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Abstract: Sensorized gloves allow the measurement of all hand kinematics that are essential for
daily functionality. However, they are scarcely used by clinicians, mainly because of the difficulty of
analyzing all joint angles simultaneously. This study aims to render this analysis easier in order to
enable the applicability of the early detection of hand osteoarthritis (HOA) and the identification
of indicators of dysfunction. Dimensional reduction was used to compare kinematics (16 angles)
of HOA patients and healthy subjects while performing the tasks of the Sollerman hand function
test (SHFT). Five synergies were identified by using principal component (PC) analyses, patients
using less fingers arch, higher palm arching, and a more independent thumb abduction. The healthy
PCs, explaining 70% of patients’ data variance, were used to transform the set of angles of both
samples into five reduced variables (RVs): fingers arch, hand closure, thumb-index pinch, forced
thumb opposition, and palmar arching. Significant differences between samples were identified in
the ranges of movement of most of the RVs and in the median values of hand closure and thumb
opposition. A discriminant function for the detection of HOA, based in RVs, is provided, with a
success rate of detection higher than that of the SHFT. The temporal profiles of the RVs in two tasks
were also compared, showing their potentiality as dysfunction indicators. Finally, reducing the
number of sensors to only one sensor per synergy was explored through a linear regression, resulting
in a mean error of 7.0◦.

Keywords: hand osteoarthritis; hand function assessment; kinematics reduction; kinematic coordina-
tion; principal component analysis

1. Introduction

The human hand has complex kinematics provided by 19 joints, some of them with var-
ious degrees of freedom (DoF). This complexity is essential in enabling daily function and
human autonomy. The measurement of hand kinematics can provide useful information for
the objective assessment of hand function [1]. In this regard, the World Health Organization
established that such assessment should be based on the objective evaluation of the hand’s
capability to perform activities of daily living (ADL) [2]. However, ADL performance is
rarely assessed in current clinical practice but is instead assessed by means of subjective
questionnaires [3–5]. Some standardized tests consisting in performing simulated ADL
have been proposed in the past for an objective assessment of ADL performance [6–8].
The Sollerman hand function test (SHFT) [7] has the most varied and representative set
of ADL. However, the test score considers only the time of accomplishment of each task
and the grasp type used and has a highly subjective component depending on the operator
who performs the visual assessment [9]. Monitoring kinematics during a performance of
this test has been proposed as a source of accurate and objective information with respect
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to motor strategies associated with goal-oriented tasks, in addition to allowing for better
supervision of the administration of therapeutic techniques [9].

Hand osteoarthritis (HOA) is a chronic disorder causing pain and mobility limitation
that may affect hand function, with a high prevalence especially in women over 50 years of
age. Reduction in the active range of motion (AROM) has been reported [10–12], causing
hand disability [13,14]. Notwithstanding, HOA is clinically treated only in very severe
situations, and it is usually unnoticed by clinicians in most cases, even though applying
adequate treatments in early stages would benefit patients’ quality of life while preventing
structural progression of the disease [15]. Studies measuring hand kinematics of HOA
patients during ADL performance are scarce and limited to the recording of only a few
activities and joints [11,16,17]. Holland et al. [11] used videogrammetry to study the thumb
and index finger joints during five ADL by recording a representative static posture from
each task. Luker et al. [16] also used videogrammetry but only recorded the kinematics of
the thumb of one HOA patient during three ADL. Tanashi et al. [17] used an electromagnetic
tracking system to compare the kinematics of the thumb, index, and middle fingers of
nine patients while performing nine ADLs with and without joint protection strategies
and assistive devices. This scarcity of studies is probably associated with the difficulty
of simultaneously recording the high number of DoF of the hand during manipulative
activities: videogrammetry and other optical systems such as Kinect have occultation
problems during object manipulation [18], electromagnetic devices are altered by metallic
components [19], and inertial systems are still too large for monitoring all hand segments.

There are commercially available instrumented gloves, such as Cyberglove (Cyber-
glove Systems LLC; San Jose, CA, USA), that can overcome these problems, but they have
traditionally required long and tedious calibration protocols for each subject in order to
achieve good accuracy [20–23]. In a recent study, the authors proposed the use of an
across-subject calibration so that once calibrated for a set of subjects, only the measurement
of a reference posture for each subject is required to be able to record data [24]. Further-
more, the glove has proven to be suitable for recording tasks requiring medium and gross
manipulation skills [25] and has been successfully used for the characterization of the
kinematics of healthy subjects [25,26]. However, it has not yet been used to characterize
the kinematics of HOA patients.

