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Abstract: Data-driven based rolling bearing fault diagnosis has been widely investigated in recent
years. However, in real-world industry scenarios, the collected labeled samples are normally in a
different data distribution. Moreover, the features of bearing fault in the early stages are extremely
inconspicuous. Due to the above mentioned problems, it is difficult to diagnose the incipient fault
under different scenarios by adopting the conventional data-driven methods. Therefore, in this paper
a new unsupervised rolling bearing incipient fault diagnosis approach based on transfer learning is
proposed, with a novel feature extraction method based on a statistical algorithm, wavelet scattering
network, and a stacked auto-encoder network. Then, the geodesic flow kernel algorithm is adopted
to align the feature vectors on the Grassmann manifold, and the k-nearest neighbor classifier is used
for fault classification. The experiment is conducted based on two bearing datasets, the bearing fault
dataset of Case Western Reserve University and the bearing fault dataset of Xi’an Jiaotong University.
The experiment results illustrate the effectiveness of the proposed approach on solving the different
data distribution and incipient bearing fault diagnosis issues.

Keywords: bearing fault diagnosis; incipient fault; transfer learning; domain adaptation

1. Introduction

Currently, rotating machinery is becoming a critical component of modern industri-
alisation. With the continuous improvement of the safety and reliability requirements
of mechanical equipment, the research on the fault diagnosis of rotating machinery has
become indispensable, and rotating machinery fault diagnosis has become a major research
direction in machinery fault diagnosis. In rotating machinery, rolling bearings are one of
the most critical components, and bearing failures will affect the operation of the equip-
ment and cause the failure of the rotating machinery. Wu et al. [1] pointed out that rolling
bearing failures cause approximately 30% of failures in rotating machinery. In recent years,
model-driven methods and data-driven methods are the main two methods for bearing
fault diagnosis. The model-driven methods can achieve excellent performance, but the
high performance heavily relies on accurate models, and developing a high-quality model
is costly. Meanwhile, the data-driven methods can be applied in systems where models
are not available, and data-driven methods can diagnose bearing faults based on collected
vibration signals. In recent years, various methods of bearing fault diagnosis have been
developed, among which data-driven methods for bearing fault diagnosis have achieved
outstanding performance.

By combining different feature extraction and selection methods, the conventional
machine learning based methods have achieved high classification accuracy, and vari-
ous algorithms including support vector machine [2] and fast-spectral kurtosis filter [3]
have been applied to increase classification accuracy through extracting various features.
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The features of the data are exactly concurrent and automatic without manual selection in
deep learning based fault diagnosis methods compared with the conventional machine
learning based methods. Therefore, the deep learning based fault diagnosis methods are
considered as an efficient and end-to-end learning system due to the advantage of being
able to complete the classification in one step from the input of the original signals to the
output [4].

Both conventional machine learning based methods and deep learning based methods
require a major assumption that the training data and the testing data must follow the
same data distribution. However, this assumption cannot be satisfied in the practical
application. As a result, while the classifier performs well on datasets with the same
statistical distribution, it struggles to achieve acceptable classification accuracy on datasets
with different statistical distribution.

Transfer learning (TL) based methods, in contrast to deep learning and conventional
machine learning based methods, can reuse prior knowledge or a developed model to
address new tasks of a target domain with different statistical distributions by minimizing
the difference between different domains [5]. As demonstrated [6–8], the transfer learn-
ing based methods have achieved excellent performance in fault diagnosis and image
classification.

