
sensors

Article

Multipath Lightweight Deep Network Using Randomly
Selected Dilated Convolution

Sangun Park and Dong Eui Chang *

����������
�������

Citation: Park, S.; Chang, D.E.

Multipath Lightweight Deep

Network Using Randomly Selected

Dilated Convolution. Sensors 2021, 21,

7862. https://doi.org/10.3390/

s21237862

Academic Editor: Stefanos Kollias

Received: 3 November 2021

Accepted: 24 November 2021

Published: 26 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
undol26@kaist.ac.kr
* Correspondence: dechang@kaist.ac.kr; Tel.: +82-42-350-7440

Abstract: Robot vision is an essential research field that enables machines to perform various tasks
by classifying/detecting/segmenting objects as humans do. The classification accuracy of machine
learning algorithms already exceeds that of a well-trained human, and the results are rather saturated.
Hence, in recent years, many studies have been conducted in the direction of reducing the weight of
the model and applying it to mobile devices. For this purpose, we propose a multipath lightweight
deep network using randomly selected dilated convolutions. The proposed network consists of two
sets of multipath networks (minimum 2, maximum 8), where the output feature maps of one path
are concatenated with the input feature maps of the other path so that the features are reusable and
abundant. We also replace the 3× 3 standard convolution of each path with a randomly selected
dilated convolution, which has the effect of increasing the receptive field. The proposed network
lowers the number of floating point operations (FLOPs) and parameters by more than 50% and the
classification error by 0.8% as compared to the state-of-the-art. We show that the proposed network
is efficient.

Keywords: lightweight deep network; object classification; network design

1. Introduction

Object detection is one of the essential techniques that robots need to perform a
variety of tasks. While humans can easily find and identify objects, robots are unable to
do so. However, it is technically challenging to detect objects quickly and accurately in
robot vision. Owing to its high importance, this field has received increased attention in
recent years.

Deep convolutional neural networks (DCNNs) have attracted extensive attention
in various computer vision applications such as object detection [1–7], object classifica-
tion [8–15], and image segmentation [16–20]. DCNNs are composed of a series of convolu-
tional layers, resulting in abundant features, more parameters, and complicated structures.
These properties lead to a significant improvement in performance. Some of the prominent
research involving DCNNs is as follows: combining networks in networks (NIN [21]),
reducing the number of parameters by proposing a bottleneck layer (GoogLeNet [22]),
placing several simple networks (VGGNet [11]), connecting an extra path between different
layers (ResNet [12]), concatenating from previous layers to the next layers (DenseNet [13]),
and increasing the number of channels as the layers get deeper (PyramidNet [23]).

However, as the applications of deep learning networks become more complex, the
size of the model has increased rapidly. Nevertheless, deep learning networks are being de-
ployed to lightweight devices such as mobile devices and automobiles. Large models have
the following risks: memory limits, training/inference speed, performance degradation,
and dead channels. The gradient required for training is proportional to the size of the
model, so, even if the learning speed is increased through distributed learning, the training
takes more time as the model grows. Many existing studies have attempted to solve this
problem through training with multiple graphics processing units (GPUs), such as data

Sensors 2021, 21, 7862. https://doi.org/10.3390/s21237862 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0117-2678
https://orcid.org/0000-0002-6496-4189
https://doi.org/10.3390/s21237862
https://doi.org/10.3390/s21237862
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21237862
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21237862?type=check_update&version=2

Sensors 2021, 21, 7862 2 of 18

parallelization [24–27] and model parallelism [28–30]. Moreover, there are unnecessary
channels that have little effect on the output result during the learning process. They can be
a significant waste that continuously increases the computational complexity of the model.
The pruning method [31] can resolve this problem.

Lightweight model design is designing a model with fewer parameters and computa-
tions while maintaining a similar level of performance. If the amount of computations is
reduced, it enables deployment of the DCNN on low-power devices and secures real-time
performance, and if the number of parameters is reduced, resources required for model
storage and transmission are reduced. Therefore, it is very valuable to conduct research on
lightweight model design.

In order to design lightweight models, we consider the following two fundamen-
tal questions:

1. Can the network be designed in a different way to make the model lighter?
2. How can we obtain richer feature maps than state-of-the-art (SOTA) traditional DCNNs?

We answer these questions with our proposed network, called the “multipath lightweight
deep network using randomly selected dilated convolution”. It consists of at least two
multipath networks and uses a randomly selected dilated convolution to expand the
receptive field.

Our main contributions are as follows.

• First, we design an extensible and modular network architecture. This model can be
plugged into any existing network.

• Second, we reduce the the number of floating point operations (FLOPs) and parame-
ters by more than 50%. Our model is composed of multipath network structures, so it
is optimized for parallelization, and the model is light because the computation loss
is small.

• Third, the proposed model has a wide receptive field and fewer parameters than
the existing ones. This model can be placed in front of any network using the 3× 3
standard convolution.

The remainder of this paper is organized as follows. Section 2 presents the related
works about object classification methods and lightweight DCNN architectures. Section 3
explains and analyzes our proposed model. Section 4 shows our experimental results.
Section 5 discusses the effect of our proposed network. Section 6 concludes the paper and
presents possible future work.

2. Related Work
2.1. Object Classification

AlexNet [9] was the first network to popularize convolutional neural networks (CNNs).
Unlike LeNet [8], AlexNet placed convolutional layers one after the other and improved
performance by learning deep networks (8 layers) while utilizing GPU and rectified lin-
ear unit (ReLU) functions. The full-scale deep-layer era started with GoogLeNet [22].
GoogLeNet implemented an inception design to obtain features of different scales by
applying different-scale convolution filters to the same layer. Especially, the bottleneck
layer has a great effect on dimensionality reduction and computational cost reduction, so
that a deeper network (22 layers) can be learned. However, as the network gets deeper,
the gradient value saturates, which makes learning extremely slow. In addition, the error
increases as the number of parameters increases. VGGNet [11] improved the performance
by learning a deep network (19 layers) with only the simplest 3× 3 convolution without
changing the size of the receptive field.

The residual network (ResNet) [12] solved the vanishing gradient problem by adding
shortcuts between adjacent layers, optimizing very deep networks (152 layers), and ob-
taining better performance with increasing depth based on the uncomplicated network,
VGGNet. Later, DenseNet [13] showed improved performance with fewer parameters as
compared to ResNet. Unlike ResNet, DenseNet connected a layer to all previous layers via

Sensors 2021, 21, 7862 3 of 18

shortcut paths. By stacking feature maps, DenseNet can obtain very abundant feature maps
and reduce the vanishing-gradient problems. Dual path networks (DPNs) [32] combined
the advantages of ResNet for feature reuse and DenseNet for exploring new features. As
the name suggests, DPNs consist of dual paths. One path is a ResNet network, while the
other path is a DenseNet network.

2.2. Lightweight CNN Architectures

Existing object classification and detection models require a lot of computation power
for training and testing, so expensive equipment such as GPUs is necessary. The model
size is also relatively large, and it takes a lot of time to train and test, so improvement in
model size and computational efficiency is essential for real-time application. To solve this
problem, various attempts have been made to compress the deep network or reduce the
amount of computation. In particular, recent studies have explored reducing the weight of
the model while maintaining the performance of the existing model.

