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Abstract: Many of the current research works are focused on the development of different control
systems for commercial vehicles in order to reduce the incidence of risky driving situations, while also
improving stability and comfort. Some works are focused on developing low-cost embedded systems
with enough accuracy, reliability, and processing time. Previous research works have analyzed
the integration of low-cost sensors in vehicles. These works demonstrated the feasibility of using
these systems, although they indicate that this type of low-cost kit could present relevant delays
and noise that must be compensated to improve the performance of the device. For this purpose,
it is necessary design controllers for systems with input and output delays. The novelty of this
work is the development of an LMI-Based H∞ output-feedback controller that takes into account the
effect of delays in the network, both on the sensor side and the actuator side, on RSC (Roll Stability
Control) systems. The controller is based on an active suspension with input and output delays,
where the anti-roll moment is used as a control input and the roll rate as measured data, both with
delays. This controller was compared with a controller system with a no-delay consideration that was
experiencing similar delays. The comparison was made through simulation tests with a validated
vehicle on the TruckSim® software.

Keywords: networked control systems; input and output delay; H∞ controller; vehicle dynamics;
roll stability control

1. Introduction

Many of the current research works are focused on the development of different
control systems for commercial vehicles in order to significantly reduce the incidence
of dangerous driving situations and improve vehicle stability and comfort. One of the
accidents with the worst consequences in heavy-duty vehicles is a rollover. For that reason,
previous works [1–3] have used different methods such as differential braking, four-wheel
steering, or active stabilizers in order to design rollover controllers to achieve the desired
vehicle behavior. In [4], an LQR-based controller with an estimation of the road bank
via an active suspension was presented. Several authors designed a Unified Chassis
Control system using a roll state estimator in order to prevent rollover [5] as well as both
rollover prevention and lateral stability [6]. Related to the design of the rollover prevention
controller, these can act on different elements of the vehicle. In [7], a differential braking
rollover mitigation strategy for wheeled vehicles was presented. In [8], the C/GMRES
method was used to solve an optimal rollover control problem in real time. In other
studies [9], the actuator used to stabilize the roll angle was an active suspension.

On the other hand, the analysis and design of the controller focused on its imple-
mentation in embedded systems in vehicular applications is the subject of study in other
works [10–12]. These controllers require all the main values of vehicle dynamics such as
angular positions, accelerations, and angular rates [13–16]. Small size, fast processing time,
and high precision are the main characteristics that these systems must have for vehicle
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applications. Furthermore, these systems must be low-cost in order to not increase the price
of production of the vehicles. Previous works [17,18] analysed the integration of low-cost
sensors in vehicles and the use of these values to estimate the roll angle with the use of
different methods [19,20]. These research works demonstrated the feasibility of using these
systems. However, these works also indicated that this type of low-cost kit could present
relevant delays and noise that must be compensated in order to improve the performance
of the system.

The phenomenon of time delay appears in many studies about complex systems
control. Nowadays, vehicles have communication networks that connect their components,
such as sensors, controllers, and actuators, which generate delays in sending data between
these components. These delays can compromise the accuracy of the calculation of system
variables or lengthen the actuation of the controllers, which may cause dangerous situations
in real-time security applications. This has led to the design of the so-called Networked
Control Systems (NCS) [21]. Consequently, several studies have focused on time delay
compensation in state, input, or output signals. In [22], the transfer alignment time delay
of the strapdown Inertial Navigation Systems (INS) was filtered using the H∞ method.
In [23], an H∞ observer combined with NN for the estimation of the sideslip and roll angle
with network-induced delays was designed. In other studies [24], a delay controller was
designed for active vibration suppression systems. In [25], a controller was used to stabilize
the lateral vehicle dynamics with a state delay of an active front steering system for electric
vehicles. Other authors have designed an iterative learning system control with time-delay
compensation for specific applications [26].

The novelty of this work is the development of an LMI-Based H∞ output-feedback
controller that compensates the input and output delays in a Roll Stability Control (RSC)
system. This controller is designed for automotive applications based on low-cost systems
such as those presented in [17,19,20]. This controller was implemented in a simulation
environment using a validated vehicle model with TruckSim®. This article is organized
as follows: In Section 2, the methodology is presented, including problem formulation,
vehicle model characterization, and experiment definition. The simulation results and the
calculation of the RMS values are presented in Section 3. Finally, the discussion of the
results and the conclusion are presented in Section 4.