In addition to statistical distribution requirements, quality and plenty of labeled train-
ing data are also required conditions for conventional machine learning and deep learning
to train classifiers or models [9]. However, in many practical scenarios, labeled training
data is insufficient or costly [10]. It is extremely difficult to gather enough labeled faulty
data in rolling bearing fault diagnosis because vibration signals obtained from the same
type of fault but under various working conditions can have distinct data distributions [11].
The features of rolling bearing fault in the early stages are inconspicuous to identify and
the features extracted from the vibration signal of a later stage may have a different sta-
tistical distribution from that of early stage. To solve the features that are inconspicuous
of the early stage, Saidi [12] proposed an empirical mode decomposition based approach.
The approach decomposes the vibration signal of the early stage into a number of static
intrinsic mode functions based on the local characteristic time scale of the signal to identify,
and the approach achieved excellent performance on the dataset with the same data dis-
tribution. Overall, the insufficient labeled faulty data, imbalanced data distribution and
inconspicuous feature of incipient bearing fault eventually result in a significant barrier in
bearing fault diagnosis.

In this paper, an incipient fault diagnosis approach based on transfer learning is
proposed to solve the above mentioned problems. The proposed approach employs the
correlation alignment (CORAL) algorithm to deal with the data distribution problem in
different domains, as well as a hybrid feature extraction algorithm based on statistical
algorithms, stacked auto-encoder (SAE) network, and wavelet scattering network. The sig-
moid entropy is applied on feature vectors after feature extraction to construct feature
matrices of both domains in the proposed approach. The feature matrices are aligned
on the manifold space by taking the geodesic flow kernel (GFK) method. The k-nearest
neighbor (KNN) algorithm is used to classify the faulty data of the target domain for fault
diagnosis. The proposed approach is an unsupervised method for rolling bearing incipient
fault diagnosis, which does not require any labeled data of the target domain. The proposed
approach only uses the labeled data of the source domain to train the classifier, which
means the proposed approach is practical. To verify the effectiveness of the proposed meth-
ods in fault diagnosis, experiments are conducted on two rolling bearing datasets, the Case
Western Reserve University (CWRU) dataset and the Xi’an Jiaotong University-Sumyoung
(XJTU-SY) dataset. By comparison, the proposed approach has achieved an outstanding
performance among several approaches.

The main contributions of this paper are: (1) a transfer learning based unsupervised
incipient fault diagnosis approach is proposed; (2) a novel hybrid feature extraction al-
gorithm based on a statistical algorithm, SAE network and wavelet scattering network is



Sensors 2021, 21, 7894 3 of 12

proposed. The rest of this paper is organized as follows: Section 2 introduces the basic
concepts and the proposed algorithm, Section 3 discusses the datasets used in this study
and the experiment results, and Section 4 concludes this paper.

2. Preliminaries and Methods

To deal with the different data distribution issues associated with bearing incip-
ient fault diagnosis, the structure of the proposed approach is illustrated in Figure 1.
The CORAL algorithm is used to align the original data of the source domain and target
domain in the proposed approach first. Then the hybrid feature extraction method is
adopted on both domains and the sigmoid entropy function is applied on feature vector
matrices. Lastly, two feature vector matrices are aligned on the Grassmann manifold space
using the GFK method, and the faulty samples of the target domain are diagnosed using
the KNN classifier trained with the source domain.

Figure 1. The flowchart of the proposed fault diagnosis scheme.

2.1. Domain Adaptation Algorithm CORAL

The domain adaptation method used in the proposed approach is the CORAL algo-
rithm, which is unsupervised and can minimize the difference between domains. The
CORAL is a simple yet effective method for unsupervised domain adaptation, and the
effectiveness of the CORAL algorithm has been demonstrated by Sun [13]. The CORAL
algorithm is more straightforward and has a lower computation cost than other domain
adaptation algorithms [14–16].

