Fp1) 2 (F7) 5 (Fp2) 6 (F8) 9 (F3) 13 (F4)

Model
precision—resting state

94.62%
(528/558)

93.15%
(517/555)

92.02%
(531/577)

94.33%
(516/547)

98.62%
(571/579) 99.65 (576/578)

Model
precision—picking

(Level-K = 0)
59% (70/118) 51.63% (63/122) 57.25% (75/131) 53.90% (83/154) 65.89% (85/129) 64.06% (82/128)

Model precision—
coordination
(Level-K > 0)

56.10% (92/164) 52.15% (85/163) 61.36% (81/132) 56.11% (78/139) 68.18% (90/132) 64.93% (87/134)

Total model accuracy 82.14%
(690/840)

79.16%
(665/840)

82.14%
(690/840)

80.59%
(677/840)

88.81%
(746/840)

88.69%
(745/840)
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3.2. Cognitive Level Classification Using Multiple EEG Channels

In this section, we construct a model which combines the individual electrode models
that were presented in the previous section. We define the model as a weighted linear
combination of all the different single-electrode models.

M(a, x) = Ma(x) = ∑i ∈ S ai ∗Mi(xi)

∑i ∈ S ai
(1)

where:

Mi—The prediction model of the ith channel,
xi—ith channel model input—CWT image of the EEG record from the ith channel,
ai—The model weight of the ith channel.

The result of the weighted model will provide the estimated probability of each of
the three conditions, namely, resting state (L = (1;0;0)), picking task (L = (0;1;0)), or a
coordination task (L = (0;0;1)). In order to measure the quality of the solution with the
various weights, we use the cross-entropy (CE) cost function [38,39] which quantifies the
difference between the actual label (i.e., the actual classification value) and the probabilities
of the labels predicted by the model:

COST(Ma(x), L(x)) = ∑
x

L(x) ∗ log(Ma(x)) (2)

where:

Ma(x)—The predicted probability vector by the weighted model for input x (which is a
CWT image).
L(x)—Actual label of input x (CWT image).

To obtain an optimal model for the entire dataset of samples in our problem, we
calculate the value of the average cost function of all the samples:

J(a) =
1
m

m

∑
i=1

COST
(

Ma

(
x(i)

)
, L(x(i))

)
=

1
m

m

∑
i=1

L(x(i)) ∗ log
(

Ma

(
x(i)

))
(3)

where:

m—the number of observations in the dataset.

With that in mind, we seek to find the set of weights that will bring the cost function
to a minimum:

MINa J(a) (4)

In order to find the set of weights that brings the cost function to a minimum, we
have used the genetic algorithm (GA) optimization process (e.g., [40,41]). To evaluate
the improvement afforded by the GA model, we have compared it against a baseline
model, which was an unweighted model comprising equal weights for each of the six
electrodes. GA is an optimization method for hard combinatorial problems that uses a
natural selection process, iteratively. In each iteration, the existing set of solutions gradually
improves compared to the previous generation of the solution, and this is carried out by
biologically inspired operators such as mutation, crossover, and selection.

Specifically, the optimization process started with 50,000 random solutions, where in
each iteration, we kept the 15,000 best solutions (using the selection operator). In addition,
we have created an additional 20,000 crossover solutions via a pairing of two previous
generation solutions selected by the fitness values. Mutation was implemented as random
changes in one of the weights in the range between 10% and 50%. In each iteration, we
created 15,000 solutions in a mutation configuration, so that in total, we were left with the
same amount of 50,000 solutions at the end of each iteration.

Several different and independent runs of the optimization algorithm determined the
optimal weights (see Table 2), which resulted in a model with predictive accuracy at the



Sensors 2021, 21, 7908 9 of 17

level of 91.66% (770/840) (Table 3), but since our dataset is unbalanced, we will compare
the accuracy levels (i.e., true positive rate) of each label, as presented in Table 3. This result
represents an overall improved accuracy of 5.09% compared to the best single channel
classifier (see Table 1).

Table 2. The weight values for the different channels in the weighted model after the optimiza-
tion process.

Channel Notation (Fp1) (F7) (Fp2) (F8) (F3) (F4)

Calculated Weight 0.1216 0.0013 0.1553 0.0108 0.4153 0.2957

Table 3. Optimal model using multiple channels—confusion matrix.