2. Methodology

This section describes the methodology adopted to develop an H∞ output-feedback
networked control system for vehicle roll stability with input and output delays.

The structure of the proposed controller is shown in Figure 1. The roll rate φ̇ is
the observable variable obtained from a gyro-oscilloscope that is already incorporated
in current vehicles or from an IMU (Inertial Measurement Unit) located at the center of
gravity of a real vehicle. In order for the price of current vehicles not to increase, this sensor
can be a low-cost IMU that can give the same performance as high-performance sensors, as
presented in [18–20].

In this work, it is assumed that the plant measurements from sensors are sent to the
controller through the network, and the control inputs are computed by the controller
and transmitted back to the actuators through the network. Both the control input u(t)
computed by the controller and the sensor measurements y(t) will experience delays. As
depicted in Figure 2, a delay h is applied to the control input, and a delay ρ is applied to
the data sensor. The lateral acceleration ay(t) obtained from an IMU and the road bank
angle φr(t) are considered as external disturbances.
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Figure 1. Controller Structure.

Figure 2. Control block diagram.

2.1. Vehicle Model Used in the Controller Design

The vehicle model used in the H∞ feedback-observer controller design is based on
a Mercedes Benz Sprinter presented in [27]. This model describes the roll vehicle motion
(see Figure 3), where φ is the roll angle and ay is the lateral acceleration.

Figure 3. Vehicle model used in the controller design.
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The state space representation of the vehicle roll model used to define the controller
presented in this work, taking into account the network delay, is as follows:

ẋ(t) = Ax(t) + Buu(t− h) + Bay ay(t) + Bφr φr(t) + Bdds(t) (1)

y(t) = C1x(t) (2)

z(t) = C2x(t) (3)

where x = [φ, φ̇]T is the state vector given by the roll angle φ and roll rate φ̇, y = φ̇ is
the measured output, u = Mx is the control input, Mx is the anti-roll moment, z is the
controlled vector, ay is the lateral acceleration, φr is the road bank angle, ds is the unknown
vector disturbance, and

A =

[
0 1

(m∗g∗hcr)−Kr
Ixx

Cr
Ixx

]
; Bu =

[
0
1

Ixx

]
; Bay =

[
0

m·hcr
Ixx

]

Bφr =

[
0

m·hcr ·g
Ixx

]
; Bd =

[
1
1

]
;

C1 =
[

0 1
]

C2 =
[

1 1
]

(4)

Table 1 shows all the parameters of the vehicle model.

Table 1. Vehicle parameters.

Parameter Description Value

Ixx Roll moment of inertia 500 kg m2

ms Sprung mass 1700 kg
hcr Sprung mass height about the roll axis 0.35 m
Cr Total torsional damping 3538.08 N m/rad
Kr Stiffness coefficient 18,438.02 N/m2

l f Distance from the Gravity Center to the front axle 1.51 m
lr Distance from the Gravity Center to the rear axle 1.99 m
l Wheelbase 3.5 m

t f Half vehicle track, front axle 0.819 m
tr Half vehicle track, rear axle 0.819 m

2.2. H∞ Output-Feedback Control Design Considering Network Delays

For the design of the proposed H∞ output-feedback controller, the control input given
in Equation (1) is defined as follows:

u(t) = Ky(t− ρ) (5)

where K is the gain controller to be determined. In this case, the control input will depend
on the observed measure, the roll rate. This measurement signal suffers a ρ delay because
it is sent through the communication network. Thus, the system given in Equation (1) can
be rewritten as:

ẋ(t) = Ax(t) + BuKy(t− τ) + Bay ay(t) + Bφr φr(t) + Bdds(t) (6)

with τ = h + ρ.
Combining Equations (2) and (6), we get:

ẋ(t) = Ax(t) + BuKC1x(t− τ) + Bww(t) (7)



Sensors 2021, 21, 7850 5 of 23

where w(t) =
[

ay(t) φr(t) ds(t)
]T is the input disturbance and Bw =

[
Bay Bφr Bd

]
.

The network transmission delays are bounded as 0 ≤ h ≤ h̄ and 0 ≤ ρ ≤ ρ̄, where h̄
and ρ̄ are the maximum delays for the input and output signals, respectively.