In the CORAL algorithm, it is supposed that the data x ∈ Rd is the source domain
and the data u ∈ Rd is the target domain, both x and u are d-dimensional, Ds = xi



Sensors 2021, 21, 7894 4 of 12

represents the data of the source domain, Ls = yi, y ∈ {1, . . . , L} represents the labels of
the source domain, and Dt = ui represents the data of the target domain. It is supposed
that CS represents the covariance matrices of the source domain and CT represents the
covariance matrices of the target domain (CS 6= CT). The CORAL algorithm applies a
linear transformation A to the source domain and uses the Frobenius norm as the matrix
distance metric to minimize the covariance distance of the source domain and target
domain; the equation is shown as below.

min
A

∥∥CŜ − CT
∥∥2

F = min
A

∥∥∥A>CS A− CT

∥∥∥2

F
(1)

where Cŝ represents the covariance of the transformed source features, and ‖ · ‖2
F represents

the squared matrix Frobenius norm [13].
The Algorithm 1 of CORAL is shown as below:

Algorithm 1. CORAL for Unsupervised Domain Adaptation.
Input: Data of Source Domain DS, Data of Target Domain DT
Output: Data of Adjusted Source D∗s
CS = cov(DS) + eye(size(DS, 2))
CT = cov(DT) + eye(size(DT , 2))

DS = DS ∗ C
−1
2

S

D∗S = DS ∗ C
1
2
T

The process of the CORAL algorithm is illustrated in Figure 2 [13]. Figure 2a shows
the different original data distributions of the source domain and target domain. Figure 2b
illustrates the data distribution of source domain after decorrelation. Figure 2c shows
the data distribution of the source domain after re-correlation using covariance of the
target domain.

(a) (b) (c)

Figure 2. The process of CORAL algorithm: (a) the original data distributions of source domain and
target domain; (b) the data distribution of source domain after decorrelation; (c) the data distribution
of source domain after re-correlation using covariance of target domain.

2.2. Feature Extraction

In the fault diagnosis problem, the design of feature extraction plays a significant role
in obtaining a high accuracy diagnosis result. In conventional machine learning, the feature
extraction of signals is commonly based on the time domain, frequency domain and time-
frequency domain [17]. Compared with conventional machine learning methods, the deep
learning methods adopt a possibly complex learning system to extract deep features.
In recent years, the deep learning methods perform well on image, text classification, and
speech recognition [18–20]. In this paper, a hybrid feature extraction method is proposed
based on both deep learning and conventional feature extraction algorithms are applied on
aligned domain datasets, with the structure shown in Figure 3.
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Figure 3. The structure of feature extraction.

2.2.1. Time and Frequency Domain Analysis

In data-driven rolling bearing fault diagnosis, one of the common strategies to extract
process parameters is to analyze the mechanical vibration signals with statistical signal
processing techniques [21,22]. The statistical features normally indicate the feature of
time domain, frequency domain and time-frequency domain. In this paper, ten types of
time-domain features are extracted: mean, standard deviation, variance, peak-peak value,
root mean square, waveform factor, crest factor, impulse factor, kurtosis, and skewness.

In the frequency-domain, the Fast Fourier Transform (FFT) is applied to extract the
frequency-domain characteristic indicators. The FFT algorithm is an efficient method to
transfer a time series into a frequency-domain representation. In this paper, four types of
frequency-domain features are extracted: center-of-gravity frequency, power spectrum,
frequency variance, and mean square frequency. The FFT of a signal can be computed
using the following equations:

FFT(k) =
N

∑
n=1

x(j)ω(n−1)(k−1)
N (2)

ωN = e(−2πi)/N (3)

where N is the number of samples for one signal and ωN is an Nth root of unity [23].
In the time-frequency-domain, the wavelet packet decomposition (WPD) is used to

extract the time-frequency domain features in this paper [24]. WPD is an efficient method
multi-resolution to decompose the signal into high-frequency part A and low-frequency
part D. Thus, an in-depth decomposition for both high-frequency and low-frequency bands
can be obtained. The proposed approach extracts the coefficients of 15 nodes on level 4
decomposition as time-frequency domain features as shown in Figure 4.
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Figure 4. The structure of WPD.

2.2.2. Wavelet Scattering Network

With a wavelet convolution layer, non-linear layer, and pooling layer, the data is
filtered using predefined wavelet and scaling filters in a wavelet scattering network [25].
The structure of the wavelet scattering network is shown in Figure 5.

Figure 5. The structure of wavelet scattering network.

