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Abstract: Semantic segmentation, as a pixel-level recognition task, has been widely used in a variety
of practical scenes. Most of the existing methods try to improve the performance of the network by
fusing the information of high and low layers. This kind of simple concatenation or element-wise
addition will lead to the problem of unbalanced fusion and low utilization of inter-level features. To
solve this problem, we propose the Inter-Level Feature Balanced Fusion Network (IFBFNet) to guide
the inter-level feature fusion towards a more balanced and effective direction. Our overall network
architecture is based on the encoder–decoder architecture. In the encoder, we use a relatively deep
convolution network to extract rich semantic information. In the decoder, skip-connections are added
to connect and fuse low-level spatial features to restore a clearer boundary expression gradually. We
add an inter-level feature balanced fusion module to each skip connection. Additionally, to better
capture the boundary information, we added a shallower spatial information stream to supplement
more spatial information details. Experiments have proved the effectiveness of our module. Our
IFBFNet achieved a competitive performance on the Cityscapes dataset with only finely annotated
data used for training and has been greatly improved on the baseline network.

Keywords: semantic segmentation; encoder–decoder; feature balanced fusion; Cityscapes

1. Introduction

Semantic segmentation is a task to predict the corresponding category of each pixel in
the image. This topic is a very popular direction in computer vision and can be applied
to many practical tasks, such as city scenes [1–5], satellite topographic survey [6,7], and
medical image analysis [8–10]. The new point-to-point network structure designed by Fully
Convolutional Networks (FCN) for semantic segmentation [11] performs well in this dense
pixel prediction task. This structure foundation accelerates the development of semantic
segmentation. So far, many excellent networks have been developed [12–15].

In FCN [11], the multilayer convolution and pooling structure results in a 32-fold
reduction in the final feature compared to the input image. This design loses a lot of
spatial information, resulting in inaccurate predictions, especially on the edge details of the
picture. To solve this problem, many networks have tried various methods. For example,
the atrous convolution applied in DeepLabV3 [16] increases the field of perception while
not reducing the size of the feature map. There is also a parallel atrous convolution (Atrous
Spatial Pyramid Pooling, ASPP) [2,16] structure that can be used to improve the result
of the segmentation if added to most of the segmentation networks. Additionally, the
encoder–decoder [1,8] network structure is often a countermeasure to the above loss of
spatial structure information. In an encoder–decoder network, the backbone network of
the classification network is often used as the encoder [11,13,17], which is responsible for
encoding the input pictures into feature mappings with low resolution but rich semantic
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information. The decoder then restores the pixels of the low-resolution feature to obtain
a pixel-level category prediction of the same size as the original image, usually designed
as a series of convolution and up-sampling operations. Because the direct up-sampling of
low-resolution feature maps still lacks the spatial detailed information lost in the encoder,
decoders often incorporate low-level features into the up-sampling parts to capture the
fine-grained information. A typical structure design is DeepLabV3plus [2].

Carefully analyzing most of the existing segmentation networks, it is not difficult to
find that there are usually two ways to integrate low-level features in decoders: concatena-
tion and element-wise addition. Element-wise addition adds features with the same size
and number of channels. When convoluting, a priori is added. By the way of addition,
new features can be obtained. This new feature can reflect some unique information of the
original features, but some information contained in the original features will be lost in the
process. Concatenation is the splicing of feature mappings of the same size in the channel
dimension. After splicing, each channel corresponds to the corresponding convolution
kernel. Compared with concatenation, addition saves more computation than concatena-
tion, but there is no information loss in the concatenation process without considering the
amount of computation. Therefore, to obtain a better prediction result, the concatenation
fusion feature is more commonly used in semantic segmentation [2,8,18]. However, this
also leads to some problems. Because decoders usually combine in-depth features with
shallow features, we know that these two features carry very different types of information.
Convolution-output features after direct concatenation are not well integrated, resulting in
low information utilization. As shown in Figure 1, the lower parts contain more simple
spatial and line information, while the higher features include rich semantic informa-
tion. The convolution output after concatenation shows that the spatial information in
the semantic features has been optimized greatly. However, the overall features are still
mixed, resulting in a situation where both the semantic and spatial characteristics are not
prominent. This would undoubtedly result in inaccurate fuzzy predictions for pixel-level
segmentation tasks.