Predicted Classes
True

Positive
Rate

False
Negative

Rate

Resting State
(CHT Does Not Exist)

L = (1;0;0)

Picking
(CHT = 0)
L = (0;1;0)

Coordination
(CHT > 0)
L = (0;0;1)

True Classes

Resting state
(CHT does not exist)

L = (1;0;0)
589 11 0 98.17% 1.83%

Picking
(CHT = 0)
L = (0;1;0)

3 89 28 74.16% 25.84%

Coordination
(CHT > 0)
P = (0;0;1)

0 28 92 76.67% 23.33%

Positive Predicted Value 99.49% 69.53% 72.44 % Total Prediction Accuracy
(770/840)

91.66%False Discovery Rate 1.51% 30.47% 27.56%

Following the optimization process, several insights can be presented. First, the
errors of the classifier are only first-order errors. That is, resting-state instances were only
mislabeled as picking (level-k = 0) and not as coordination (level-k > 0). By the same token,
coordination instances were only mislabeled as picking but not as resting-state instances.
Second, the classifier precision (i.e., positive predicted value) is not equal for the different
conditions. That is, while for the resting-state epochs the classifier precision is almost
100% (99.49%), for the picking and coordination segments, the precision is 69.53% and
72.44%, respectively. This is probably since the resting-state condition is associated with
the spontaneous activity of the brain, whereas the picking and coordination conditions are
associated with different levels of task states. It is noteworthy that the imbalance in the
amount of data between the different conditions might also contribute to the differences
in precision values among the conditions. Similarly, different levels of recall were also
observed for the different conditions (98.17% for resting state, 74.16% for picking, and
76.67% for coordination).

Figure 8 shows the interpolation of the values of the optimal weights on the scalp
according to the 10–20 system. The values of the unused electrodes were set to 0. In this
way, it is possible to visually present the relative contribution of each electrode in the
combined prediction model.

The level of accuracy of the unweighted model for all classes was lower than the best
results of a single electrode. This indicates that the GA model performed better than the
baseline model with equal weights.
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4. Discussion

The overarching goal of our study was to classify EEG continuous data into the level-k
condition they were associated with. In this study, we have presented a method to predict
the class label of EEG segments taken from three different conditions: two cognitive tasks
and a no-task condition (resting state). Each of the two cognitive tasks was associated
with a different depth of reasoning, namely, picking (level-k = 0) and tacit coordination
(level-k > 0). Classification relied on EEG measures using CWT transformation and transfer
learning based on pre-existing state-of-the-art models for object recognition. We have con-
structed two classification models: the first classification model relied on single-electrode
data as input, and the second model optimized the weights of the six frontal and pre-frontal
electrodes using a genetic algorithm.

Additionally, we demonstrated that the state-of-the-art transfer learning technique [10–12]
can be useful to cope with a complex classification problem with a low amount of data.
Specifically, in this study, transfer learning was used to validate the level-k model by
classifying electrophysiological data. We have used transfer learning since conventional
machine learning models (e.g., random forest, see Appendix D) were not successful in
differentiating between picking (level-k = 0) and coordination (level-k > 0). However, the
conventional model was successful in differentiating between the no-task condition (resting
state) and the two cognitive tasks (picking and coordination). The failure in distinguishing
between the two cognitive states could be attributed to the fact the DWT, which is based
on 400 ms time windows (with a 50% overlap), was not refined enough to capture the
differences between the two conditions. In order to use a higher time resolution, we
preferred using CWT. Since this computational method produces an image which requires
a large amount of data to distinguish between different geometrical patterns, we opted for
using a pre-trained network (VGG16 trained on ImageNet) to embed the CWT image to a
feature vector. The feature vectors were used for training an additional neural network
which classified between the different conditions.

Transfer learning has been previously used in EEG studies for classification purposes,
mainly in the context of clinical research, e.g., [10–12]. In these studies, when the problem
was relatively simple or in cases where a low amount of data was used, analysis was based
on a single-electrode classification [10]. Otherwise, analysis was based on the embedding
of multiple electrodes [11,12], to cope with the requirement for a large amount of data.
The novelty in our study is that we have trained a separate classifier for each individual
electrode and weighted the separate contribution of each electrode for optimal classification
results. Training a network with an input layer of six neurons and an output layer of three
neurons (resting, picking, and coordinating) with two hidden layers on a small dataset
(120 examples of pickers and coordinators each) is not feasible. Therefore, since this study
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is a multi-class problem with a relatively small and unbalanced amount of data, and given
our goal to maximize the accuracy of each classifier, we implemented each classifier based
on an input from a single electrode in a one-versus-all architecture. Interestingly, in our
study, the topographic distribution of the weights of different models was the strongest
over frontal regions (Figure 8). This result is corroborated by previous findings showing a
similar distribution, specifically, that cognitive load is enhanced in these regions during on-
task periods [42,43]. Overall, the current study presented a novel method for differentiating
between cognitive states associated with different depths of reasoning in the context of
tacit coordination. Furthermore, to the best of our knowledge, this is the first study to
corroborate the level-k theory based on electrophysiological measures.