Theorem 1. For given scalars h̄ > 0, φ̄ > 0, the networked system (7) is asymptotically stable
with an H∞ performance index γ if there exist a positive scalar γ, defined positive symmetric
matrices X = XT > 0, H = HT > 0, Y = YT > 0, Q = QT > 0, and any matrix W, which satisfy the
following LMIs:

XAT + AX + BuW + WTBu
T 0 Bw −BuY XAT + WTBu

T XC2
T WT

∗ −L 0 0 0 0 0
∗ ∗ −γ2I 0 Bw

T 0 0
∗ ∗ ∗ −1

τ Y YBu
T 0 0

∗ ∗ ∗ ∗ −1
τ Q 0 0

∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ −L


≺ 0 (8)

[
−2X + Q −WT

W −Y

]
≺ 0 (9)

Proof. Considering τ̄ = h̄+ρ̄ and using the Newton–Leibniz formulas,

BuKC1

∫ t

t−τ
ẋ(s)ds = BuKC1x(t)− BuKC1x(t− τ) (10)

BuKC1x(t− τ) = BuKC1x(t)− BuKC1

∫ t

t−τ
ẋ(s)ds (11)

Equation (7) can be rewritten as follows:

ẋ = Ax(t) + BuKC1x(t)− BuKC1

∫ t

t − τ
ẋ(s)ds + Bww(t) (12)

We then choose the following Lyapunov–Krasovskii functional candidate:

V(t) = V1(t) + V2(t) + V3(t) (13)

with
V1(t) = xT(t)Px(t) (14)

V2(t) =
∫ t

t − τ
ẋT(s)(C1K)TSKC1x(s)ds (15)

V3(t) =
∫ t

t − τ
(s− (t− τ))ẋT(s)(KC1)

TR(KC1)ẋ(s)ds (16)

and P = PT > 0, R = RT > 0, S = ST > 0.
Taking the derivative of V(t) with respect to t along the trajectory of system (7), we

have the following equation:

V̇1(t) = ẋT(t)Px(t) + xT(t)Pẋ(t) = xT(t)
[
(A + BuKC1)

TP + P(A + BuKC1)
]
x(t)

−2x(t)TPBuKC1

∫ t

t−τ
ẋ(s)ds + 2x(t)TPBww(t)

(17)

V̇2(t) = xT(t)(C1K)TSKC1x(t)− xT(t− τ)(C1K)TSKC1x(t− τ) (18)

Taking into account the inequality

−
∫ t

t − σ
ẋT(s)Tẋ(s)ds ≤ − 1

σ

[∫ t

t−σ
ẋ(s)ds

]T
T
[∫ t

t−σ
ẋ(s)ds

]
(19)
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we obtain

V̇3(t) = xT(t)(A + BuKC1)
Tτ(KC1)

TR(KC1)(A + BuKC1)x(t)

−
[∫ t

t − τ
ẋT(s)ds

]
(KC1)

TBu
Tτ(KC1)

TR(KC1)Bu(KC1)

[∫ t

t − τ
ẋ(s)ds

]
+wT(t)Bw

Tτ(KC1)
TR(KC1)Bww(t)− 1

τ

[∫ t

t−τ
ẋ(s)ds

]T
(KC1)

TR(KC1)

[∫ t

t−τ
ẋ(s)ds

] (20)

Furthermore, the closed-loop system defined by Equation (12) has an H∞ performance
under zero initial condition if the following inequality is satisfied:

‖ zTz ‖2< γ ‖ wTw ‖ (21)

Then, system (12) is asymptotically stable and has an H∞ performance if the following
inequality is satisfied:

V̇(t) + z(t)Tz(t)− γ2w(t)Tw(t) < 0 (22)

xT(t)
[
(A + BuKC1)

TP + P(A + BuKC1)
]
x(t)− 2x(t)TPBuKC1

∫ t

t−τ
ẋ(s)ds

+2x(t)TPBww(t)− xT(t)(C1K)TSKC1x(t)− xT(t− τ)(C1K)TSKC1x(t− τ)

+xT(t)(A + BuKC1)
Tτ(KC1)

TR(KC1)(A + BuKC1)x(t)

−
[∫ t

t − τ
ẋT(s)ds

]
(KC1)

TBu
Tτ(KC1)

TR(KC1)Bu(KC1)

[∫ t

t − τ
ẋ(s)ds

]
+wT(t)Bw

Tτ(KC1)
TR(KC1)Bww(t)− 1

τ

[∫ t

t−τ
ẋ(s)ds

]T
(KC1)