Figure 1. Visualization examples of features in different stages of the concatenation process on the
Cityscapes dataset [19]. From left to right are input images, low-level features, deep-level features,
and features after concatenation fusion.

Inspired by the above work, we designed an inter-level feature balanced fusion module
to fuse the inter-level features in a more balanced and efficient manner, which solves the
problem of inefficient feature utilization and weak purpose of the regular inter-level feature
fusion method of concatenation or element-wise addition. The core idea of this module
is inspired by the differences between spatial and semantic features. In the process of
two-level feature fusion, the correlation between two-level features is calculated in the
channel dimension after concatenation of the channel dimension. The spatial weights of the
spatial feature in the channel dimension and the semantic weights of the semantic feature
in the channel dimension are given respectively by using the method of a normalized
score. Additionally, in the back propagation [20], we continuously update and optimize the
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weight information parameters. Compared with the previous feature fusion methods, we
consider that the information between the fusion features is different. Our feature balanced
fusion module design can let the network learn how to integrate the features, guide the
two different information interaction balances, each taking its role, and finally contribute
to better segmentation prediction.

Overall, our network is based on the encoder–decoder structure, which uses a back-
bone with a deep convolution feature extraction network to extract rich semantic infor-
mation, followed by an Atrous Spatial Pyramid Pooling (ASPP) [16] structure to extract
multi-scale features to obtain rich contextual information without reducing the feature
resolution. The decoder is designed with the skip-connections structure, which restores the
high-level feature resolution while fusing with the low-level feature, adds spatial informa-
tion to the semantic information, and gradually restores the segmentation boundary. To
obtain more spatial information, we also designed a shallow branch of spatial flow and
fused it with the previous level features. In each level of fusion structure, we applied the
feature balanced fusion module to balance the fusion of features from different parts.

Our contributions can be summarized as follows:

1. An inter-level feature balanced fusion module was designed to solve the problem
of feature imbalance caused by traditional concatenation or element-wise addition,
which makes the fusion more balanced and utilization of features more effective.

2. A shallow spatial stream with only three convolution layers was designed and added
into the network, which is fused with the main semantic features before outputting
the prediction in the decoder. This further enriches the spatial information.

3. Our IFBFNet achieved a comparative performance of 81.2% to mIoU on the Cityscapes
dataset with only finely annotated data used for training, significantly improving
over baselines.

2. Related Work
2.1. Semantic Segmentation

Before FCN [11] is introduced, the CNN convolution layer is connected by several
fully connected layers, while FCN replaces the fully connected layers of the network with
common convolution layers, finally outputting a feature mapping of the same size as the
input. Since FCN proposes such a point-to-point full convolution network to complete
the task of semantic segmentation, this has triggered a wave of research on the direction
of semantic segmentation. Researchers have been committed to improving the accuracy
of pixel-level prediction. Directions can be roughly divided into three groups: a pyramid
module, an encoder–decoder structure, and an attention mechanism.

2.2. Pyramid Module

For the pixel-level prediction task of semantic segmentation, the segmentation of
small objects is in a very awkward situation in the whole image segmentation, which
often causes segmentation errors or rough segmentation contours, or is even completely
ignored. To solve the problem of small object segmentation, a multi-scale pyramid module
has become the main solution, which consists of multi-scale pooling [17,21] or the dilated
convolution of different rates [14,16,22]. To obtain a good segmentation prediction, our
goal is to minimize the overall stride of the network to prevent feature mapping from
becoming too small and losing too much spatial information. However, the reduction of
the stride will result in a significant reduction in the final feature receptive field [23–25].
The above two problems seemed to be contradictory until the advent of ASPP [16]. It
solves this problem by expanding the feature receptive field without sacrificing the spatial
resolution of the feature. The given input features are sampled in parallel with the atrous
convolution at different dilated rates by ASPP, which is equivalent to capturing the context
of an image at multiple scales. In our network, ASPP was chosen for multi-scale feature
extraction, because it can ensure that high-level semantic features maintain a receptive
enough field without losing too much spatial information at the same time.
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2.3. Encoder–Decoder