In Figure 5, the original signal in layer 0 is averaged with a low-pass filter. Afterwards,
the discarded high frequency details can be re-captured in subsequent layers by perform-
ing a continuous wavelet transform on the input signal to generate a set of scale map
coefficients. The nonlinear operator and the low-pass filter are adopted to generate a set of
scattering coefficients of layer 1. Then the scale map coefficient output of the previous layer
is used as the input of the next layer in the network. Thus, the same nonlinear operator and
the wavelet low-pass function can be applied to filter the output to obtain the scattering
coefficients of layer 2.

2.2.3. Stacked Auto-Encoder Network

The auto-encoder network is an unsupervised learning method, which takes the
backpropagation algorithm to ensure the output data is equal to the input data. The core



Sensors 2021, 21, 7894 7 of 12

idea of the auto-encoder network is trying to learn a function hW,b(x) ≈ x to approximate
an identity function, so the output Yi, i ∈ {1, 2, 3, . . . , i} is as close as to the input Xi,
i ∈ {1, 2, 3, . . . , i} as possible.

In this paper, the SAE network consists of two auto-encoders, and the structure of
the SAE network is shown in Figure 6. The SAE network takes the aligned data of both
domains as input data, then the output of the hidden layer in the first auto-encoder is
taken as the input of the second auto-encoder. Finally the output of the hidden layer of the
second auto-encoder is extracted as features.

(a) (b)

Figure 6. The structure of SAE: (a) the structure of the first SAE (the encoder output is the input of
second SAE in (b)); (b) the structure of the second SAE.

The cost function in training the auto-encoder network consists of three terms: the
mean squared error term, the L2 regularization term, and the sparsity regularization term,
as shown below:

E =
1
N

N

∑
n=1

K

∑
k=1

(xkn − x̂kn)︸ ︷︷ ︸
mean squared error

+λ ∗Ωweight︸ ︷︷ ︸
L2

+β ∗Ωsparsity︸ ︷︷ ︸
sparsity

(4)

where Ωweights =
1
2 ∑L

l ∑n
j ∑k

i

(
w(l)

ji

)2
is the L2 regularization term, Ωsparsity = ∑D

i=1 KL(ρ‖ρ̂i)

is the sparsity regularization term, λ is the coefficient for the L2 regularization term, β
is the coefficient for the sparsity regularization term, L is the number of hidden layers,
n is the number of examples, k is the number of variables in the training data, D is the
number of neurons in the hidden layer, KL is the Kullback-Leibler divergence to measure
the difference between two distributions, ρ is a sparsity parameter, typically a small value
close to zero, and ρ̂i is the average activation of hidden unit i.

2.3. Geodesic Flow Kernel

In this paper, all feature vectors of both domains are aligned on manifold with the
GFK algorithm. The core idea of GFK is to construct a geodesic curve Φ(t) between the
two points on a manifold, then integrate them along the geodesic curve. The mapping
in the manifold is shown in Figure 7, where the data of the source domain and the target
domain are mapped from the original space into the subspace manifold, and the source
domain is transformed into point S and the target domain is transformed into point T on
the manifold. The distribution of three example classes represented by a circle, triangle,
and square can be adjusted through the measurement of geodesic flow, represented by the
green curve in Figure 7. Concretely, raw features of both domains are projected on these
subspaces to form the feature vector [16]. Then the kernel function can be computed in the
closed-form on the original feature space based on the feature vector inner product. Thus,
the low-dimensional representation of the domain can be derived by using this kernel in
the learning algorithm.
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Figure 7. The structure of manifold learning.