One important obstacle hindering monitoring hand kinematics in clinical practice lies
in the difficulty of analyzing the high number of DoF that are used simultaneously while
performing ADL. Biomechanical indicators need to be identified to make interpretation of
the data easier. Another main obstacle lies in the affordability of the mocap systems. The
concept of synergies can help to overcome both obstacles. Kinematic synergies [27] are
suggested as a method for representing the basic building blocks underlying natural hand
motions that can be used to reduce the dimensionality of hand kinematics. Principal com-
ponent analysis (PCA) is the most widely used method for dimensionality reduction. PCA
looks for linear combinations of correlated variables to find a small set of new uncorrelated
variables, the principal components (PCs), that describe most data variation [27,28]. Each
PC is a vector containing the loadings by which each original variable should be multiplied
by in order to obtain the new variable and represents a kinematic synergy.

PCA has been extensively applied to the analysis of static postures [29], reach-to-
grasp movements [30,31], and manipulative tasks [32]. Recent studies have also tested its
effectiveness in reconstructing the entire healthy hand kinematics [33,34]. However, studies
analyzing hand kinematic synergies during representative tasks of daily activities are
limited to previous studies of the authors [26,35], who used PCA on kinematics recordings
of healthy subjects during the performance of standardized [26] and non-standardized
tasks [35,36], reducing the problem to the study of five coordinated synergies. Moreover,
the authors’ previous exploratory studies on several patients seem to indicate the existence
of alterations in kinematic synergies [37–39]. The identification of these alterations might
help in clinical diagnoses or function assessments of the HOA hand, but it requires the study
of representative samples of HOA patients and healthy subjects during the performance of
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representative ADL. The search of biomechanical indicators using kinematic synergies has
the advantage of using entire hand kinematics to detect alterations, and not only those of
some joints but as the kinematics are reduced to a small set of variables, the comparison can
be performed in an easier and more global method by looking at biomechanical indicators.
Furthermore, the observed kinematic synergies could also be applied to reconstruct entire
hand kinematics from the recording of only a few joint angles by estimating the remaining
angles from the coordination established by those synergies. This has already been proven
to be feasible in healthy subjects [40] but needs to be studied in patients. Lowering the
number of hand joints to be recorded would reduce the investment required.

Therefore, the aim of this study is to propose more feasible alternatives for using the
kinematics of the entire hand to diagnose and assess the hand function of HOA patients in
clinical practice. We used an instrumented glove to measure the kinematics of the right
(dominant) hands of twenty-seven healthy subjects and thirty-three HOA patients, while
performing the activities of the SHFT. The underlying kinematic synergies were obtained
in both groups and were used to study the strategies followed by patients to make up
for their deficiencies. The kinematics of both groups were compared in terms of reduced
variables (RVs) in order to look for indicators of kinematic alterations that were used later
to identify a discriminant function for the detection of HOA. Finally, the results were used
to explore a reduction in the number of sensors required to record the hand kinematics of
HOA patients.

2. Materials and Methods
2.1. Experimental Study

Twenty-seven right-handed healthy adults (14 females and 13 males, 38.70± 7.60 years)
and thirty-three right-handed adults with HOA (all females, 70.12± 9.53 years) participated
in the experiment. HOA patients showing different stages of the disease and different levels
of compromise were recruited by clinicians: 49% presented mild to moderate disorders,
24% moderate to severe and 27% severe, and none of them underwent surgery. The healthy
subjects (control group) were free from upper limb pathologies or injuries. The hand
kinematics of both samples were recorded while performing the tasks of SHFT, which is
based on the most common hand grips and consists of 20 ADL [7] (Table 1, Figure 1). Each
subject performed these 20 ADL under laboratory conditions following the test instructions
strictly and by using real objects. All the participants provided their informed consent
to participate in the experiment (approved by the Hospital and by the University Ethics
Committees, reference numbers CD/31/2019 and CD/65/2020), and specific informed
consent for publication in an online open-access publication was obtained for photos that
could allow the identification of the participant. Finally, patients were asked to report any
difficulties they had when carrying out ADLs at home.

Sixteen joint angles were recorded (100 Hz) with an instrumented glove (Cyberglove
Systems LLC; San Jose, CA (USA)) (Figure 2) using a validated calibration protocol [24]:
flexion of metacarpophalangeal joints (MCP1 to MCP5, 1 to 5 meaning thumb to little
digits), flexion of interphalangeal thumb joint (IP1), flexion of proximal interphalangeal
joints of the fingers (PIP2 to PIP5), flexion and abduction of the carpometacarpal thumb
joint (CMC1), relative abduction between finger MCPs (index-middle, middle-ring, and
ring-little), and palmar arching. Flexion and abduction angles were considered to be
positive. The recordings were filtered with a 2nd-order 2-way low-pass Butterworth filter
with a cut-off frequency of 5 Hz. Each SHFT task was resampled to 1000 frames so that all
tasks weighed the same when looking for underlying synergies. Therefore, the data used
throughout all the paper consist of 20 records of 1000 frames for each participant.
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Table 1. Activities of daily living considered in the Sollerman hand function test.