The encoder–decoder network architecture has achieved excellent results in seman-
tic segmentation tasks [1,8,15,26], such as segmentation of urban landscapes [2,17] and
medical images [8–10]. At present, most of the popular segmentation networks with good
performance are based on this framework to modify or add some modules. It uses an
encoder to learn more rich and dense semantic features, and then uses a decoder to in-
crementally increase the resolution of features to achieve segmented output. Meanwhile,
low-level spatial features are incorporated into the decoder process to supplement the
spatial information lost by the bilinear interpolation up-sampling of high-level features.
The encoder typically employs backbone networks, such as ResNet and VGG series [27,28],
that are commonly used for image classification [17,21,25], because they have strong feature
extraction capabilities, they are well-suited for semantically segmented tasks that require
rich deep features. Therefore, the improvement of the performance of a segmentation
network of the encoder–decoder architecture mainly depends on the structure design of
the decoder and the connection mode design between the encoder and the decoder. If the
design is ingenious, it is easy to improve the segmentation score. For example, in the design
of DeepLabV3plus [2], the encoder features are upsampled, then concatenated with the
low-level features, and finally, the final output is obtained by upsampling the concatenated
features. This design greatly improves network performance. AResU-Net [29] uses the net-
work design of UNet as a reference. The features obtained by the encoder are concatenated
with the features of the upper level after being sampled at each level, and then the upper
sampling is concatenated. In this way, repeated operations are carried out and finally,
the output containing multi-level information is obtained. Inspired by these works, our
network also adds skip-connections [1,8,11,30,31] to produce clearer boundaries.

2.4. Attention Mechanism

Attention mechanisms are designed to mimic the human visual system, selectively
focusing on more significant areas rather than dealing equally with the entire scene. Atten-
tion not only tells us where the focus is, but also enhances the representation of interests.
Our goal is to improve performance by using attention mechanisms: focusing on important
features and suppressing unnecessary ones. A lot of work has used this idea to accomplish
various computer vision tasks. A compact module was introduced in the excellent network
SENet [32] of image classification, which calculates the attention weight of the feature chan-
nel by compressing the excitation feature mapping. In SSA-CNN [33], the target detection
box is used as a segmentation ground truth and is further used for learning segmentation
features. As the attention map of the detection feature, the feature will be fused with the
detection feature for detection. OCNet [34] and DANet [35] use a self-attention mechanism
to explore the context. In the segmentation network proposed by Chen et al. [36], different
scale features are automatically fused according to the weights calculated by constructing
an attention model.

Inspired by these efforts, we designed a feature balanced fusion module to learn the
convergent attention weights between different levels of semantic segmentation and to
guide them towards more efficient fusion rather than a concatenation of simple channel
dimensions. The comprehensive experimental results show that this strategy does make
the fusion of deep semantic features and shallow spatial features more balanced.

3. Approach

In this section, we will introduce the details of our network structure design, which is
divided into encoder–decoder, feature balance, and shape stream. Our network is mainly
composed of three parts: encoder, decoder, and spatial stream. The overall framework of
the network is shown in Figure 2.
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Figure 2. The overall structure of IFBFNet. There are three parts: encoder, decoder, and spatial
stream. The encoder is composed of a backbone network and ASPP to extract rich high-level
semantic information. In the decoder, we added inter-level feature balanced fusion module into each
skip-connection structure. The spatial stream supplements more low-level spatial information.

3.1. Our Encoder–Decoder

Based on previous encoder–decoder networks [1,8,15,26], our network also uses the
encoder–decoder network architecture. We use ResNet101 [27] as an encoder, which has a
strong feature extraction capability, a CNN commonly used for image classification. As
shown in Figure 2, We usually divide ResNet into four stages. S1, S2, S3 and S4 in the figure
represent stage1, stage2, stage3 and stage4, respectively. The traditional ResNet101 extracts
features from the input pictures, and finally reduces the resolution of the feature map to
1/32 of the original input size. This large resolution reduction is negative for the task of
outputting a pixel-level prediction of the same size as the input image (H ×W × 3). To
maintain the resolution of the feature map extracted from the backbone network, we added
atrous convolution in ResNet. Specifically, we set dilations as (1,2) and stride sizes as (2,1)
in the last two stages of ResNet to obtain the feature map (H/16×W/16× 2048) with 1/16
the size of the input image. To obtain context information at multiple scales, we reduced
the feature channels extracted by the backbone from 2048 to 256 (H/16 ×W/16 × 256) to
reduce subsequent computations of ASPP after that, as shown in Figure 2.