For geodesic flow, the subspace angle between the source domain and the target
domain is computed first. It is supposed that DS is the source domain and DT is the
target domain; first the subspaces PS of the source domain and PT of the target domain
(where PS, PT ∈ RD×d) are identified by computing the principal components analysis
of two domains. Let RS ∈ RD×(D−d) indicates the orthogonal complement to PS (where
RT

S PS=0). Using the canonical euclidean metric on the Riemannian manifold, the geodesic
flow is parameterized as Φ : t ∈ [0, 1]→ Φ(t) ∈ G(d, D) under constraints Φ(0) = PS and
Φ(1) = PT [16] as

Φ(t) = PSU1Γ(t)− RSU2Σ(t) (5)

where U1 ∈ Rd×d and U2 ∈ R(D−d)×d are orthonormal matrices.
The orthonormal matrices are given by the following pair of singular value decompo-

sitions as follows:
PT
SPT = U1ΓVT, RT

SPT = −U2ΣVT (6)

where Γ and Σ are d× d diagonal matrices.
The diagonal elements are cos θi and sin θi for i = 1, 2, . . . , d where θi represents the

principal angles between PS and PT :

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θd ≤ π/2 (7)

where θi is used to measure the degree of overlapping subspaces, and Γ(t) and Σ(t) are
diagonal matrices whose elements are cos(tθi) and sin(tθi), respectively.

The geodesic flow kernel can be computed based on the geodesic flow. For two original
feature vectors xi and xj, project the original feature vectors into Φ(t) for continuous t from
0 to 1 and concatenate all the projections into infinite-dimensional feature vectors z∞

i and
z∞

j . Thus, the inner product between z∞
i and z∞

j defines the geodesic flow kernel as below:

〈
z∞

i , z∞
j

〉
=
∫ 1

0

(
Φ(t)Txi

)T(
Φ(t)Txj|

)
dt

= xT
i Gxj

(8)

where G ∈ RD×D is a positive semidefinite matrix.
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2.4. K Nearest Neighbor Classification

In this paper, the KNN algorithm is adopted as the rolling bearing fault identification
method. The core idea of KNN is that if most of the k nearest samples in the feature space
of a sample belong to a certain category, the sample also belongs to this category. As a
non-parametric learning algorithm, the KNN algorithm classifies new samples using a
predefined distance measure based on the available information of stored samples.

3. Experiments and Results
3.1. Data Description

In this paper, six experiments are carried out to verify the effectiveness of the proposed
approach. The CWRU bearing fault dataset [26] and XJTU-SY bearing fault dataset [27] are
chosen as source domain and target domain, respectively. In this paper, the source domain
consists of 600 labeled samples from the CWRU dataset, including 500 vibration signals
in each sample. The fault diameter is 0.007 inches and each sample was recorded on a
1797 rpm working condition. Meanwhile, the target domain is made up of 900 unlabeled
incipient fault samples from the XJTU-SY dataset, each sample contains 500 vibration
signals, and were recorded on a 2250 rpm working condition. All the vibration signals of
incipient fault samples were recorded at first 1.28 s during the rolling bearing run-to-failure
experiment of the XJTU-SY test stand. Table 1 illustrates more information of the domains.
Two types of faults, the inner and outer race wearing, are considered in this experiment and
the time-domain waveform of original vibration signals of these two faults and non-fault
situation are shown in Figure 8.
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(a) Inner race wearing fault

0 50 100 150 200 250 300 350 400 450 500

Samples

-3

-2

-1

0

1

2

3

A
m

p
lit

u
d
e

0.007 Outer race

(b) Outer race wearing fault
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Figure 8. Vibration signals of two faults and non-fault in time-domain: (a) vibration signal of inner
race wearing in time-domain; (b) vibration signal of outer race wearing in time-domain; (c) vibration
signal of normal bearing in time-domain.
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Table 1. Data of Source and Target Domains.