TR(KC1

[∫ t

t−τ
ẋ(s)ds

]
+(C2x(t))TC2x(t)− γ2w(t)Tw(t) < 0

(23)

Now, let a new state vector be defined as follows:

ψT(t) =
[

xT(t), xT(t− τ)(C1K)T , wT(t),
∫ t

t−τ
ẋT(s)ds(KC1)

T
]

(24)

Then,
ψ(t)TΣ0ψ(t) ≺ 0 (25)

where

Σ0 =


411 0 PBw −PBu
∗ −S 0 0
∗ ∗ −γ2I 0
∗ ∗ ∗ −1

τ R

+


41

T

0
Bw

T

Bu
T

(τ(KC1)
TR(KC1))


41
0

Bw
Bu


T

(26)

and
411 = (A + BuKC1)

TP + P(A + BuKC1) + C2
TC2 + (C1K)TSC1K (27)

41 = A + BuKC1 (28)

Equation (25) can then be rewritten as follows:

Σ0 ≺ 0 (29)

We define the matrix η with

η =


P−1 0 0 0

0 S−1 0 0
0 0 I 0
0 0 0 R−1

 (30)
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Premultiplying and postmultiplying in Equation (26) by ηT and η
P−1 0 0 0

0 S−1 0 0
0 0 I 0
0 0 0 R−1



411 0 PBw −PBu
∗ −S 0 0
∗ ∗ −γ2I 0
∗ ∗ ∗ −1

τ R




P−1 0 0 0
0 S−1 0 0
0 0 I 0
0 0 0 R−1

+


P−1 0 0 0
0 S−1 0 0
0 0 I 0
0 0 0 R−1



41

T

0
Bw

T

Bu
T

(τ(KC1)
TR(KC1))


41
0

Bw
Bu


T

P−1 0 0 0
0 S−1 0 0
0 0 I 0
0 0 0 R−1

 =


4̂11 0 Bw −BuR−1

∗ −S−1 0 0
∗ ∗ −γ2I 0
∗ ∗ ∗ −1

τ R−1

+


4̂T

1
0

Bw
T

R−1Bu
T

(τ(KC1)
TR(KC1))


4̂1
0

Bw
BuR−1


T

(31)

with

4̂11 = P−1(A + BuKC1)
T + (A + BuKC1)P−1 + (C2P−1)

T
(C2P−1) + (C1KP−1)

T
S(C1KP−1) (32)

4̂1 = P−1(A + BuKC1) (33)

We define the matrices W, X, Y, and L as:

W = KC1P−1, X = P−1, Y = R−1, L = S−1 (34)

and apply the change of variable
4̄11 0 Bw −BuY
∗ −L 0 0
∗ ∗ −γ2I 0
∗ ∗ ∗ −1

τ Y

+


4̂T

1
0

Bw
T

YBu
T

(τ(KC1)
TY−1(KC1))


4̂1
0

Bw
BuY


T

(35)

4̄11 = XAT + AX + WTBu
T + BuW + XC2

TC2X + WL−1W (36)

4̄1 = P−1(A + BuKC1) (37)

If the following inequality is satisfied[
−2X + Q WT

W −Y

]
≺ 0 (38)

with Q = QT > 0, X = XT > 0, and the Schur complement is applied, we get the following:

−2X + Q + WTY−1W ≺ 0 (39)

Taking W = KC1X and the following inequality:

(X−Q)Q−1(X−Q) = XQ−1X− 2X + Q � 0 (40)

it is guaranteed that (39) implies

KC1
TY−1KC1 ≺ Q−1 (41)

Using (41), Equation (35) can be transformed into:
4̄11 0 Bw −BuY
∗ −L 0 0
∗ ∗ −γ2I 0
∗ ∗ ∗ −1

τ Y

+


4̂T

1
0

Bw
T

YBu
T

(τQ−1)


4̂1
0

Bw
BuY


T

(42)



Sensors 2021, 21, 7850 8 of 23

After applying the Schur complement,
4̄11 0 Bw −BuY XAT + WTBu

T

∗ −L 0 0 0
∗ ∗ −γ2I 0 Bw

T

∗ ∗ ∗ −1
τ Y YBu

T

∗ ∗ ∗ ∗ −1
τ Q

 (43)