The decoder consists of several skip-connections and an upsampling structure de-
signed to restore spatial characteristics. After the process of ResNet and ASPP, we up-
sample the feature (H/16 × W/16 × 256) four times and concatenate it with the first
low-level feature of the backbone. We call the first low-level layer stage one, as shown in
S1 (H/4 ×W/4 × 256) in Figure 2. To optimize spatial detail information on the premise
of preserving most of the semantic information, we use convolution with a kernel size of
3× 3, padding of 1× 1, and stride of 1× 1 to reduce the number of feature channels of
stage one (S1) to 64 before concatenation. After the concatenation of the two levels feature,
we reduce the channel dimension to 256 (H/4 ×W/4 × 256) using two 3× 3 convolutions.
The feature is then inputted into an inter-level feature balanced fusion module to optimize
the feature expression. To complement the spatial feature of S1 to make the prediction map
boundary clearer, we add a spatial flow branch to concatenate with the feature balanced
above, and then change the channel number of concatenated feature to 256 using 1× 1
convolution. After that, the feature map is processed by an inter-level feature balanced
fusion module to obtain the optimized features. Finally, we use two 1× 1 convolutions to
reduce the feature channel dimension from 384 to 128, and then to the number of categories,
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and then upsample the feature map four times to obtain a prediction with the same size as
the original input image (H ×W × N_class).

3.2. Inter-Level Feature Balanced Fusion Module

In many network architectures ([2,8,18,37]), it is not difficult to find that in the process
of restoring the boundary of prediction, the common method is to concatenate the low-
level features with high-levels in the channel dimension. For two inputs X and Y, their
sizes are the same, and the numbers of the channel are C1 and C2, respectively. We
assume that the two inputs are X1, X1, ..., XC1 and Y1, Y2, ..., YC2. Due to the feature
concatenation of channel dimensions, differently from the simple feature addition, the
subsequent convolution calculation is calculated separately for each channel. Processed by
convolution K1, K2, K3, ...,KC1+C2, the concatenated feature map Zconcat’s calculation can
be expressed as follows:

Zconcat =
c1

∑
i=1

Xi ∗ Ki +
c2

∑
i=1

Yi ∗ Kc1+i. (1)

where ∗ represents convolution, and Ki stands for the ith convolution layer. However, this
simple concatenation of high-level and middle-level features of channel dimension results
in subsequent features simply as a result of splicing each channel. To some degree, this
will ignore the differences between different levels of features and their contribution to the
output. As a result, neither of the two levels’ features play their best role. For example,
the high-level information contains complex semantic information, while the low-level
features mainly represent the features of picture shape, line, color, and texture information.
The result is that the simple concatenation cannot express the shallow information well,
nor can it express the deep information well.

Inspired by the above, we propose a feature balanced fusion strategy that can guide
the two-level features’ fusion towards a more balanced direction and improve the uti-
lization of features. Unlike previous methods, after concatenating the two feature levels
Feath ∈ RCh×H×W and Featl ∈ RCl×H×W , we use an average pooling operation to com-
press the spatial information of the fused features into a one-dimensional concentrated
expression W ∈ R(Ch+Cl)×1×1, and then use 1× 1 convolution to calculate the correlation
information between the two features, and finally use sigmoid normalization to obtain
the balance weights Wh ∈ RCh×1×1 and Wl ∈ RCl×1×1 of the two-feature fusion. The
calculation equation can be seen in (2):

W = Wh‖cWl = Sigmoid(Avgpool(Feath‖cFeatl)). (2)

In Equations (2) and (3), ||c represents the splicing of channel dimensions. Then, the
weights are multiplied with the original two levels of features to obtain the fused feature
map after optimizing the weights, as we describe in Equation (3):

Zbalanced = W(Feath‖cFeatl) = (Wh × Feath)‖c(Wl × Featl). (3)

At the same time, in order to preserve some of the primitive information, we added a
residual structure at the end, adding the unprocessed features to the optimized feature by
element-wise addition.