Source Domain Target Domain

Working Conditions 1797 2250
Sample Numbers 600 900

Vibration Signals in Each Sample 500 500
Fault Type inner race and outer race wearing Unknown

Label 1 and 2 None

3.2. Experiment Results and Analysis

In the proposed approach, the CORAL algorithm is adopted to align the statistical
distributions of the source and target domains initially. Then the feature extraction methods
are adopted to aligned the data to extract 158 features each from the source and target
domain. Afterwards, the value of sigmoid entropy is computed based on the extracted
features. Finally, the GFK method is used to align the feature vectors of both domains on a
manifold, and the K-NN classifier with K = 5 is used to classify the samples of the target
domain for incipient fault diagnosis, with K = 5 trained on the data of the source domain.
In order to verify the effectiveness of the proposed approach, the proposed method is set
as the baseline and five variant algorithms are adopted by changing certain terms from
the baseline with the same data as comparison studies: without CORAL, without sigmoid
entropy, without GFK, with KNN (K = 1) and with statistical features only and the GFK
approach. The comparison results of the five methods are provided in Table 2.

Table 2. Experiment Results Comparison.

Approach Source Samples Target Samples Accuracy

Without sigmoid entropy 600 900 75.44%
Without GFK 600 900 79.90%

KNN with K = 1 600 900 86.00%
Statistical Feature only 600 900 92.00%

GFK approach 600 900 60.17%
Proposed Approach 600 900 95.56%

The experiment results in Table 2 show that among all the other five approaches,
the proposed approach has the best classification performance, reaching 95.56%, and the
following observations can be made:

(a) Effect of Domain Adaptation

As Table 2 shows, domain adaptation is an effective method to solve the different
data distribution problem in transfer learning. As the results show, the accuracy of the
GFK approach is the lowest with only 60.17% and the accuracy of the approach without
applying GFK method is 79.90%. In this paper, the CORAL method is used to align the
original signal data of both domains and the GFK method is used to align the feature
vectors of two matrices. The two domain adaptation algorithms can greatly help increase
the fault diagnosis accuracy.

(b) Effect of Feature Extraction

From the experiment results, the proposed hybrid feature extraction method combin-
ing the three feature extraction (95.56%) can increase the diagnosis accuracy by around 4%
compared with that of the statistical feature only method (92.00%). This result shows that
introducing deep features can improve the classifier performance and the proposed hybrid
feature extraction method has significant influence on the incipient fault diagnosis result.
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(c) Effect of Sigmoid Entropy

According to Table 2, the diagnosis accuracy of the proposed approach (with sigmoid
entropy) is 95.56% which is around 20% higher than that of the approach without sigmoid
entropy. Based on the experiment results, the sigmoid entropy is an effective cost function
in incipient fault diagnosis.

(d) Effect of Neighbor Number

According to Table 2, the diagnosis accuracy of the proposed approach with neighbor
number K = 5 in KNN is 95.56% which is around 10% higher than that of the approach
with K = 1, which showed the significant influence of neighbor number on classification
accuracy and the effectiveness of the proposed method.

In summary, the experiment results demonstrate that the proposed approach has
achieved the best performance. Based on the results, the fundamentality of domain adapta-
tion has been demonstrated, as both CORAL and GFK algorithms can help improve the
fault diagnosis accuracy. The results also illustrate that a hybrid feature extraction method
can achieve better classification performance in incipient fault diagnosis.

4. Conclusions

In this paper, a rolling bearing incipient fault diagnosis method based on improved
transfer learning with hybrid feature extraction is proposed. Firstly, the CORAL algorithm
is adopted to achieve the domain adaption of source and target domains; secondly, the pro-
posed approach extracts features using the statistical algorithms, the wavelet scattering
network and SAE network; thirdly, the proposed approach applies sigmoid entropy on
extracted features of both domains; lastly, the GFK algorithm is used to align the feature
vectors of both domains on the Grassmann manifold and the K-NN classifier which is
trained with the source domain and is adopted to classify samples of the target domain.
The experiment results show that the proposed approach has achieved highest classifica-
tion accuracy among different approaches. Therefore, the effectiveness of the proposed
approach in rolling bearing incipient fault diagnosis with different data distribution prob-
lem has been verified via experiments. The possible future development of this proposed
approach is to reduce the computational power as several methods are adopted to extract
the domain features.
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