1. Pick coins up from flat surface, put into purses mounted on wall
2. Open/close zip
3. Pick up coins from purses
4. Lift wooden cubes over edge 5 cm in height
5. Lift iron over edge 5 cm in height
6. Turn screw with screwdriver
7. Pick up nuts and turn them until completely screwed onto bolts
8. Put key into Yale lock, turn 90◦

9. Turn door-handle 30◦

10. Unscrew lid of jars
11. Do up buttons
12. Put Tubigrip stocking on the other hand
13. Cut Play-Doh with a knife and fork
14. Write with pen
15. Fold paper, put into envelope
16. Put paper-clip on envelope
17. Lift telephone receiver, put to ear
18. Pour water from Pure-Pak
19. Pour water from a jar
20. Pour water from a cup
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2.2. Data Analysis
2.2.1. Kinematic Synergies of Hand Joints in Healthy and HOA Samples

For each sample, after checking the appropriateness of PCA through a Bartlett’s
test of sphericity, a PCA was applied to the 16 joint angles measured in all the records,
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each record containing the entire kinematic time series recorded. First, joint angles were
standardized (mean = 0; standard deviation = 1) to make angles with different ranges
of motion comparable [41,42]. The correlation matrix was then computed and used to
calculate eigenvalues (variance explained) and eigenvectors (principal components). To
simplify the interpretation of the PCs, Varimax rotation [42] was performed, i.e., the sum
of the variances of the squared loadings was maximized so that each PC comprises only
a few variables with very high loadings on this PC, while the remaining variables have
near-zero loadings. The rotated PCs with eigenvalues greater than 1 in each sample were
used as kinematic synergies. The variance explained by the PCs in each PCA was used as
an indicator of how well the measured motion fitted the coordination represented by the
PCs obtained.

Therefore, two sets of PCs were obtained: one for healthy subjects (HPCs) and one for
pathologic subjects (PPCs). Similarity of synergies between HPCs and PPCs was evaluated
through the angle (absolute cosine) between synergies.

In order to propose a set of indicators to be used for quantifying the effect of hand kine-
matics on hand function in HOA patients, the resulting HPCs were considered as a normal
reference, and different analyses were performed, as detailed in the next two sections.

2.2.2. Can HPCs Be Used for Patients?

The PCs found for the healthy sample (HPCs) were obtained in a global analysis with
the data of all the subjects together. In order to check whether these HPCs can be used for
dimensional reductions in a particular subject (healthy or patient), the variance explained
by these HPCs was calculated for the data of each subject from both samples. The purpose
is to check whether these HPCs can substitute the original joint angles, in order to reduce
the dimensionality of the problem.

2.2.3. How Reduced Kinematics Can Help Assess HOA Pathology?

Once HPCs are checked for their utilization, indicators of kinematic alterations in HOA
patients were investigated by comparing the kinematics of HOA patients versus healthy
subjects in terms of the HPCs. The scores corresponding to the HPCs were considered as
the new set of reduced variables (RVs). For each record of each subject (both healthy and
patients), the values of new RVs were calculated at each of the 1000 resampled frames. The
comparison was conducted in two ways: using summarizing parameters of the RVs for
each participant and considering time evolution of RVs during the tasks.

First, as a method to summarize the frames for each participant, median, 5th percentile
(p5), 95th percentile (p95), and range (p95–p5) of the 20 records altogether were computed
for each reduced variable (RVi), and statistics across subjects of these summarizing parame-
ters were obtained. Additionally, after applying Shapiro–Wilks to test normality, a set of
ANOVAs was applied for each summarizing parameter of each RVi, with the sample as the
factor, in order to check for significant differences between samples.

Then, a linear discriminant analysis was performed, aimed at locating a reduced
set of predictive parameters for detecting HOA. The statistics of the RVi that presented
significant differences in the previous ANOVAs were considered independent variables,
and the condition (HOA patient vs. healthy subject) was considered as the grouping
variable. The stepwise method was used (predictors entered sequentially), which searches
for the highest correlated predictors. In particular, the Wilks’ lambda was used, which
checks how well each independent variable (potential predictor) contributes to the model:
0 means total discrimination, and 1 means no discrimination. Each independent variable
is tested by placing it into the model and then taking it out, generating a Λ statistic. The
significance of the change in Λ is measured with an F-test. The variable is entered into
the model if the significance level of its F value is less than the entry value (0.05), and it is
removed if the significance level is greater than the removal value (0.1). The goodness of
the classification ability was checked by means of a leave-one-out cross validation, which
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repeats the analysis by taking one case out in each repetition. In addition, percentage of
the patients correctly and incorrectly classified was checked.