After applying the Schur complement again, it is understood that for any constant
time delay τ < τ̄, the system (1) is stable and that there exist positive and symmetric
matrices X, L, Y, and Q such that the following LMIs are feasible:

XAT + AX + BuW + WTBu
T 0 Bw −BuY XAT + WTBu

T XC2
T WT

∗ −L 0 0 0 0 0
∗ ∗ −γ2I 0 Bw

T 0 0
∗ ∗ ∗ −1

τ Y YBu
T 0 0

∗ ∗ ∗ ∗ −1
τ Q 0 0

∗ ∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ ∗ −L


≺ 0 (44)

[
−2X + Q −WT

W −Y

]
≺ 0 (45)

From Equations (22)–(25), we obtain

V̇ + zTz− γ2wTw < ψTΣ1ψ (46)

Under a zero initial condition, integrating the inequality given in Equation (46) from
t = 0 to t = ∞ yields Equation (21) for all non-zero external disturbances, then an H∞
performance is guaranteed. Similarly, if w(t) = 0, it follows that V̇ < 0, which means that
the system is asymptotically stable.

The proof is complete.

2.3. H∞ Output-Feedback Controller Design without Considering Network Delays

In order to compare the performance of the proposed controller in Section 2.2, the
results were compared with the results obtained using an H∞ controller that did not
consider the delay in its designs. The system (1) can be redesigned as follows:

ẋ(t) = Ax(t) + Buu(t) + Bay ay(t) + Bφr φr(t) + Bdds(t) (47)

y(t) = C1x(t) (48)

z(t) = C2x(t) (49)

The Lyapunov–Krasovskii functional candidate in this case is:

V(t) = V1(t) (50)

with
V1(t) = xT(t)Px(t) (51)

Developing the system in the same way as in Section 2.2, the system (47) is stable
with an H∞ performance, and there exists a positive and symmetric matrix X such that the
following LMI is feasible: XAT + AX + BuW + WTBu

T Bw XC2
T

∗ −γ2I 0
∗ ∗ −I

 ≺ 0 (52)
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2.4. Suspension Force Distribution Block

The controller selected for the roll angle stabilization and performance verification of
the developed system is based on an active suspension [28]. The considered vehicle has
four active suspension systems, where the force on each shock absorber can be individually
regulated. The forces to be exerted on each actuator mounted on the suspension are
determined by the following expressions (see Figure 4):

Ff l = Front left suspension vertical force = 0.5 · u(t− h) · lr
t f · l

(53)

Ff r = Front right suspension vertical force = −0.5 · u(t− h) · lr
t f · l

(54)

Frl = Rear left suspension vertical force = 0.5 · u(t− h) ·
l f

tr · l
(55)

Frr = Rear right suspension vertical force = −0.5 · u(t− h) ·
l f

tr · l
(56)

All the values used to calculate the vertical forces are defined in Table 1.

φ

Ffr

Ffl

Frl

2∙tr

lr

lf

Figure 4. Distribution of active forces.

During the simulation, the forces applied to the suspension change according to the
value u. The control input u is the anti-roll moment that must be provided to the vehicle
so that it maintains its stability. Figures 5–7 show the control input u for the three tests.
With this information, in the next section, the PSD value is calculated to evaluate the
chattering phenomenon in order to avoid damages in the actuator that could derive from
high-frequency changes.
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Figure 5. Control input u for Test 1.

Figure 6. Control input u for Test 2.

Figure 7. Control input u for Test 3.
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3. Results

The control gain, K, of the proposed controller that considered the delays in the
communication network was obtained by solving the following minimization problem:

min γ2

subject to X = XT � 0, H = HT � 0, Y = YT � 0,
Q = QT � 0

(57)

and Equations (8) and (9).
The values of the matrices, obtained by solving the minimization problem using the

MATLAB® LMI ToolboxTM, are as follows:

X = 1 · 10−12
[

0.0043 0.0567
0.0567 0.7181

]
(58)

W = 1 · 10−10[ −0.1125 −0.5985
]

(59)

K = W · inv(C1X) = −84.06 (60)

γ2 = 0.09932 (61)

The maximum delay that allowed for the minimization problem to be solved is:

τ̄ = h + ρ = 0.1 s (62)

For the controller that did not consider the delay in its design, the control gain, K, was
calculated as follows:

min γ2

subject to X = XT � 0,
(63)

and Equation (52).
The values of the matrices obtained by solving the minimization problem are:

X =

[
41.5153 −1.1369
−1.1369 5.5769

]
(64)

W = 1 · 107[ 3.1153 −0.1178
]

(65)

K = W · inv(C1X) = −1.29× 106 (66)

γ2 = 0.09932 (67)

3.1. Experiment Specification

Several tests were performed to measure the performance of the controller through the
TruckSim® software and MATLAB-Simulink®. As mentioned in Section 2.1, a Mercedes
Benz Sprinter model was used to carry out the simulation. This model was experimen-
tally validated in [4,29]. The experiments selected for the simulated environment were a
recreation of the experiments performed in previous works with a real vehicle [17–20]:

• Test 1: A roundabout with a radius of 22 m, at a constant speed of 30 km/h on dry
pavement (see Figure 8).

• Test 2: A double lane change at a constant speed of 100 km/h on dry pavement (see
Figure 9).

• Test 3: The same roundabout in Test 1, at a constant speed of 120 km/h, in order to
evaluate the performance in a more severe test (see Figure 8).
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Figure 8. Test 1 and Test 3: Roundabout with a radius of 22 m.

Figure 9. Test 2: Double lane change.

For each test, three different scenarios were considered:

• A simulated scenario, with a delay of τ applied using the controller proposed in
Section 2.2. This simulated scenario will appear in blue with the label “H∞ Controller
(Proposed in this research)” in all the figures of Section 3.

• A simulated scenario without a control system. This simulated scenario will appear
in red with the label “System Without Control” in all the figures of Section 3.

• A simulated scenario, with a delay of τ applied using an H∞ controller that did not
take into account the delay in its design. This simulated scenario will appear in yellow
with the label H∞ Controller (Without delay in its design)” in all the figures of Section 3.

In all the scenarios, the roll angle of the vehicle was measured. To quantify the perfor-
mance of the controller, the RMS and maximum errors of the roll angle were calculated.
The roll angle error was established using an angle of 0º as the ground truth, that is, there
is no roll in the vehicle. In addition to the two variables mentioned above, the normalized
load transfer (NLT) in both axles was calculated. This variable is one of the most direct
and accurate measures for evaluating RSC performance. It guarantees that the vehicle will
not roll over when the normalized load transfer for both axles is below the value ± 1. The
normalized load transfer can be calculated as [30]:

NLTf =
4Fz f

Fz f
, NLTr =

4Fzr

Fzr
(68)

where Fz f and Fzr are the total load on the front and rear axle, respectively:
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Fz f =
lr

l f + lr
mg; Fzr =

l f

l f + lr
mg, (69)

4Fzr and4Fz f are the lateral load transfer values for the front and rear axle, respectively:

4Fz f =
Krφ f

tr
; 4Fzr =

Krφr

tr
(70)

The delay τ used during the simulations is the maximum delay that allows for the
LMI (8) to have a solution (τ = 0.1 s). For the simulations, the delays considered were
h = 0.05 s and ρ = 0.05 s.

The simulation results for the three tests defined in Section 3.1 are shown below.

3.1.1. Test 1: Roundabout

This first test was carried out by simulating the vehicle negotiating a roundabout with
a radius of 22 m, at a constant speed of 30 km/h, on dry pavement. Figures 10 and 11 show
the roll rate and roll angle obtained in the three scenarios presented in Section 3.1. In blue
is a simulated scenario with a delay of τ = 0.1 s applied using the controller proposed. In
red is a simulated scenario without a control system. In yellow is a simulated scenario with
a delay of τ = 0.1 s applied using an H∞ controller that did not take into account the delay
in its design. In Figure 11, it can be seen that the values obtained with the controller are
lower than those of the systems it was compared with. In Table 2, the values are given.
Results show that the vehicle roll angle decreases when using the controller proposed in
this work as compared to a system with a standard H∞ controller. Concerning the RMS
and maximum errors, the difference between the proposed controller and the one that did
not consider delay in its design is 0.55º and 0.91º, respectively. The differences between the
proposed system and the system without a control are higher: 1.09º for the RMS error and
1.47º for the maximum error.

Table 2. RMS and maximum errors of roll angle for test 1.

RMS Error (º) Maximum Error (º)

H∞ Controller (Proposed in this research) 2.05 3.44
System Without Control 3.14 4.91

H∞ Controller (Without delay in its design) 2.60 4.35

Figure 10. Roll rate for test 1: Roundabout at 30 km/h.
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Figure 11. Roll angle for test 1: Roundabout at 30 km/h.