Based on the effect of Inception, Xception [33] proposed a depthwise-separable con-
volution network. SqueezeNet [34] reduced computation cost and the number of input
channels by replacing some 3× 3 convolution layers with point-wise convolution. Mo-
bileNet [35] proposed a lightweight architecture structure that can run on mobile devices
through depthwise-separable convolutions. ShuffleNet [36] proposed a more efficient
structure than MobileNet by applying group convolution to bottleneck layer operation and
shuffle channels.

CondenseNet [14] achieved similar accuracy with a lower computational cost than
other lightweight models such as MobileNet and ShuffleNet. It is a model with similar ac-
curacy to DenseNet requiring one tenth of the computation power by pruning connections
with less feature reuse by using learned group convolution, and increasing the growth rate
as the network gets deeper. MobileNetV2 [37] proposed linear bottlenecks and an inverted
residual to upgrade the architecture while improving performance in all indicators such
as accuracy, the number of parameters, and amount of computation. ShuffleNetv2 [38]
added a channel-splitting module to input and used concatenation instead of addition,
resulting in faster processing speed with similar accuracy to ShuffleNetv1 as well as Mo-
bileNetV2. MobileNetv3 [39] used the NASNet [40] architecture to explore the structure
and improved the performance by modifying the searched structure. CondenseNetV2 [15]
used reactivating obsolete features not considered in CondenseNet and ShuffleNetV2. In
addition, by adding a sparse feature reactivation (SFR) module after the existing learned
group convolution, features were concatenated after processing.

3. Methods

In this section, we introduce the details of our proposed network. The model we refer
to as the basic structure is DenseNet-based (including CondenseNet and CondenseNetV2)
because the information of the previous layer is concatenated and the features are reused.
That is, it is characterized by having much richer features compared to other networks
that do not concatenate. In particular, CondenseNet can be used for lightweight models
because it reduces the number of parameters ten times as compared to DenseNet and
provides similar performance. Hence, we chose this as the basic model. Since CondenseNet
has recently been improved to CondenseNetV2, we also applied the proposed method to
CondenseNetV2.

The major differences between the proposed network and other network architectures
are the presence of multipath networks and the expansion of the receptive field. Dividing
the path into a pair of cross-shaped paths is the key to reducing the number of FLOPs and
parameters. A detailed description is provided in Sections 3.2 and 3.3.

Figure 1 shows the overall architecture of the proposed network. MLDN described in
Section 3.2 represents our proposed multipath lightweight deep network. In the figure, P
in the dark purple box is the preprocessing module, R in the light purple box is ResNet,
SP in the dark blue box splits the input into the number of paths, cat in the yellow box is

Sensors 2021, 21, 7862 4 of 18

concatenation, H in the orange box is the composite function of MLDN, PL in the light blue
box is the average pooling layer, FC in the green box denotes fully connected layers, and
S in the red box is a softmax function. In and out in the white box are the input images
and the predicted class, respectively. This network predicts the classes of objects through
preprocessing, dense blocks, transition layers (average pooling), fully connected layers,
and a softmax function. Preprocessing helps generate diverse feature maps. A denseblock
has L MLDN and MLDN has p multiple paths. The various feature maps are produced
after passing through each MLDN and denseblock. The pooling layer reduces the size of
the output channels of each denseblock.

Figure 1. Overall procedure. The input goes through preprocessing and several dense blocks and pooling layers. During
this procedure, the feature maps reduce the the number of FLOPs and parameters.

3.1. Preprocessing

Figure 2 describes preprocessing. Before using the input image itself, we first incre-
ment the feature maps by passing an initial convolutional layer (dark purple box). We
mentioned that the network is divided into multiple paths. ResNet-18, which has the
least number of FLOPs among various ResNets, is applied once to one of these paths.
Henceforth, we use ResNet-18 wherever we mention ResNet.

This is similar to applying network-in-network (NIN) on GoogLeNet. Since it is one of
the many processes, it does not increase the number of FLOPs or parameters significantly.
Since ResNet performs an element-wise sum by shortcut connection of input features to
output features, it transforms the feature itself without using it. Therefore, the path passing
through ResNet and the path not passing through ResNet can be configured with different
feature maps to improve performance.

Figure 2. Preprocessing. Before splitting input feature maps, we apply initial convolution. Only one
path has the ResNet module, and the other paths just pass the input feature maps.

The composite function, F(), consists of combination of convolution, batch normaliza-
tion (BN) [41], and ReLU [42] layers including the bottleneck layer. We adjust the feature
maps so that the number of output feature maps that pass through ResNet equals the
number of output feature maps on the paths that do not. We can express the ResNet path
as y1 = x1 ⊕ F(x1), where x1 are the input feature maps of the ResNet path, y1 are the
output feature maps of ResNet, and ⊕ is the element-wise sum operation.

Sensors 2021, 21, 7862 5 of 18

3.2. Multipath Lightweight Deep Network

Most deep networks except GoogLeNet and DPN have only one path. GoogLeNet
separates the network by placing the network in the network, but the networks do not
exchange feature information with each other. DPN combines two networks to take
advantage of both networks.

We propose a lightweight deep network with multiple paths to make a model suitable
for weight reduction. The key to making a lightweight model as compared to existing net-
works is by reducing the number of parameters through multipath networks. Depending
on the network design, the number of paths can be defined as a divisor of the growth rate.
The growth rate of [13] controls the amount of information added to the network at each
layer. For example, if the growth rate is 8, the possible paths are 2, 4, and 8. Algorithm 1
describes the proposed network, multipath lightweight deep network (MLDN), in nth
denseblock in CondenseNet.

Algorithm 1 MLDN in nth denseblock in CondenseNet

Input: xn
for l = 1 to Ln do

xn,l,2p−1, xn,l,2p = split(xn,l) where 1 ≤ p ≤ P/2
for p = 1 to P/2 do

yn,l,2p−1 = cat(xn,l,2p−1, Hn,l,2p(xn,l,2p))
yn,l,2p = cat(xn,l,2p, Hn,l,2p−1(xn,l,2p−1))

end for
xn,l+1 = cat(yn,l,1, yn,l,2, . . . , yn,l,2p−1, yn,l,2p)

end for
Output: xn+1 = xn,Ln+1

Here, n is the index of the denseblock, l is the index of layers, Ln is the number of
layers in the nth denseblock, p is the index of the path, P is the number of paths, H(·) is
the composite function, cat is the concatenation operation, and split is the split operation.