The findings of our study suggest several avenues for future research. For example,
previous studies have shown that various features such as culture [44,45], social value
orientation [46,47], strategic profile [48,49], and loss aversion [50,51] might bias decision-
making in tacit coordination games. Therefore, it will be interesting to investigate the
effect of these parameters on EEG indices. In addition, EEG indices can be used to test
assumptions associated with other behavioral economic models, such as team reasoning
(e.g., [4,7,52,53]) or cognitive hierarchy theory (e.g., [4,7,8,54]). Furthermore, adding infor-
mation based on brain sources associated with decision-making in tacit coordination might
improve classification accuracy levels. To that end, in future studies, it is recommended
to utilize inverse-problem techniques such as LORETA [55,56]. Finally, behavioral and
electrophysiological data of human agents (e.g., [2,9,57–59]) gained from these studies
might aid in constructing brain–computer interfaces as well as autonomous agents. In this
study, we used transfer learning when the training set for the embedding network was a
general set of images (ImageNet) that did not include EEG signals. It will be interesting to
compare the performance of the network when the training set of the embedding network
comprises only EEG signals or a mixture of EEG signals and other signal types.
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Appendix A. Symlet Wavelet Functions

In this appendix, we will present the Symlet wavelet function in different orders (2, 4,
6, and 8), as can be seen in Figure A1. Figure A1 shows the tradeoff in selecting the wavelet
order. While using a higher order wavelet makes it possible to identify more complex
patterns, there is a larger number of samples in the wavelet which impairs the temporary
resolution of the transduction because now more specimens are involved in each forearm.
The problem can also be looked at in reverse, a low order wavelet will provide good time
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resolution, but its structure is simple, and it will be difficult to find complex patterns in
the signal.
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In this research, the optimal classified results on a single channel according to the CE
cost function (see Equations (3) and (4)) were obtained by a sixth-order wavelet.

Appendix B. Tacit Coordination Game List

In this appendix, we will describe the set of tacit coordination games, which includes
twelve games, that were designed in order to evaluate the individual coordination abilities
of the various player together with their electrophysiological patterns in different cognitive
hierarchy levels. The full game list is presented in Table A1. It should be noted that
the words in the game boards appeared in the Hebrew, which is the native language of
the participants.

Table A1. Tacit coordination game list.

Game Number Option 1 Option 2 Option 3 Option 4

1 Water Beer Wine Whisky
2 Tennis Volleyball Football Chess
3 Blue Gray Green Red
4 Iron Steel Plastic Bronze
5 Ford Ferrari Jaguar Porsche
6 1 8 5 16
7 Haifa Tel-Aviv Jerusalem Netanya
8 Spinach Carrot Lettuce Pear
9 London Paris Rome Madrid
10 Hazel Cashew Almond Peanut
11 Strawberry Melon Banana Mango
12 Noodles Pizza Hamburger Sushi

The position of the questions appearing on the game screen as can be seen in Figure 1
is fixed and follows the order of the lists shown in Table A1. This decision in the design
of the experiment was made to create a uniform experimental set-up between the various
actors and to neutralize the possible effect of spatial cues.



Sensors 2021, 21, 7908 13 of 17

Appendix C. Training Tasks Game List

This appendix presents the training task, which was performed before the picking
and coordination tasks. The purpose of these tasks is to verify the players’ technical
understanding of the application before performing the actual experiment. From a review
of Table A2, there is no overlap in the content of the training tasks with experiment tasks.

Table A2. Training game list.

Game Number Option 1 Option 2 Option 3 Option 4

1 Sapphire Glass Emerald Diamond
2 Lion Panther Frog Tiger
3 Boat Helicopter Bicycle Plane
4 Thursday Tuesday Saturday Sunday
5 2019 2000 1995 1997

Appendix D. Classification Using Classical Machine Learning Models

To estimate the performance of a conventional classifier, namely, random forest, we
trained a model based on discrete wavelet transform (DWT) [60–62], which is the discrete
equivalent of the CWT. The DWT was used to calculate the relative energy in each EEG
band (Delta, Theta, Alpha, and Beta), as presented in Figure A2.
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Four hamming windows with 50% overlap were used. Each window was 400 ms long
and contained 26 samples, as can be seen in Figure A3.