Furthermore, the NLT value of the vehicle was calculated (see Figures 12 and 13). As
can be seen in Table 3, the NLT value follows the same trend as in the previous simulation.
The difference between the controller designed in this research and the controller that
did not consider the delay is 0.07 for both axles. Regarding the uncontrolled system, the
difference is 0.11 for the front axle and 0.1 for the rear axle.

Table 3. Normalized Load Transfer for test 1.

Normalized Load Transfer Normalized Load Transfer
Front Axle Rear Axle

H∞ Controller (Proposed in this research) 0.25 0.24
System Without Control 0.36 0.34

H∞ Controller (Without delay in its design) 0.32 0.31

Figure 12. NLT of front axle for test 1: Roundabout at 30 km/h.
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Figure 13. NLT of rear axle for test 1: Roundabout at 30 km/h.

Additionally, the chattering phenomenon was analysed; this was caused by high-
frequency changes in the control signal. This chatter may damage the actuator and com-
promise the control performance. Figure 14 shows the power spectral density (PSD) for the
control input.

Figure 14. Frequency response for test 1: Roundabout at 30 km/h.

3.1.2. Test 2: Double Lane Change

This second test was carried out by simulating the vehicle doing a slalom manoeuvre
at 100 km/h on dry pavement. Figures 15 and 16 show the roll rate and roll angle obtained
in the three scenarios presented in Section 3.1. In blue is a simulated scenario with a delay
of τ = 0.1 s applied using the controller proposed. In red is a simulated scenario without a
control system. In yellow is a simulated scenario with a delay of τ = 0.1 s applied using
an H∞ controller that did not take into account the delay in its design. In Figure 16, it can
be seen that the values obtained with the controller are lower than those of the systems it
was compared with. To quantify the performance of the controller, the RMS and maximum
errors of the roll angle were calculated. In Table 4, the values are given. Results show
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that the vehicle roll angle decreases when using the controller proposed in this work as
compared to a system with a standard H∞ controller. Concerning the RMS and maximum
errors, the difference between the proposed controller and the one that did not consider the
delay in its design is 0.31º and 0.46º, respectively. The differences between the proposed
system and the uncontrolled system are higher: 0.8º for the RMS error and 1.13º for the
maximum error.

Table 4. RMS and maximum errors of the roll angle for test 2.

RMS Error (º) Maximum Error (º)

H∞ Controller (Proposed in this research) 1.56 2.35
System Without Control 2.36 3.48

H∞ Controller (Without delay in its design) 1.87 2.81

Figure 15. Roll rate for test 2: Double lane change at 100 km/h.

Figure 16. Roll angle for test 2: Double lane change at 100 km/h.
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Moreover, the NLT value of the vehicle was calculated (see Figures 17 and 18). As can
be seen in Table 5, the NLT value follows the same trend as that in the previous simulation.
The difference between the controller designed in this research and the controller that did
not consider the delay is 0.01 for both angles. Regarding the uncontrolled system, the
difference is 0.1 for the front axle and 0.09 for the rear axle.

Table 5. Normalized Load Transfer for test 2.

Normalized Load Transfer Normalized Load Transfer
Front Axle Rear Axle

H∞ Controller (Proposed in this research) 0.19 0.18
System Without Control 0.29 0.27

H∞ Controller (Without delay in its design) 0.23 0.22

Figure 17. NLT of front axle for test 2: Double lane change at 100 km/h.

Figure 18. NLT of rear axle for test 2: Double lane change at 100 km/h.
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Additionally, the chattering phenomenon was analysed; this was caused by high-
frequency changes in the control signal. This chatter may damage the actuator and com-
promise the control performance. Figure 19 shows the power spectral density (PSD) for the
control input.

Figure 19. Frequency response for test 2: Double lane change at 100 km/h.