Figure 3 is an example of dividing the path into two (P = 2) in the lth layer. In Figure 3a,
when l = 1, MLDN is explained as follows. First, input feature maps (xn,1) split by the
number of 2 (xn,1,1, xn,1,2). These split input feature maps are passed through the composite
function (Hn,1,1(xn,1,1), Hn,1,2(xn,1,2)). Next, they concatenate with the input feature maps
of the opposite path (yn,1,1 = cat(xn,1,1, Hn,1,2(xn,1,2)), yn,1,2 = cat(xn,1,2, Hn,1,1(xn,1,1))).
Finally, all output feature maps are re-concatenated (xn,2 = cat(yn,1,1, yn,1,2). These output
feature maps become the next input feature maps for the (l + 1)th layer. This is repeated on
all layers. In this way, information is exchanged between paths. Each composite function
has two iterations of BN, ReLU, and convolution maps in series. For the first convolutional
layer, learned group convolution (L-Conv) removes unimportant connections. For the
second convolutional layer, group convolution (G-Conv) reduces the computational cost
by partitioning the input features. In the composite function process, the number of feature
maps does not increase and a constant k, the number of feature maps, is generated because
of a bottleneck layer. More information about the composite function is in [14].

Sensors 2021, 21, 7862 6 of 18

x2x1

x2

B
N

-R
eLU

1x1 LC
onv

B
N

-R
eLU

3x3 G
C

onv

x1yn,l,2p-1

x2

B
N

-R
eLU

1x1 LC
onv

B
N

-R
eLU

3x3 G
C

onv

x1yn,l,2p

x1xn,l,2p-1

x1xn,l,2p

cat

x1x1x1xn,l

cat

Composite function, Hn,l,2p-1

Composite function, Hn,l,2p
cat

x2x1xn,l+1
SP

(a)

x1x1

B
N

-R
eLU

1x1 LC
onv

B
N

-R
eLU

3x3 G
C

onv

x1x1yn,l,2p-1

SFR
 M

odule

+

B
N

-R
eLU

1x1 LC
onv

B
N

-R
eLU

3x3 G
C

onv

x1x1yn,l,2p

SFR
 M

odule

+

(b)

Composite function, Hp-1,l+1

Composite function, Hp,l+1 cat
x1x1xn,l+1

Reactivation, Gp-1,l+1

Reactivation, Gp-1,l+1

x1xn,l,2p-1

x1xn,l,2p

x1x1x1xn,l

cat

cat

SP

(b)

Figure 3. Multipath lightweight deep network (MLDN) in lth layers, nth denseblock. (a) MLDN in
CondenseNet; (b) MLDN in CondenseNetV2. They pass their output feature maps to the other path.

CondenseNetV2 adds a sparse feature reactivation (SFR) module after the composite
function, and the output feature maps of this SFR module are added by an element-wise
sum with the input feature maps. Finally, the input feature maps from the (2p− 1)th
path and output feature maps from the 2pth path are concatenated as in CondenseNet.
Algorithm 2 explains how to plug in MLDN to CondenseNetV2. The composite function G
in the SFR increases the output channels equal to the input feature maps. The rest is the
same notation as in Algorithm 1. Since it is similar to MLDN+CondenseNet, the description
has been omitted.

Algorithm 2 MLDN in nth denseblock in CondenseNetV2

Input: xn
for l = 1 to Ln do

xn,l,2p−1, xn,l,2p = split(xn,l) where 1 ≤ p ≤ P/2
for p = 1 to P/2 do

yn,l,2p−1 = cat(xn,l,2p−1 ⊕ Gn,l,2p−1(Hn,l,2p−1(xn,l,2p−1)), Hn,l,2p(xn,l,2p))
yn,l,2p = cat(xn,l,2p ⊕ Gn,l,2p(Hn,l,2p(xn,l,2p)), Hn,l,2p−1(xn,l,2p−1))

end for
xn,l+1 = cat(yn,l,1, yn,l,2, . . . , yn,l,2p−1, yn,l,2p)

end for
Output: xn+1 = xn,Ln+1

Our network architectures are shown in Table 1. A denseblock is composed of L-Conv
(learned convolution) and G-Conv (grouped convolution). We choose L = 14 layers and
P = [2,4,8] for each denseblock. The total growth rate k is [8,16,32], so the growth rate per
path kp is [4,4,4] (kn,p = kn/pn). In the last layer, the output of the FC layer is the same as
the number of labels in the dataset. As an example, the outputs of the FC layer in the cases
of the CIFAR-10 and CIFAR-100 datasets are 10 and 100, respectively.

Sensors 2021, 21, 7862 7 of 18

Table 1. Architecture of MLDN in CondenseNet/CondenseNetV2 on the CIFAR-10/100 dataset.

MLDN in CondenseNet MLDN in CondenseNetV2 Feature Map Size

3× 3 Conv (stride 1) 3× 3 Conv (stride 1) 32× 32× 16

ResNet ResNet 32× 32× 16[
1× 1 L-Conv
3× 3 G-Conv

]
× 14×

2, kp = 4, (k = 8)

1× 1 L-Conv
3× 3 G-Conv
SFR Module

× 14×

2, kp = 4, (k = 8)

32× 32× 128

2× 2 average pool, stride 2 2× 2 average pool, stride 2 16× 16× 128[
1× 1 L-Conv
3× 3 G-Conv

]
× 14×

4, kp = 4, (k = 16)

1× 1 L-Conv
3× 3 G-Conv
SFR Module

× 14×

4, kp = 4, (k = 16)

16× 16× 352

2× 2 average pool, stride 2 2× 2 average pool, stride 2 8× 8× 352[
1× 1 L-Conv
3× 3 G-Conv

]
× 14×

8, kp = 4, (k = 32)

1× 1 L-Conv
3× 3 G-Conv
SFR Module

× 14×

8, kp = 4, (k = 32)

8× 8× 800

8× 8 global average pool 8× 8 global average pool 1× 1× 800

FC
softmax

FC
softmax

3.3. Randomly Selected Dilated Convolution

A large receptive field can be used to improve network performance. However, this
considerably increases the number of parameters and risks overfitting. Therefore, in general
DCNNs, these problems are solved by combining convolution and pooling to lower the
cost. Factorized convolution reduces the number of parameters and deepens the layers by
replacing the feature maps of a large receptive field with a few other small feature maps,
but it increases the depth of the network. To widen the receptive field and not deepen the
network at the same time, we draw inspiration from dilated convolutions [43].

Dilated convolution expands small feature maps (3× 3) into large feature maps (5× 5,
7× 7 . . .) but, conversely, we reduce large feature maps to small feature maps while using
all the information in the large feature maps. We propose a randomly selected dilated
convolution (RSDC) with an extended receptive field but a relatively shallow layer.

Figure 4 explains our RSDC when the kernel size of the RSDC is 5. The left side of the
figure shows the input feature maps, ∗ is the convolution symbol, and the right side of the
figure shows the RSDC, where RSDC consists of M′ feature maps. In this case, there are
25 weights. If we use this value as it is, however, it is the same as increasing the receptive
field. We randomly select 9 of these weights and perform convolution with them. The
reason for choosing 9 weights is that the size of the existing standard convolution is 3× 3.

Sensors 2021, 21, 7862 8 of 18

Figure 4. Randomly selected dilated convolution (RSDC) when kernel size is 5. The yellow on the
right of the figure denotes randomly selected weights. There are M′ output feature maps.