The prediction ability of the discriminant function obtained was compared to the
prediction ability of the SHFT by running an analogous linear discriminant analysis, but
using the SHFT scores and total times of performance as independent variables. To perform
this, the time score was normalized to render it non-dependent on age and gender by using
the data of time scores per gender and age from [43]. The normalized time score for each
subject was obtained by multiplying the time scores by the maximum normative time for
any age of those of the same gender as the subject and dividing by the normative value for
subject’s gender and age. SHFT scores cannot be corrected for these differences, because
there are no normative data available to perform this correction.

Second, for the comparison of time evolution of RVs of patients versus those of
healthy subjects, the mean posture across subjects (with a 95% confidence interval) of
each RVi of both samples was graphically represented versus frame in two representative
tasks, searching for detectable differences that could be considered for further analysis as
indicators of alterations in the kinematics. Two tasks were selected: one as representative
of gross manipulation (pour water from a jar), and a second one that is representative of
fine manipulation (cut Play-Doh with a knife and fork), this last one reported being by
patients as problematic for their daily lives.

2.2.4. Reducing the Number of Sensors

As a method to reduce the complexity (and thus price) of equipment needed to apply
the results of this study in clinical practice, kinematics synergies obtained for patients
(PPCs) were used to explore the feasibility of reducing the number of sensors to record
entire hand kinematics. The angle with the highest loading in each synergy was used to
compound the proposed set of joint angles to be measured in patients. Due to Varimax
rotation, if a sensor appears with very high loading in a PC, it will have near-zero loadings
in other PCs. Therefore, choosing the sensor with the highest loading from each synergy
provides a set of sensors that produce quite independent information.

The exploration of the feasibility of using only this reduced set of joint angles has been
carried out by (1) estimating the rest of the joint angles through a linear regression and (2)
computing the errors from the estimation through the mean residual standard deviations
(MRSDs) in a general univariate linear model with ‘Subject’ and ‘Task’ as factors.

3. Results
3.1. Data Analysis
3.1.1. Kinematic Synergies of Hand Joints in Healthy and HOA Samples

The Bartlett test of sphericity confirmed the appropriateness of the PCA (significance
level < 0.05 for each sample). Table 2 shows the results of the PCAs performed on the joint
angles in the two samples. Five PCs were obtained in both cases, which explain 72.74%
of the data variance in healthy subjects and 71.62% in HOA patients. The coordinations
represented by these kinematic synergies can be observed from the loadings (higher values
in a PC mean more coordinated joint movements, and a negative sign means opposite
movement coordination). Table 3 shows the similarity of synergies between samples from
the angles between the corresponding PCs (lower angles represent more similarity, and
angles close to 90◦ represent no similarity at all). The first two synergies in both samples
are similar (angles below 20 degrees), although they are interchanged: HPC1 and PPC2
are the coordinated flexions of the PIP joints of fingers (i.e., fingers arch), explaining less
variance in patients; and HPC2 and PPC1, with similar variance explained in both samples,
are the coordinated flexions and adduction of MCP joints of fingers (i.e., hand closure). The
other synergies (higher order PCs) in both samples explain much less variance and present
less similarity between samples. The third synergy in healthy subjects (HPC3) mostly
depicts the coordination of thumb joints and index MCP flexion (i.e., thumb-index pinch)
and has no clear correspondence with patients’ synergies (all angles above 50 degrees). The
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fourth synergy in healthy subjects (HPC4) shows a coordinated abduction of the thumb
CMC joint with flexion of the IP joint and extension of the MCP joint, which appears in
the case of force applied on the thumb tip (i.e., forced thumb opposition) and presents its
lowest angle (41 degrees) with the fifth synergy of patients (PPC5), where the abduction
of the thumb CMC joint is substituted by CMC extension. More independent thumb
abduction is depicted by PPC4 in patients. The fifth synergy in healthy subjects (HPC5) is
the coordination of palmar arch and thumb CMC abduction (i.e., palmar arching), which
presents its lowest angle (48 degrees) with the third synergy of patients. Palmar arching
acquires more relevance in patients, with higher variance explained so that it appears in
the third position instead of the fifth position.

3.1.2. Can HPCs Be Used for Patients?

Figure 3 shows the box and whisker plot for the variance explained by each HPC
and by all HPCs (Total), which was calculated for every subject in both samples. The total
amount of variance explained by HPCs in both samples is similar, although slightly it was
smaller in patients (70 (±3) vs. 74 (±2)). The HPCs can, thus, not only be used for the
dimensional reduction in kinematic data of the healthy subjects but also of HOA patients.