The specific structure of the inter-level feature balanced fusion module is shown in
Figure 3. Overall, after concatenating features at different levels in the channel dimension,
we compress the feature map space into 1× 1 dimensions and normalize the relationship
between the two levels of features to generate the balanced weights of the two levels of
features. The formula for calculating the feature after the balance of features is:

Fbalanced =
ch

∑
i=1

WhiFeathi ∗ Ki +
cl

∑
i=1

WliFeatli ∗ Kch+i. (4)



Sensors 2021, 21, 7844 7 of 16

By comparing the feature expressions calculated by Equations (1) and (4), it is clear
that our feature balanced fusion method yields a more adaptive feature fusion calculation,
which can lead to a richer and more accurate feature expression.

Figure 3. The structure design of the inter-level feature balanced fusion module. ©, �, and
⊕

respectively stand for concatenation, multiplication, and element-wise addition. The fusion weights
of high-level features Wh and low-level Wl features are calculated respectively.

3.3. Spatial Stream

Generally speaking, for semantic segmentation tasks, the depth of the segmentation
network [17,24] is very large, because only in this way can enough perception fields be
obtained. Specifically, these networks mostly encode the input images by continuous
down-sampling and convolution of the input, which results in rich semantic information
and somewhat good predictions. However, in this process, the resolution of the output
will be compressed many times, and thus the predicting boundary details still need to
be improved. We can see from related work [17,31,38] that the maintenance of spatial
information does have an impact on prediction accuracy.

Considering the importance of spatial information, based on the deep advanced
semantic information extraction network, we also designed a shallow spatial flow to
supplement the spatial information lost due to down-sampling in the deep path.The
specific structure of the spatial flow branch is shown in Figure 4. It contains only three
convolution layers, which are very simple. The first two layers both use a convolution layer
with a stride of 2. The first and second convolution kernels are 7× 7 and 3× 3, respectively.
Simple spatial information is extracted on the convolution kernels of different scales. The
last convolution layer no longer reduces the feature size. The convolution layer of the 1× 1
kernel is used to change the number of channels of the spatial flow for flexible adjustment
of the amount of whole spatial information. The whole spatial flow only reduces the input
to a quarter of the size, and the network structure is shallow. This design retains most of
the spatial relations based on extracting the line color information, which is exactly what
we need. Figure 4 shows the structure diagram of the spatial stream. The input image
receives a quarter of the feature map containing spatial information through the spatial
flow. In this process, we visualize the features of each layer. It can be seen that with the
increase of convolution layers, rich spatial information is extracted.

3.4. Loss Function

The loss function used in our experiments is Online Hard Example Mining (OHEM)
loss [39]. The core idea of this algorithm is to filter the input samples according to the loss
of input samples. It filters out hard examples, which indicate the samples that have a great
influence on classification, and then applies the filtered samples to training in Stochastic
Gradient Descent (SGD) [40].

We treat the input picture as a pixel point sequence [x1, x2, x3,..., xN], where N is
the number of pixels. For the pixel point Xi (i belongs to 1 to N), we can use Equation (5)
to calculate the cross-entropy CE(xi) of the point. pxi is the probability that pixel xi is
predicted to be the correct category

CE(xi) = −log(pxi ). (5)
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Figure 4. Structure diagram of spatial flow; the right-hand side is the visualization of the feature map
after convolution of each layer. After three convolution layers, a quarter-size feature map containing
spatial relations is obtained, as shown at the bottom of the figure.

The corresponding loss function expression is Equation (6) following the loss in
BiseNet [41]:

loss = − 1
N

N

∑
i=1

C

∑
j=1

yijlog(pij). (6)

where C is the number of categories, and yij is a one-hot vector containing only 0 and 1
elements. If the category is the same as the category of the sample, take 1; otherwise, take 0.
As for pij, it indicates the probability that the ith predicted sample belongs to category j.