Algorithm 3 explains our network with RSDC in a general case. The f input denotes the
RSDC feature maps depicted on the right side of Figure 4 and f output denotes randomly
selected weights shown in yellow on the right side of Figure 4. The height and width of the
input feature maps of RSDC are denoted by h, w, respectively; krsdc is the predefined kernel
size for RSDC, e.g., 5 or 7; and i, j are height and width indices of the output feature maps
of RSDC, respectively. The rand(x) function picks a random value of x, and the append(x)
function appends x to the output.

Algorithm 3 RSDC before applying 3× 3 standard convolution feature maps

Input: f input = { fh,w}, where 1 ≤ h, w ≤ krsdc
for i = 1 to 3 do

for j = 1 to 3 do
f = rand(fh,w)
while f in fi,j do

f = rand(fh,w)
end while
fi,j = append(f)

end for
end for
Output: f output = {fi,j}, where 1 ≤ i, j ≤ 3

In general, according to the factorized convolution method, the number of M feature
maps of size krsdc that can be factorized into several 3× 3 feature maps is given by:

k2
rsdc ×M→ 32 ×M× (krsdc − 1)

2
.

Since our RSDC uses only 9 weights, we can think of it as using 3× 3 convolution feature
maps (i.e., krsdc = 3 in the preceding equation). Therefore, to use fewer feature maps as
compared to existing feature maps while obtaining a large receptive field, the following
should be satisfied:

M′ < M× (krsdc − 1)
2

,

where M′ is the number of feature maps of RSDC in Figure 4.
The MLDN exceeds SOTA (shown in Section 4.3.2), so we apply RSDC to MLDN.

Among the composite functions of MLDN, a 3× 3 convolution exists only once at the end.
The proposed RSDC is located instead of the 3× 3 standard convolution of MLDN. In
one path of the first denseblock, we have L1 layers and growth rate kp, so the increasing
number of output feature maps is L1 × kp. Since the growth rate is too small in the first
denseblock, we apply RSDC from the second denseblock.

Sensors 2021, 21, 7862 9 of 18

4. Experimental Results
4.1. Datasets

We evaluated our proposed network on the CIFAR-10 and CIFAR-100 [44] datasets,
and the ImageNet (ILSVRC) [45] datasets. The CIFAR-10 and CIFAR-100 datasets are
composed of 32× 32 pixel-sized RGB images corresponding to 10 and 100 classes, respec-
tively. They have 50,000 training images and 10,000 testing images. We used a standard
data-augmentation method [21,46–50] where the images were zero-padded to 4 pixels
on all sides with a probability of 0.5, randomly cropped, and mirrored horizontally to
keep the size of 32× 32 pixels. We separated the 10,000 images from the training dataset
into the validation dataset. The ImageNet dataset consists of 1000 classes and contains a
total of 1.2 million training images and 50,000 validation images. We adopted the data-
augmentation method of [12] at training time, rescaled the input image to 256× 256 at test
time, and then performed a 224× 224 center crop.

4.2. Training Settings

All models were trained by stochastic gradient descent (SGD) using similar optimiza-
tion hyperparameters as in [14,15]. We adopted the Nesterov momentum weight of 0.9
without dampening and used a weight decay of 1× 10−4. All models were trained with a
mini-batch size of 32 for 300 epochs. The cosine-shaped learning rate [51] was used, and
it started at 0.1 and gradually decreased to 0. Dropout [52,53] with a drop rate of 0.1 was
applied to train.

4.3. Performance Evaluation
4.3.1. The Effect of ResNet

We now show experimental validation for the fact that using ResNet is more effective
than not using it as explained in Section 3.1. Figure 5 shows the classification error as a
function of the number of FLOPs. In this paper, the classification error means top-1 error.
Detailed values are given in Table 2.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

FLOPs 107

5

5.5

6

6.5

7

7.5

8

8.5

9

C
la

ss
ifi

ca
tio

n
E

rr
.

MLDN+CDN
ResNet+MLDN+CDN

(a)

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

FLOPs 107

21

22

23

24

25

26

27

28

C
la

ss
ifi

ca
tio

n
E

rr
.

MLDN+CDN
ResNet+MLDN+CDN

(b)

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

FLOPs 107

5

5.5

6

6.5

7

7.5

8

8.5

9

C
la

ss
ifi

ca
tio

n
E

rr
.

MLDN+CDNV2
ResNet+MLDN+CDNV2

(c)

2 2.5 3 3.5

FLOPs 107

21

21.5

22

22.5

23

23.5

24

24.5

25

25.5

26

26.5

C
la

ss
ifi

ca
tio

n
E

rr
.

MLDN+CDNV2
ResNet+MLDN+CDNV2

(d)

Figure 5. Comparison of the classification error rates with respect to the number of FLOPs on the effect of ResNet and
MLDN. (a) MLDN in CondenseNet on CIFAR-10. (b) MLDN in CondenseNet on CIFAR-100. (c) MLDN in CondenseNetV2
on CIFAR-10. (d) MLDN in CondenseNetV2 on CIFAR-100.

Although the number of FLOPs in the case of the network with ResNet is slightly
larger than those without ResNet (about 1M), we see a decrease in the classification error of
the network. These values can be seen in the 1st (CDN) to the 3rd (MLDN+CDN) rows of
the first column (Model) in Table 2. In the case of CondensetNetV2, a similar effect can be
seen as shown in the 4th row (CDNV2) to the 6th row (MLDN+CDNV2) of the first column
(Model) of Table 2.

Sensors 2021, 21, 7862 10 of 18

Table 2. Comparison of the classification error rates (%) of CondenseNet/CondenseNetV2 (original)
and MLDN+CDN/MLDN+CDNV2 (proposed) on the CIFAR-10 and CIFAR-100 datasets.