Table 2. Loadings of resulting PCs in the PCA performed on each sample. H and P stand for healthy subjects and HOA
patients, respectively. For easier interpretation, loadings greater than 0.3 (weak) and 0.5 (strong) are highlighted in light and
dark grey, respectively, similarly as in [42]. The last row shows the variance explained by each PC.

Healthy Subjects HOA Patients

Joint Movement HPC1 HPC2 HPC3 HPC4 HPC5 PPC1 PPC2 PPC3 PPC4 PPC5

CMC1
Flexion −0.019 0.109 0.847 0.064 −0.007 −0.016 −0.210 −0.478 −0.115 −0.661

Abduction 0.387 0.046 0.336 0.499 0.431 0.285 0.099 0.067 0.819 −0.083
MCP1 Flexion 0.089 0.126 0.013 −0.831 0.148 0.188 0.128 0.014 0.082 −0.655

IP1 Flexion 0.114 0.012 −0.571 0.534 0.085 −0.020 0.018 −0.402 0.058 0.476
MCP2 Flexion 0.265 0.728 0.446 −0.064 0.098 0.850 0.165 0.012 0.027 −0.259
MCP3 Flexion 0.333 0.830 0.245 −0.054 0.127 0.916 0.150 −0.072 0.041 −0.102
MCP4 Flexion 0.431 0.823 0.001 0.014 −0.003 0.872 0.202 −0.272 −0.013 0.082
MCP5 Flexion 0.537 0.696 −0.140 0.081 −0.115 0.664 0.226 −0.595 0.089 0.019
PIP2 Flexion 0.633 0.182 −0.028 0.173 0.193 0.183 0.653 0.107 0.050 0.096
PIP3 Flexion 0.934 0.044 −0.045 0.032 0.005 0.106 0.907 −0.014 0.146 0.049
PIP4 Flexion 0.939 0.115 0.011 −0.014 −0.050 0.127 0.934 −0.056 0.073 −0.078
PIP5 Flexion 0.841 0.120 0.038 −0.105 −0.094 0.050 0.873 −0.039 −0.029 −0.103

MCP2−3 Abduction 0.240 −0.622 −0.220 0.112 −0.060 −0.508 0.062 0.012 0.497 0.363
MCP3−4 Abduction 0.191 −0.647 0.199 0.102 0.249 −0.460 0.114 0.308 0.609 0.052
MCP4−5 Abduction −0.311 −0.521 0.260 −0.129 0.300 −0.171 −0.055 0.817 0.043 0.171
PArch Flexion −0.049 −0.064 −0.071 −0.085 0.901 −0.107 0.086 0.693 0.211 −0.132

Variance explained (%) 24.26 22.20 10.00 8.32 7.94 21.60 19.52 13.05 8.74 8.71

Table 3. Level of similarity in angles (degrees) between synergies. H and P stand for healthy and
pathologic subjects, respectively (lower angles represent more similarity, and angles close to 90◦

represent no similarity at all).

HPC1 HPC2 HPC3 HPC4 HPC5

PPC1 64 16 70 87 88
PPC2 19 75 87 90 85
PPC3 74 58 65 77 48
PPC4 69 75 77 69 58
PPC5 87 70 59 41 81

3.1.3. How Reduced Kinematics Can Help Assess HOA Pathology?

Comparison of the kinematics of healthy and HOA samples by using reduced variables
(RVi) can be observed in Table 4, which presents the statistics (mean, standard deviation,
and minimum and maximum values) of each RVi summarizing value (Median, 5th per-
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centile, 95th percentile, and range). Those RVi summarizing values for which significant
differences (level of significance 0.05) were found between samples in the ANOVAs are
marked with a tick and were used for the discriminant analysis afterwards.
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Table 4. Statistics of each reduced variable (RVi) summarizing value (median, 5th percentile, 95th percentile, and range
as their difference) for both samples, and significant differences between healthy subjects and HOA patients samples are
marked with a tick.