Windowing and relative energy computation of each window resulted in 16 features
(4 windows with 4 features per window). Based on these features, three classifiers were
constructed, one for each class (resting state, picking, coordination) (see Figure 6). Each
of the three classifiers was trained using a random forest model with 100 estimators
(optimized using grid search) using 4-fold cross-validation. The model was trained on the
F3 electrode, which provided the best classification results among all single electrodes.

As can be seen in Table A3, using the DWT and the random forest model, we have
managed to differentiate between the no-task state (resting state) and the two cognitive
states (picking and coordination), whereas we failed to distinguish between the latter two.
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Appendix E. The Effect of Model Complexity on Classification Results

In this appendix we will examine the impact of more complex architectures on the
classification results of a single electrode. In addition to the single-neuron architecture, we
will examine three additional architectures, with 2, 3, and 4 layers. The structure of the
four-layer network can be seen in Figure A4 (bias neurons are painted in blue).

The training process was performed similarly to the process described in the manuscript
by using a four-fold cross-validation method. We repeated this process three times to obtain
a reliable prediction of all the samples in the test group. In order to fully evaluate the
quality of the different models, we will use the F1-score index that weights the precision
( TP

TP+FP ) and recall ( TP
TP+FN ) by a harmonic mean. All the reported results in the appendix

are based on using transfer learning with VGG16, that was trained on ImageNet. Since the
results obtained for the picking and coordination conditions had similar trends, we present
the results for a one-versus-all model that identifies the coordination condition based on
the electrophysiological signal. The evaluation of the various models for each of the six
frontal and prefrontal electrodes can be seen in Table A4.
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Table A4. The effect of model complexity on classification results—coordination task (f1 score is the measure by which we
evaluate the quality of the model best model colored in green. The least successful model is marked in red).

Electrode/Architecture (Fp1) (F7) (Fp2) (F8) (F3) (F4)

1 layer

precision precision precision precision precision precision
56.10% (92/164) 52.15% (85/163) 61.36% (81/132) 56.11% (78/139) 68.18% (90/132) 64.93% (87/134)

Recall Recall Recall Recall Recall Recall
76.66%—(92/120) 68.33%—(82/120) 67.50%—(81/120) 65.00%—(78/120) 75.00%—(90/120) 72.50%—(87/120)

f1 score = 0.6479 f1 score = 0.6007 f1 score = 0.6429 f1 score = 0.6023 f1 score = 0.7143 f1 score = 0.6851

2 layers

precision precision precision precision precision precision
58.17% (89/153) 59.57% (84/141) 59.71% (83/139) 57.66% (79/137) 66.66% (92/138) 64.23% (88/137)

Recall Recall Recall Recall Recall Recall
74.17%—(89/120) 70.00%—(84/120) 69.17%—(83/120) 65.83%—(79/120) 76.66%—(92/120) 73.33%—(88/120)

f1 score = 0.6520 f1 score = 0.6437 f1 score = 0.6409 f1 score = 0.6148 f1 score = 0.7131 f1 score = 0.6848

3 layers

precision precision precision precision precision precision
49.67% (75/151) 60.87% (84/138) 59.29% (83/140) 56.30% (76/135) 66.66% (88/132) 63.70% (86/135)

Recall Recall Recall Recall Recall Recall
62.50%—(75/120) 70.00%—(84/120) 69.17%—(83/120) 63.33%—(76/120) 73.33%—(88/120) 71.66%—(86/120)

f1 score = 0.5535 f1 score = 0.6512 f1 score = 0.6385 f1 score = 0.5961 f1 score = 0.6984 f1 score = 0.6745

4 layers

precision precision precision precision precision precision
55.88% (76/136) 52.32% (79/151) 57.35% (78/136) 53.64% (81/151) 70.43% (81/115) 63.70%—(79/125)

Recall Recall Recall Recall Recall Recall
63.33%—(76/120) 65.83%—(79/120) 65.00%—(78/120) 67.50%—(81/120) 67.50%—(81/120) 65.83%—(79/120)

f1 score = 0.5938 f1 score = 0.5830 f1 score = 0.6094 f1 score = 0.5978 f1 score = 0.6894 f1 score = 0.6449

Table A4 displays precision and recall scores for each combination of electrodes
and number of layers, as well as the F1 score (the weighted average of precision and
recall) for each combination of electrodes and number of layers. The table shows that more
complicated models with more layers do not improve the F1 score compared to the simplest
single-neuron model. This finding is probably due to overfitting created by complicated
models applied on a relatively small amount of information. Consequently, we decided to
stay with the simplest single-neuron model, which is the most parsimonious one.
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