Model Paths (P) Growth Rate (k) FLOPs [M] Params [M] C-10 C-100

CDN [8,16,32] 65.8 0.52 6.03 23.71

MLDN+CDN

[2,2,2] [8,16,32] 34.9 0.28 5.94 22.96

[2,4,4] [8,16,32] 23.4 0.16 7.1 25.61

[2,4,8] [8,16,32] 20.3 0.12 8.86 27.2

MLDN+CDN
with ResNet

[2,2,2] [8,16,32] 35.6 0.28 5.9 22.76

[2,4,4] [8,16,32] 24.1 0.17 7.05 24.9

[2,4,8] [8,16,32] 21.1 0.12 7.7 26.86

[2,2,2] [16,16,16] 61.0 0.22 5.41 22.25

[2,2,2] [32,32,32] 231.4 0.78 4.75 21.58

[2,2,2] [16,32,64] 134.6 1.04 4.69 18.05

[2,4,4] [16,32,64] 88.8 0.72 4.93 19.71

[2,4,8] [16,32,64] 76.5 0.39 5.28 21.35

CDNV2 [8,16,32] 64.3 0.51 5.80 22.31

MLDN+CDNV2

[2,2,2] [8,16,32] 33.4 0.27 5.66 21.34

[2,4,4] [8,16,32] 22.4 0.15 6.62 23.78

[2,4,8] [8,16,32] 20.0 0.10 8.54 25.71

MLDN+CDNV2
with ResNet

[2,2,2] [8,16,32] 34.1 0.26 5.42 21.19

[2,4,4] [8,16,32] 23.2 0.16 6.48 23.18

[2,4,8] [8,16,32] 20.7 0.11 7.78 25.20

[2,2,2] [16,16,16] 59.9 0.20 5.15 20.50

[2,2,2] [32,32,32] 230.0 0.77 4.49 18.43

[2,2,2] [16,32,64] 133.1 1.04 3.66 16.37

[2,4,4] [16,32,64] 86.9 0.70 4.55 18.25

[2,4,8] [16,32,64] 74.5 0.38 4.83 19.70

4.3.2. The Effect of Multiple Paths

We studied the effect of changing the number of paths and the growth rate on the
proposed network. We designed the network such that each denseblock has 14 layers.
We chose three sets of paths: P = [2,2,2], P = [2,4,4], and P = [2,4,8], such that P = [2,4,8]
implies that the first denseblock has 2 paths, the second denseblock has 4 paths, and the
third denseblock has 8 paths. The growth rate of the paths also increases such that the first
denseblock has growth rate 8, the second denseblock has growth rate 16, and the third
denseblock has growth rate 32. Figure 5 depicts the effect of multiple paths. In the case of
MLDN+CDN/CDNV2 or ResNet+MLDN+CDN/CDNV2, p decreases from left (smaller
FLOPs) to right (larger FLOPs) such as P = [2,2,2], P = [2,4,4], and P = [2,4,8]. Larger paths
reduce the number of FLOPs because more operations are processed at one time. However,
the number of output feature maps (actually, #output feature maps

#paths) used for training becomes
smaller and the classification error increases.

Detailed values are given in Table 2. It can be seen that the best result is shown
when p = [2,2,2] with a constant size. Our MLDN+CDN model shows a 0.13% and 0.95%
improvement in the classification error on CIFAR-10 and CIFAR-100, respectively. It
reduces the number of FLOPs and parameters by 54.1% and 53.8% compared to the CDN,
respectively. MLDN+CDNV2 improves by 0.37% and 1.12% in the classification error on
CIFAR-10 and CIFAR-100 respectively. It reduces the number of FLOPs and parameters by
53% and 51% compared to the CDNV2, respectively.

Sensors 2021, 21, 7862 11 of 18

4.3.3. The Effect of Changing MLDN Hyperparameters

We also performed the experiment with various MLDN hyperparameters. We compare
the original network, our best models, increased and constant growth rates, and doubling
growth rates in Figure 6.

First, we experimented with constant growth rates such as k = [16,16,16], and k = [32,32,32]
when p = [2,2,2], so the growth rates per path were kp = [8,8,8] and kp = [16,16,16], respec-
tively, which are sufficient to train well. However, in the case of k = [32,32,32], the number
of FLOPs is too large to be meaningful. Hence, we did not plot for k = [32,32,32] in Figure 6
due to the scale problem. We see that as the growth rates increase with constant values,
the classification error decreases but the number of FLOPs increases. There are trade-offs
between these two.

Second, we experimented with doubling the growth rates. Unlike the best results
where we chose p = [2,2,2] and k = [8,16,32], the number of FLOPs is slightly larger than
the original (11M), but the classification error is reduced by 0.7% when p = [2,4,8] and
k = [16,32,64]. This is because doubling k is enough to satisfy the training well. When
p = [2,2,2] and k = [16,32,64], the number of FLOPs becomes too large to be worthwhile.
Except for p = [2,4,8] and k = [16,32,64], the rest are not depicted in Figure 6 because of
scale issues.

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

FLOPs 107

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

C
la

ss
ifi

ca
tio

n
E

rr
.

CondenseNet (original)
ResNet+MLDN+CDN, p=[2,2,2],k=[8,16,32]
ResNet+MLDN+CDN, p=[2,2,2],k=[16,16,16]
ResNet+MLDN+CDN, p=[2,4,8],k=[16,32,64]

(a)

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

FLOPs 107

21

21.5

22

22.5

23

23.5

24

24.5

25

C
la

ss
ifi

ca
tio

n
E

rr
.

CondenseNet (original)
ResNet+MLDN+CDN, p=[2,2,2],k=[8,16,32]
ResNet+MLDN+CDN, p=[2,2,2],k=[16,16,16]
ResNet+MLDN+CDN, p=[2,4,8],k=[16,32,64]

(b)

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

FLOPs 107

4.5

5

5.5

6

6.5

C
la

ss
ifi

ca
tio

n
E

rr
.

CondenseNetV2 (original)
ResNet+MLDN+CDNV2, p=[2,2,2],k=[8,16,32]
ResNet+MLDN+CDNV2, p=[2,2,2],k=[16,16,16]
ResNet+MLDN+CDNV2, p=[2,4,8],k=[16,32,64]

(c)

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

FLOPs 107

19

19.5

20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

C
la

ss
ifi

ca
tio

n
E

rr
.

CondenseNetV2 (original)
ResNet+MLDN+CDNV2, p=[2,2,2],k=[8,16,32]
ResNet+MLDN+CDNV2, p=[2,2,2],k=[16,16,16]
ResNet+MLDN+CDNV2, p=[2,4,8],k=[16,32,64]

(d)

Figure 6. Comparison of the classification error rates with respect to the number of FLOPs using MLDN on the effect of
changing hyperparameters. (a) MLDN in CondenseNet on CIFAR-10. (b) MLDN in CondenseNet on CIFAR-100. (c) MLDN
in CondenseNetV2 on CIFAR-10. (d) MLDN in CondenseNetV2 on CIFAR-100.

4.3.4. The Effect of RSDC

From the above results (in Sections 4.3.1 and 4.3.2), we confirm that having multiple
paths and ResNet is more effective than the existing networks. Therefore, we applied RSDC
to MLDN with ResNet to experiment with its effectiveness. The results were best when
p = [2,2,2] and k = [8,16,32], so we set the same for this experiment. Figure 7 compares
original, MLDN, and RSDC.

A B C D

8

7.5

7

6.5

6

5.5

5

4.5

C
la

ss
ifi

ca
tio

n
Er

r. D: CDN (Original)

A: ResNet+MLDN+CDN
B: ResNet+MLDN+RSDC(krsdc=5)+CDN
C: ResNet+MLDN+RSDC(krsdc=7)+CDN

(a)

A B C D

27

26

25

24

23

22

21

20

C
la

ss
ifi

ca
tio

n
Er

r. D: CDN (Original)

A: ResNet+MLDN+CDN
B: ResNet+MLDN+RSDC(krsdc=5)+CDN
C: ResNet+MLDN+RSDC(krsdc=7)+CDN

(b)

A B C D
4.5

5

5.5

6

6.5

7

7.5

C
la

ss
ifi

ca
tio

n
Er

r. D: CDNV2 (Original)

A: ResNet+MLDN+CDNV2
B: ResNet+MLDN+RSDC(krsdc=5)+CDNV2
C: ResNet+MLDN+RSDC(krsdc=7)+CDNV2

(c)

A B C D
20

21

22

23

24

25

26

C
la

ss
ifi

ca
tio

n
Er

r. D: CDNV2 (Original)

A: ResNet+MLDN+CDNV2

B: ResNet+MLDN+RSDC(krsdc=5)+CDNV2

C: ResNet+MLDN+RSDC(krsdc=7)+CDNV2

(d)

Figure 7. Comparison of the classification error rates with respect to the number of FLOPs using RSDC. (a) ResNet+
MLDN+RSDC+CDN on CIFAR-10. (b) ResNet+MLDN+RSDC+CDN on CIFAR-100. (c) ResNet+MLDN+RSDC+CDNV2 on
CIFAR-10. (d) ResNet+MLDN+RSDC+CDNV2 on CIFAR-100.