Healthy Subjects HOA Patients

RVi Summarizing Value Mean SD Min Max Mean SD Min Max

RV1

Median 0.228 0.212 −0.119 0.636 0.128 0.205 −0.419 0.513√
5th percentile −3.631 0.518 −4.785 −2.627 −3.155 0.394 −4.189 −2.358

95th percentile 3.147 0.337 2.414 3.861 3.020 0.237 2.549 3.469√
Range 6.778 0.430 6.033 7.747 6.176 0.415 5.414 7.189

RV2

√
Median 0.047 0.170 −0.268 0.321 −0.043 0.15 −0.302 0.318

5th percentile −2.963 0.248 −3.603 −2.456 −3.047 0.330 −3.723 −2.409√
95th percentile 3.282 0.373 2.478 3.924 3.534 0.419 2.757 4.380√

Range 6.245 0.456 5.337 7.185 6.582 0.547 5.358 7.679

RV3

Median −0.121 0.108 −0.350 0.049 −0.087 0.087 −0.236 0.080√
5th percentile −1.915 0.224 −2.408 −1.482 −1.774 0.278 −2.274 −1.253√

95th percentile 2.055 0.234 1.686 2.540 1.922 0.27 1.243 2.414√
Range 3.971 0.341 3.175 4.541 3.696 0.471 2.698 4.424

RV4

√
Median 0.183 0.096 −0.035 0.326 0.117 0.128 −0.235 0.387√

5th percentile −2.177 0.312 −2.795 −1.635 −1.833 0.387 −2.65 −1.029√
95th percentile 1.682 0.211 1.289 2.238 1.550 0.236 1.097 2.094√

Range 3.859 0.405 3.128 4.605 3.383 0.496 2.192 4.335

RV5

Median 0.014 0.131 −0.199 0.312 0.027 0.129 −0.181 0.285
5th percentile −1.974 0.333 −3.080 −1.512 −1.896 0.269 −2.522 −1.480

95th percentile 1.797 0.204 1.387 2.249 1.764 0.304 1.244 2.424
Range 3.771 0.298 3.283 4.538 3.659 0.322 2.880 4.420
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From the twelve independent variables used in the step-by-step discriminant analysis,
only three were finally introduced in the model (Equation (1)). The discriminant scores
found were able to predict the assignment of subjects participating in the experiment with
a success ratio of 85% (85.2% for healthy subjects and 84.8% for patients). The success ratio
after cross validation was 81.7% (85.2% for healthy subjects and 78.8% for patients). The
values of the predictive parameters can be used to calculate discriminant scores F for each
subject, according to Equation (1), so that when F is positive, the prediction is that the
subject is healthy, and if F is negative, the subject has HOA. All the ‘moderate to severe’
and ‘severe’ patients and most of the ‘mild to moderate’ ones were correctly classified by
the analysis.

F = 1.591·RV1range + 1.274·RV3range + 1.278·RV4range− 19.720 (1)

Discriminant analysis using SHFT scores and normalized total times of performance
as independent variables provided a predictive success rate of only 57.6% when assign-
ing patients. SHFT results obtained by healthy subjects/HOA patients were as follows:
76 ± 2/68 ± 10 in scores and 248 s ± 44 s/295 s ± 107 s in total normalized time. HOA
patients could accomplish SHFT practically with no difficulties. However, most of them
reported difficulties in their daily lives for handling very small objects, for handling heavy
objects and in the specific tasks of opening jars (tightly closed), and in cutting with a knife.

The temporal evolution of RVs in the two selected representative tasks (task 19: pour
water from a jar; and task 13: cut Play-Doh with a knife and fork) is shown in Figure 4.
Differences in ranges used by each sample are evident during the knife task in some RVs
(RV1, RV4, and RV5), while differences during the gross manipulative task appear only
in the times spent on achieving postures, such as in RV1. Note also that task 19 is more
repeatable than task 13, which shows high variability across subjects.

3.1.4. Reducing the Number of Sensors

By choosing the joint angle with the highest loading in each synergy of the HOA pa-
tients (PPCs in Table 2), the reduced set of joint angles to be measured is as follows: flexion
of the metacarpophalangeal joint of the middle finger and the proximal interphalangeal
joint of the ring finger, abduction between ring and little fingers, and abduction and flexion
of the thumb carpometacarpal joint.

Table 5 shows the RMSDs when estimating the remaining angles with a linear regres-
sion, with the thumb IP joint presenting the highest error.

Table 5. Errors (◦) when estimating entire hand kinematics from the recording of joint angle flexions
of the metacarpophalangeal joint of the middle finger and the proximal interphalangeal joint of
the ring finger, abduction between ring and little fingers, and abduction and flexion of the thumb
carpometacarpal joint.

Angle Flexion Abduction

Joint MCP1 IP1 MCP2 MCP4 MCP5 PIP2 PIP3 PIP5 PArch MCP2-3 MCP3-4

Error (°) 6.72 12.39 6.46 6.33 6.78 11.68 6.18 7.08 5.44 4.92 3.35
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4. Discussion

This paper aims to promote the use of kinematics of the entire hand for the assessment
of hand function in clinical practice by overcoming current obstacles in the recording
and analysis of the high dimensionality problem. We recorded entire hand kinematics of
HOA patients and healthy subjects during the performance of ADL by using a commer-
cially available sensorized glove and a calibration method [24] that avoided the need to
calibrate the glove for each subject [24], thereby reducing the recording times to a large
extent. Additionally, we used dimensional reduction for an in-depth comparison of their
kinematics, facilitating the analysis of a high number of degrees of freedom that are used
simultaneously by the hand. As a result, this paper presents the most extensive study in
HOA patients to date, with the highest number of activities and joints studied, since up
until now only a few activities or a few joints in HOA patients have been recorded and
analyzed [11,16,17].