3.1.3. Test 3: Roundabout

This last test was carried out by simulating the vehicle negotiating a roundabout
with a radius of 22 m, at a constant speed of 120 km/h, on dry pavement. This test was
considered in order to evaluate the performance in a more severe test. Figures 20 and 21
show the roll rate and roll angle obtained in the three scenarios presented in Section 3.1. In
blue is a simulated scenario with a delay of τ = 0.1 s applied using the controller proposed.
In red is a simulated scenario without a control system. In yellow is a simulated scenario
with a delay of τ = 0.1 s applied using an H∞ controller that did not take into account the
delay in its design. In this test, the vehicle did not have any controller rollover, unlike in
the controlled systems where the maximum angle was about 6º. In Figure 22, it can be seen
that the values obtained with the controller proposed in this research are lower than the
values obtained in the system with an H∞ the controller. To quantify the performance of
the controller, the RMS and maximum errors of the roll angle were calculated. In Table 6,
the values are given. Results show that the vehicle roll angle decreases when using the
controller proposed in this work as compared to a system with a standard H∞ controller.
Concerning the RMS and maximum errors, the difference between the proposed controller
and the one that did not consider the delay in its design is 0.68º and 1.55º, respectively. The
differences between the proposed system and the uncontrolled system are higher: 1.96º
for the RMS error and 1.55º for the maximum error. Note that in the scenario without a
controller, this should be considered a rollover.

Table 6. RMS and maximum errors of roll angle for test 3.

RMS Error (º) Maximum Error (º)

H∞ Controller (Proposed in this research) 1.75 4.53
System Without Control 4.72 (rollover) 9.81 (rollover)

H∞ Controller (Without delay in its design) 2.14 5.52
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Figure 20. Roll rate for test 3: Roundabout at 120 km/h.

Figure 21. Roll angle for test 3: Roundabout at 120 km/h.

Figure 22. Zoom of the roll angle for test 3: Roundabout at 120 km/h.



Sensors 2021, 21, 7850 20 of 23

In addition, the NLT value of the vehicle was calculated (see Figures 23 and 24). As can
be seen in Table 7, the NLT value follows the same trend as in the two previous simulations.
The difference between the controller designed in this research and the controller that did
not consider the delay is 0.01 for the front axle and 0.02 for the rear axle. Regarding the
uncontrolled system, the vehicle rolls over.

Table 7. Normalized Load Transfer for test 3.

Normalized Load Transfer Normalized Load Transfer
Front Axle Rear Axle

H∞ Controller (Proposed in this research) 0.38 0.37
System Without Control 1 0.94

H∞ Controller (Without delay in its design) 0.47 0.46

Figure 23. NLT of front axle for test 3: Roundabout at 120 km/h.

Figure 24. NLT of rear axle for test 3: Roundabout at 120 km/h.
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Additionally, the chattering phenomenon was analysed. This was caused by high-
frequency changes in the control signal. This chatter may damage the actuator and com-
promise the control performance. Figure 25 shows the power spectral density (PSD) for the
control input.

Figure 25. Frequency response for test 3: Roundabout at 120 km/h.

4. Conclusions

The novelty of this paper is the development of an LMI-based H∞ output-feedback
controller that compensates for the input and output delays in a Roll Stability Control
(RSC) system. The Lyapunov stability theory and LMI were used to assure the stabilization
for the considered system. Results show that the roll angle decreases when the controller
proposed in this work is used.

To quantify the performance of the controller, the NLT was employed. Comparing
the results obtained between the controller proposed in this work and a system with a
standard H∞ controller,the percentage of improvement of the NLT value for both axles
were: 17.31% for lane change tests, 21.81% for the roundabout test, and 18.22% for a more
severe roundabout test. Comparing the results obtained between the controller proposed
in this work and a system without a controller, the percentage of improvement of the NLT
value for both axles were: 34.48% for lane change tests, 30.55% for the roundabout test, and
59.01% for a more severe roundabout test. It was also seen that the NLT value only reaches
the value of 1 in the roundabout, at a high speed, and without the controller system. In the
cases with the controller proposed in this research, the NLT value reached 0.38.

Additionally, the chattering phenomenon was analysed. This was caused by high-
frequency changes in the control signal. This chatter may damage the actuator and com-
promise the control performance. A frequency response was carried out for chatter study.
Possible chattering problems were only detected for case 1 and case 2. In these cases, the
frequency response of the control input was below 1.5 Hz, considered a low frequency,
which did not cause damage to the actuators.

These results can be used in systems with problems that derive from the delay phe-
nomenon. Furthermore, by using this controller with sensor fusion approaches, it may
be possible to design real-time estimations and control for more secure driving. This re-
search used the information provided by sensors that were already mounted on production
vehicles such as IMUs.
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