First, we experimented by changing the kernel size of RSDC, krsdc. The classification
error was lowest when krsdc was 5. This is because the input image size of the CIFAR

Sensors 2021, 21, 7862 12 of 18

dataset is so small (32× 32) and it is inefficient to use a large receptive field such as krsdc = 7.
In addition, krsdc = 5 has larger selected weights than krsdc (9/25 vs. 9/49) for the same
number of output feature maps. Detailed values are given in Table 3.

Table 3. Comparison of the classification error rates (%) of CondenseNet/CondenseNetV2 (original)
and MLDN+CDN/MLDN+CDNV2 and MLDN+RSDC+CDN/MLDN+RSDC+CDNV2 (proposed)
on the CIFAR-10 and CIFAR-100 datasets.

Model krsdc #L C, G FLOPs Params C-10 C-100

CDN 14 4 65.8M 0.52M 6.03 23.71

MLDN+CDN 14 4 35.6M 0.28M 5.9 22.76

MLDN+RSDC+CDN

5 14 4 36.1M 0.28M 5.5 21.88

7 14 4 36.4M 0.28M 6.2 23.27

5 14 2 66.6M 0.52M 6.37 28.68

5 12 2 52.6M 0.41M 6.57 29.88

5 10 2 40.3M 0.31M 6.84 30.66

5 8 2 29.4M 0.22M 7.94 32.03

5 6 2 20.1M 0.14M 8.92 34.24

CDNV2 14 4 64.3M 0.51M 5.80 23.01

MLDN+CDNV2 14 4 34.1M 0.27M 5.62 21.91

MLDN+RSDC+CDNV2

5 14 4 34.6M 0.27M 5.02 20.45

7 14 4 35.2M 0.27M 5.88 22.30

5 14 2 65.1M 0.5M 5.89 27.25

5 12 2 51.7M 0.4M 6.00 28.18

5 10 2 39.9M 0.29M 6.92 30.91

5 8 2 28.2M 0.21M 7.68 31.24

5 6 2 18.6M 0.13M 8.66 33.46

Second, we changed the number of layers. In [14,15], the condensation factor (C) and
the number of groups (G) is 4. The condensation factor is the removal rate of the filter
weight. With this factor, it is impossible to experiment with varying reductions in L for
computational reasons such as size mismatch. Therefore, we changed this factor to 2. We
changed L by 2 from 6 to 14. The smallest number of FLOPs and parameters is when L = 6,
and the largest number of FLOPs and parameters is when L = 14. The classification error at
L = 10 in Figure 8a or L = 12 in Figure 8c,d is similar to the previous classification error, but
since the number of FLOPs is reduced by about 15 million, it is the best choice to obtain
the lowest classification error with respect to the the number of FLOPs. When the number
of layers is smaller than the L mentioned above, the classification error tends to increase
remarkably because M′, the number of output feature maps of RSDC, is not sufficient.

4.3.5. Comparison with SOTA

Table 4 compares the classification error rates with SOTA for various networks on
the CIFAR datasets. It can be seen that our proposed network (bottom row of Table 4)
significantly reduces the number of FLOPs and parameters compared to SOTA. In particular,
compared to CondenseNet, the number of FLOPs is reduced by about 55%, and the
classification error is reduced slightly by about 0.1%. Compared to CondenseNetV2, the
number of FLOPs is reduced by about 53%, the number of parameters is reduced by about
53%, and the classification error is reduced by about 0.78%. This proves the effectiveness
of the multipath method and RSDC. We also experimented with the ImageNet dataset.
Compared with CondenseNet, our proposed model (the bottom row of Table 5) reduces

Sensors 2021, 21, 7862 13 of 18

the number of FLOPs by more than 35% and improves top-1 classification error by more
than 1.6%.

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

FLOPs 107

6

7

8

9

10

11

12

13

C
la

ss
ifi

ca
tio

n
E

rr
.

ResNet+MLDN+RSDC+CDN, k
rsdc

=5,L=6

ResNet+MLDN+RSDC+CDN, k
rsdc

=5,L=8

ResNet+MLDN+RSDC+CDN, k
rsdc

=5,L=10

ResNet+MLDN+RSDC+CDN, k
rsdc

=5,L=12

ResNet+MLDN+RSDC+CDN, k
rsdc

=5,L=14

(a)

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

FLOPs 107

26

28

30

32

34

36

38

40

42

44

46

C
la

ss
ifi

ca
tio

n
E

rr
.

ResNet+MLDN+RSDC+CDN, k
rsdc

=5,L=6

ResNet+MLDN+RSDC+CDN, k
rsdc

=5,L=8

ResNet+MLDN+RSDC+CDN, k
rsdc

=5,L=10

ResNet+MLDN+RSDC+CDN, k
rsdc

=5,L=12

ResNet+MLDN+RSDC+CDN, k
rsdc

=5,L=14

(b)

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

FLOPs 107

6

7

8

9

10

11

12

13

C
la

ss
ifi

ca
tio

n
E

rr
.

ResNet+MLDN+RSDC+CDNV2, krsdc=5,L=6

ResNet+MLDN+RSDC+CDNV2, krsdc=5,L=8

ResNet+MLDN+RSDC+CDNV2, krsdc=5,L=10

ResNet+MLDN+RSDC+CDNV2, krsdc=5,L=12

ResNet+MLDN+RSDC+CDNV2, krsdc=5,L=14

(c)

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

FLOPs 107

26

28

30

32

34

36

38

40

42

44

46

C
la

ss
ifi

ca
tio

n
E

rr
.

ResNet+MLDN+RSDC+CDNV2, krsdc=5,L=6

ResNet+MLDN+RSDC+CDNV2, krsdc=5,L=8

ResNet+MLDN+RSDC+CDNV2, krsdc=5,L=10

ResNet+MLDN+RSDC+CDNV2, krsdc=5,L=12

ResNet+MLDN+RSDC+CDNV2, krsdc=5,L=14

(d)
Figure 8. Comparison of the classification error rates with respect to the number of FLOPs using RSDC with changes in the
number of layers when krsdc = 5 and G = C = 2. (a) ResNet+MLDN+RSDC+CDN on CIFAR-10. (b) ResNet+MLDN+RSDC+
CDN on CIFAR-100. (c) ResNet+MLDN+RSDC+CDNV2 on CIFAR-10. (d) ResNet+MLDN+RSDC+CDNV2 on CIFAR-100.