Early detection of dysfunction associated to HOA is essential for applying appropriate
treatments that can prevent the progression of the disease. To date, only the AROMs in
certain affected joints [10–12] have been studied as indicators of the degree of compromise.
A deeper analysis has been made possible here by combining the use of the Cyberglove
and an across-subject calibration protocol [24], which has allowed the recording of 16 DoFs
while performing complicated manipulating activities representative of functionality (those
from the SHFT) and the analysis of these recorded data by using dimensional reduction.

Dimensionality reduction in hand function assessment has been proven in previous
studies [37–39] to be a method of detecting the existence of kinematic alterations. By
reducing the dimensionality of the kinematics, the results are easier to interpret and could
be used in clinical settings. Here, we have proven its feasibility also in HOA patients.
We have applied PCA to two samples (healthy and patients), finding five PCs in both
cases with a high percentage of variance explained: more than 70%. Synergies obtained
for healthy subjects were as follows: fingers arch (coordinated flexion of PIP joints of
fingers); hand closure (coordinated flexion and adduction of MCP joints of fingers); thumb-
index pinch (coordinated motion of thumb joints and index MCP flexion); forced thumb
opposition (coordinated abduction of thumb CMC joint with flexion of IP joint and extension
of MCP joint of thumb); and palmar arching (coordinated palmar arch and thumb CMC
abduction). These five synergies are coherent with previous studies: the first two PCs
referring to finger MCP and PIP arching [29,42,44,45] and higher order synergies referring
to fine manipulation coordination [35]. Patient synergies are similar to the healthy ones
for the finger’s arch and hand closure, although the latter explains less variance, which
is probably due to MCP compromise in HOA patients [46]. However, patients’ higher
order synergies differ from those of healthy subjects. Patients also present a coordination of
thumb CMC, MCP, and IP joints but with CMC extension instead of abduction coordinated
with the extension of MCP and flexion of IP joints, probably due to thenar atrophy and
adduction of the thumb metacarpal joint in HOA patients [47]. They also present a palmar
arching coordination, explaining higher variance but more coordinated with the movement
of the MCP joint of the little finger than with the thumb, possibly due to opposition
difficulties, therefore, resulting in an increased palmar arching instead of forcing the
compromised CMC joint [48]. The biggest difference appears in the lack of thumb-index
pinch coordination; thus, patients seem to make less use of precision grasps, probably due
to compromised index and thumb joints.

Given the similarity of the underlying synergies, we have checked the feasibility
of using the healthy ones (HPCs) to reduce the kinematics of both patients and healthy
subjects, thus allowing comparison of the two samples in search of possible indicators of
kinematics alterations due to HOA pathology. This possibility has been previously applied
in feet kinematic analysis during walking by using PCs from normal feet in highly pronated
and highly supinated feet [41], with good results. The total amount of variance explained
by the HPCs for patients was found to be only slightly smaller than that for healthy subjects
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(70 (±3) vs. 74 (±2)), thus confirming the feasibility of reducing the kinematics of both
samples by using the same HPCs.

In order to look for indicators of kinematic alterations produced by HOA pathology,
the kinematics of the two samples were compared in terms of the reduced variables
RVi (i = 1 to 5) calculated from the HPCs. Significant differences between samples were
found for different summarizing parameters in all RVi except in RV5 (the reduced variable
corresponding to Palmar arching). Ranges in RV1 to RV4 are significantly different, in
accordance with previous studies that found that AROM is reduced in joints affected by
HOA [10–12] and that the range of motion used in compromised joints is also reduced in
certain activities of daily living [11,16,17]. In this study, the ranges used by patients are
significantly lower for finger arch coordination, thumb-index pinch, and forced thumb
opposition, and they are consistent with limitations in compromised joints (finger PIP
joints and thumb joints [47,49]). However, patients present a higher range in hand closure,
although with a median hand closure that is less closed (or flexed). Therefore, it seems that
these parameters, the ones presenting statistically significant differences, can be used as
indicators of HOA pathology. We have proposed a linear discriminant analysis with them
that has thrown good results that are much better than a discriminant function based in
SHFT scores and times. The discriminant function based on reduced kinematics is able to
detect HOA pathology with a success rate of 80%, which is much higher than the detection
ability of SHFT. The discriminant function considers the degree of compromise, since
moderate and severe cases were correctly classified along with most of the mild ones. This
function may also be related to the impact on functionality, since a deficiency in a given
kinematic synergy is expected to hinder the performance of tasks that require using this
synergy. However, the results from the SHFT set against the difficulties to carry out ADL
reported by patients highlights the poor capability of SHFT to discriminate HOA effects
on hand function. As a consequence, the relationship with SHFT score cannot be used to
measure the degree of disability of HOA patients, and a better scale to measure the impact
of HOA on hand function is required.

The comparison of the time evolution of the RVs for the different tasks can be used
as specific indicators of the function of the hand in each task, although it needs some
considerations. From the two examples included in this paper, some conclusions can
be drawn. The first two RVs (fingers arch and hand closure) are highly involved in the
‘pour water from a jar’ task (representative of gross manipulation), because of the use of a
cylindrical grasp. High-order synergies requiring thumb-index coordination, palmar arch,
and particularly forced thumb opposition are involved in the ‘cutting Play-Doh with a knife
and fork’ task, showing the higher manipulative demand of this task. Possible indicators
of dysfunction can be inferred by looking for differences in the time profiles. In the gross
manipulation task, finger arch (RV1) ranges are similar between samples, although patients
achieve the maximum finger arch more slowly. This also happens with hand closure:
Patients achieve hand maximum opening more slowly than healthy subjects do. Thus,
the time to accommodate finger arch and hand closure synergies in gross manipulative
tasks might be used as indicators of dysfunction. Perhaps the reaching velocity in these
synergies could be studied as indicators in further studies. In the manipulative task, it is
clearly observed that patients use a lower mean fingers arch and a lower forced thumb
opposition than compared healthy subjects, but they had higher palmar archings. However,
it is difficult to analyze time dependence because of the poor repeatability of the task across
subjects, probably due to the different pace needed when cutting the five pieces. A more
standardized, shorter task involving cutting with a knife (for example, cutting just one
piece) would provide more meaningful information. The analysis of differences in profiles
for each RVi, therefore, appears as a promising method of identifying additional kinematic
dysfunction indicators that might improve the detection of HOA. However, this search
requires the recordings of standardized tasks to be addressed in future studies.

Finally, in order to promote the use of hand kinematics during ADL in clinics, hand
synergies in HOA patients have also been used to explore the feasibility of using a very
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reduced set of joint angles for measurements in order to estimate entire hand kinematics
of HOA patients. The errors in estimating the hand joint angles from the measurement of
only five joint angles (flexion and abduction of thumb carpometacarpal joint, flexion of
metacarpophalangeal joint of the middle finger and proximal interphalangeal joint of the
ring finger, and abduction between ring and little fingers) are small (7.0◦ ± 2.7◦). The errors
found are of the same order of magnitude as the errors from the recording technique [40].
Despite being only a preliminary exploration, the results obtained suggest the feasibility of
acquiring entire hand kinematics from the recording of only a few angles. Further studies
are required to make it clear whether the proposed angles are the most suitable ones or
if more sophisticated methods for looking for the most appropriate ones [40] would be
needed. Searching for indicators of kinematic dysfunction based only on the recordings
of these few angles would, therefore, be interesting. This might have a big impact on its
usability in clinical settings because of different improvements, such as a reduction in the
cost of the device, fewer occultation problems if optical systems were used, and less time
required to prepare the patient if sensors must be placed. Even an instrumented glove with
only the specific required sensors could be designed.

One limitation of this study is the difference between sample ages and genders.
However, it is difficult to say in elderly population if kinematics alterations are due to HOA
pathology or only a result of age, since age is main factor of a degenerative pathology, such
as arthritis, that may affect subjects that are self-considered as healthy.

5. Conclusions

The results obtained provide a function that allows clinicians to detect HOA with
a good success rate that is much better than SHFT scores and time scores. Good results
pave the way toward obtaining indicators based on healthy synergies underlying SHFT
performance for the early detection of HOA that might also detect specific kinematic
dysfunctions due to pathology. This has been made possible thanks to the use of an
appropriate device, the Cyberglove, with a suitable calibration that allows for recording a
high number of DoFs in complicated manipulation tasks and to the application of PCA,
which makes it easier to understand and interpret the results. Furthermore, the exploration
of how to reduce the number of joints to be recorded has yielded promising results and
might become future alternatives for assessing the hand function of HOA patients. Thus,
future studies should focus on an in-depth analysis of the indicators proposed during
representative standardized and controlled activities. In addition, further analysis in the
reduction in required sensors must be performed.
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