Table 4. Comparison of the classification error rate (%) with other convolutional networks on the
CIFAR-10 and CIFAR-100 datasets.

Model FLOPs Params CIFAR-10 CIFAR-100

ResNet-1001 [54] 2357M 16.1M 4.62 22.71

Stochastic-Depth-1202 [46] 2840M 19.4M 4.91 -

Wide-ResNet-28 [55] 5248M 36.5M 4.00 19.25

ResNeXt-29 [56] 10,704M 68.1M 3.58 17.31

DenseNet-190 [13] 9388M 25.6M 3.46 17.18

NASNet-A [40] - 3.3M 3.41 -

CondenseNet(light)-160 1084M 3.1M 3.46 17.55

CondenseNet-182 513M 4.2M 3.76 18.47

ResNet-based

CP [57] 62M - 8.2 -

PFEC [58] 90M 0.73M 6.94 -

LECN [59] 124M 1.21M 5.27 23.91

NISP [60] 142M 0.96M 6.88 -

FPGM [61] 121M - 6.24 -

DenseNet-based

LECN [59] 190M 0.66M 5.19 25.28

CondenseNet [14] 66M 0.52M 6.03 23.71

CondenseNetV2-146 [15] 64M 0.51M 5.8 23.01

MLDN+RSDC-based

MLDN+RSDC+CDN 36M 0.28M 5.5 21.8

MLDN+RSDC+CDNV2 35M 0.27M 5.02 20.45

Sensors 2021, 21, 7862 14 of 18

Table 5. Comparison of classification error rate (%) with other SOTA networks on the ImageNet
datasets.

Model FLOPs Params Top-1 Top-5

Inception V1 [22] 1448M 6.6M 30.2 10.1

1.0 MobileNet-224 [35] 569M 4.2M 29.4 10.5

ShuffleNet 2x [36] 524M 5.3M 29.1 10.2

NASNet-A (N = 4) [40] 564M 5.3M 26.0 8.4

ShuffleNetV2 1.5x [38] 299M - 27.4 9.4

1.0 MobileNetV2 [62] 300M 3.4M 28.0 9.0

MobileNetV3 L. 1.0x [39] 219M 5.4M 24.8 -

CondenseNet (G = C = 8) [14] 274M 2.9M 29.0 10.0

CondenseNetV2-C [15] 309M 6.1M 24.1 7.3

MLDN+RSDC+CDN 177M 2.3M 27.4 9.2

5. Discussion

We summarize the effect of our network as follows. First, the reuse of parameters is
excellent. Unlike the existing convolutional neural network models that use only the last
high-level feature maps and drop the previously produced feature maps, the DenseNet-
based model uses both high-complexity feature maps as well as low-level feature maps to be
more effective. Because the channel of DenseNet is narrow, it shows good performance with
small parameters compared to other networks. Therefore, regularization is not required.

Second, our model satisfies the model complexity by crossing connections and passes
one feature map to the other with a cross-shaped structure, not by increasing the number
of channels. In addition, this mixing of information between paths has the same effect as
shuffling for each group in ShuffleNet. The vanishing gradient problem is smoothed out by
transferring the error directly to the beginning of the network during the backpropagation
process.

Third, the numbers of FLOPs and parameters are reduced. In group convolution,
the number of parameters decreases in proportion to the number of groups according to
the relation:

HWk2 C
G

M
G

G =
HWk2CM

G
,

where H is the height of input feature maps, W is the width of input feature maps, k is
the convolution filter size, C is the number of input channels, M is the number of output
channels, and G is the number of groups.

Since our network is divided into P paths, the following should be satisfied:

HWk2 C
PG

M
PG

PG =
HWk2CM

PG
,

where P is the number of paths and the rest of the notation is the same as in the above
equation. That is, our network has the effect of reducing parameters by 1/P compared to
other models.

Finally, our network is divided by the number of paths defined in advance for each
denseblock, which is more beneficial for parallelization than existing networks. Besides,
our network can easily be plugged into any CNN that adopts the concatenation-based
feature reuse mechanism.

However, our network takes about 4 times longer to train as compared to the original
models (CondenseNet or CondenseNetV2). This is due to the following two reasons. First,
we concatenate the output feature maps through the composite function from one path
to the other. This process requires intensive computational resources while the original

Sensors 2021, 21, 7862 15 of 18

network does not due to the absence of the process. Second, the computational cost
increases in the process of splitting the input feature maps and concatenating the output
feature maps.

6. Conclusions

This paper has dealt with the effects of multiple paths and randomly selected dilated
convolutions on lightweight deep networks. Our proposed network has multiple paths,
and the diversity is enhanced by adding a ResNet in front of one path. We concatenate
the output feature maps through the composite function from one path to the other. This
helps to produce rich feature maps and is more suitable for parallelization than other
models. The architecture of the proposed network is modularized and can be expanded
by increasing or decreasing the number of paths. By adding RSDC instead of the 3× 3
standard convolution, we obtain the effect of a large receptive field and improve the result.
We compared our network with various SOTA networks and demonstrated better results
(more than half the number of FLOPs and parameters, but similar classification error) on
the CIFAR10/100 dataset.

In the future, we plan to apply multiple paths and RSDC to models other than
DenseNet-based networks. Moreover, we need to train on datasets with larger input
images, such as ImageNet [45]. It is expected that this will allow us to achieve meaningful
results applying the large kernel size of RSDC.

Author Contributions: Conceptualization, S.P.; methodology, S.P.; software, S.P.; validation, S.P.;
formal analysis, S.P.; investigation, S.P.; resources, S.P.; data curation, S.P.; writing—original draft
preparation, S.P.; writing—review and editing, S.P. and D.E.C.; visualization, S.P.; supervision, D.E.C.;
project administration, S.P.; funding acquisition, D.E.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This work has been supported by the NRF grant funded by the Korean government
(MSIT) (2021R1A2C2010585), by IITP (2021-0-00590, Decentralized High-Performance Consensus for
Large-Scale Blockchains), and by the BK21 FOUR program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: CIFAR-10/100 dataset (accessed on 25 November 2021): https://
www.cs.toronto.edu/~kriz/cifar.html, ILSVRC dataset (accessed on 25 November 2021): https:
//www.image-net.org/challenges/LSVRC/.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional neural network
DCNN Deep convolutional neural network
GPU Graphics processing units
SOTA State-of-the-art
MLDN Multipath lightweight deep network
RSDC Randomly selected dilated convolution
CDN CondenseNet
CDNV2 CondenseNetV2
FLOPs Floating point operations
Params the number of parameters
FC Fully connected layers

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.image-net.org/challenges/LSVRC/
https://www.image-net.org/challenges/LSVRC/

Sensors 2021, 21, 7862 16 of 18

References
1. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

2. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 91–99. [CrossRef]

3. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

4. Dai, J.; Li, Y.; He, K.; Sun, J. R-fcn: Object detection via region-based fully convolutional networks. In Proceedings of the
Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 379–387.

5. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

6. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 21–37.

7. Shen, Z.; Liu, Z.; Li, J.; Jiang, Y.G.; Chen, Y.; Xue, X. Dsod: Learning deeply supervised object detectors from scratch. In Proceedings
of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1919–1927.

8. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

9. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

10. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the European Conference on
Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 818–833.

11. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
12. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
13. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
14. Huang, G.; Liu, S.; Van der Maaten, L.; Weinberger, K.Q. Condensenet: An efficient densenet using learned group convolutions.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 2752–2761.

15. Yang, L.; Jiang, H.; Cai, R.; Wang, Y.; Song, S.; Huang, G.; Tian, Q. CondenseNet V2: Sparse Feature Reactivation for Deep
Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25
June 2021; pp. 3569–3578.

16. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

17. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

18. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

19. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef] [PubMed]

20. Zhuge, M.; Fan, D.P.; Liu, N.; Zhang, D.; Xu, D.; Shao, L. Salient object detection via integrity learning. arXiv 2021,
arXiv:2101.07663.

21. Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400.
22. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

23. Han, D.; Kim, J.; Kim, J. Deep pyramidal residual networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5927–5935.

24. Kim, Y.; Choi, H.; Lee, J.; Kim, J.S.; Jei, H.; Roh, H. Towards an optimized distributed deep learning framework for a heterogeneous
multi-GPU cluster. Clust. Comput. 2020, 23, 2287–2300. [CrossRef]

25. Sergeev, A.; Del Balso, M.H. fast and easy distributed deep learning in TensorFlow. arXiv 2018, arXiv:1802.05799.
26. Kim, S.; Yu, G.I.; Park, H.; Cho, S.; Jeong, E.; Ha, H.; Lee, S.; Jeong, J.S.; Chun, B.G. Parallax: Sparsity-aware data parallel training

of deep neural networks. In Proceedings of the Fourteenth EuroSys Conference 2019, Dresden, Germany, 25–28 March 2019;
pp. 1–15.

27. Krizhevsky, A. One weird trick for parallelizing convolutional neural networks. arXiv 2014, arXiv:1404.5997.
28. Jia, Z.; Zaharia, M.; Aiken, A. Beyond data and model parallelism for deep neural networks. arXiv 2018, arXiv:1807.05358.

http://doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
http://dx.doi.org/10.1007/s10586-020-03144-9

Sensors 2021, 21, 7862 17 of 18

29. Park, J.H.; Yun, G.; Chang, M.Y.; Nguyen, N.T.; Lee, S.; Choi, J.; Noh, S.H.; Choi, Y.r. Hetpipe: Enabling large {DNN} training on
(whimpy) heterogeneous {GPU} clusters through integration of pipelined model parallelism and data parallelism. In Proceedings
of the 2020 {USENIX} Annual Technical Conference ({USENIX}{ATC} 20), Boston, MA, USA, 15–17 July 2020; pp. 307–321.

30. Koliousis, A.; Watcharapichat, P.; Weidlich, M.; Mai, L.; Costa, P.; Pietzuch, P. CROSSBOW: Scaling deep learning with small
batch sizes on multi-gpu servers. arXiv 2019, arXiv:1901.02244.

31. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning both weights and connections for efficient neural networks. arXiv 2015, arXiv:1506.02626.
32. Chen, Y.; Li, J.; Xiao, H.; Jin, X.; Yan, S.; Feng, J. Dual path networks. arXiv 2017, arXiv:1707.01629.
33. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.
34. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.
35. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient

convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.
36. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 6848–6856.

37. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 4510–4520.

38. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131.

39. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for
mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019;
pp. 1314–1324.

40. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8697–8710.

41. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.

42. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the ICML, Haifa, Israel,
21–24 June 2010.

43. Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122.
44. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Tech Report; 2009. Available online: https:

//www.cs.toronto.edu/kriz/cifar.html (accessed on 25 November 2021).
45. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of

the 2009 IEEE Conference on Computer Vision and Pattern Recognition,Miami, Florida, USA, 20–25 June 2009; pp. 248–255.
46. Huang, G.; Sun, Y.; Liu, Z.; Sedra, D.; Weinberger, K.Q. Deep networks with stochastic depth. In Proceedings of the European

Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany,
2016; pp. 646–661.

47. Lee, C.Y.; Xie, S.; Gallagher, P.; Zhang, Z.; Tu, Z. Deeply-supervised nets. In Proceedings of the Artificial Intelligence and Statistics,
PMLR, San Diego, CA, USA, 9–12 May 2015; pp. 562–570.

48. Romero, A.; Ballas, N.; Kahou, S.E.; Chassang, A.; Gatta, C.; Bengio, Y. Fitnets: Hints for thin deep nets. arXiv 2014, arXiv:1412.6550.
49. Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for simplicity: The all convolutional net. arXiv 2014,

arXiv:1412.6806.
50. Srivastava, R.K.; Greff, K.; Schmidhuber, J. Training very deep networks. arXiv 2015, arXiv:1507.06228.
51. Loshchilov, I.; Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983.
52. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
53. Caterini, A.L.; Chang, D.E. Deep Neural Networks in a Mathematical Framework; Springer: Berlin/Heidelberg, Germany, 2018.
54. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the European Conference on

Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 630–645.
55. Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv 2016, arXiv:1605.07146.
56. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500.
57. He, Y.; Zhang, X.; Sun, J. Channel pruning for accelerating very deep neural networks. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1389–1397.
58. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2016, arXiv:1608.08710.
59. Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning efficient convolutional networks through network slimming. In

Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2736–2744.

https://www.cs.toronto.edu/kriz/cifar.html
https://www.cs.toronto.edu/kriz/cifar.html

Sensors 2021, 21, 7862 18 of 18

60. Yu, R.; Li, A.; Chen, C.F.; Lai, J.H.; Morariu, V.I.; Han, X.; Gao, M.; Lin, C.Y.; Davis, L.S. Nisp: Pruning networks using
neuron importance score propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–22 June 2018; pp. 9194–9203.

61. He, Y.; Liu, P.; Wang, Z.; Hu, Z.; Yang, Y. Filter pruning via geometric median for deep convolutional neural networks acceleration.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June
2019; pp. 4340–4349.

62. Howard, A.; Zhmoginov, A.; Chen, L.C.; Sandler, M.; Zhu, M. Inverted residuals and linear bottlenecks: Mobile networks for
classification, detection and segmentation. arXiv 2018, arXiv:1801.04381.

	Introduction
	Related Work
	Object Classification
	Lightweight CNN Architectures

	Methods
	Preprocessing
	Multipath Lightweight Deep Network
	Randomly Selected Dilated Convolution

	Experimental Results
	Datasets
	Training Settings
	Performance Evaluation
	The Effect of ResNet
	The Effect of Multiple Paths
	The Effect of Changing MLDN Hyperparameters
	The Effect of RSDC
	Comparison with SOTA

	Discussion
	Conclusions
	References