For OHEM loss, entropy values are calculated from the input image pixel point
sequence [x1, x2, x3,..., xN] according to Equation (5). Then, the sequence of new pixel
points [x′1, x′2, x′3, x′4,..., x′N] is obtained by sorting the entropy values from the largest to
the smallest. We remove the last quarter of the small loss pixel points and train the first
three-quarters of the larger loss targets. The corresponding OHEM loss function calculation
formula is shown as Equation (7):

lossohem = − 1
3N/4

3N/4

∑
i=1

C

∑
j=1

y′ijlog(p′ij). (7)

where y′ij and p′ij are the one-hot vectors after the pixel points are reordered and the
probability of the predicted j class, respectively.

Drawing on what has been done before [13,37,41], we also use the auxiliary loss
function in the network training. We designed a bypass output branch that consists of
two convolution layers, namely a 3× 3 convolution followed by a 1× 1 convolution. The
first convolution layer reduces the number of channels from 256 to 64, and the second
layer directly reduces the number of channels to the number of label categories. Both
convolution layers have a stride of 1, so the size of the stage one feature is not changed. To
supervise this coarse segment prediction with the ground truth, we also need to sample
the features four times to obtain the final rough segment result map we need.

Therefore, our loss function consists of two parts; one is the loss function lout calculated
by the network output, and the other is the auxiliary loss function laux of the coarse output
branch. To optimize the loss function better, we give the auxiliary loss function a weight
following PSPNet [17], which is expressed as follows:

loss = lout + λ× laux. (8)
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Using such a joint loss function with an auxiliary loss function to supervise network
learning will make our network easier to optimize.

4. Experiment

To verify the effectiveness of our proposed module, we have carried out a number
of experiments on the Cityscapes dataset [19]. Our network achieved a competitive per-
formance and has greatly improved on the baseline network. Additionally, we performed
some visual contrast experiments to prove the effectiveness of our module.

The Cityscapes dataset, jointly provided by three German units including Daimler,
contains stereo vision data of more than 50 cities for urban scene understanding, including
19 classes for urban scene analysis and pixel-level segmentation. It contains 2975 fine
labeled images for training, 500 for validation, and 1525 for testing. Additionally, there are
an additional 20,000 coarse segmentation labeled images for training. It is worth noting
that all our experiments were conducted on the Cityscapes finely annotated set.

4.1. Implementation Details

Our network is based on PyTorch; following the setting of learning rate in previous
work [13,16,17], we adopted the poly learning rate policy, where the learning rate of the
current iteration can be calculated by way of multiplying by the factor (1 − iter

maxiter )0.9.
We used a Stochastic Gradient Descent (SGD) optimizer [40] to optimize the network
parameters. For the Cityscapes dataset, we set the initial learning rate of the network to 0.01,
the weight decay coefficient to 0.0005, and the momentum to 0.9. In the network training
process, we set the learning rate of the coarse segmentation output branch and feature
balanced fusion module parts to 10 times, and the remaining parts to one time. The loss
function is shown in Equation (8), and λ was set to 0.4 to achieve the best fusion effect. The
OHEM [39] loss function was used as a category of network loss functions to purposefully
improve the learning of difficult samples. In training, we replaced all BatchNorm layers
with InPlaceABN-Sync [42]. For the data augmentation, the input pictures were randomly
cropped to 876 × 876 sizes during the training and flipped horizontally. All experiments
were performed on two Nvidia GTX 1080Ti GPUs. The total number of training iterations
was set to 81k, and the first 1k iterations were warmup processes.

4.2. Experimental Results

Applying the methods we proposed and some common training techniques, and
following the implementation rules described in Section 4.1, after training only on a
finely annotated training set, our mIoU on the Cityscapes validation set reached 81.2% in
terms of mIoU. Compared to the basic network DeepLabV3plus [2], we thus achieved an
improvement of nearly 1.3%. Table 1 shows in detail the improvements we have achieved
with other advanced networks in each class. Comparing with the IoUs class, it is not
difficult to find that in most classes, our indicators have been greatly improved.

4.3. Ablation Study

In this section, we outline a series of performed comparative experiments to demon-
strate the validity of our proposed modules.

Table 1. Comparison of our IFBFNet with DeepLabV3plus and other state-of-the-art networks on the Cityscapes validation
set in terms of class IoUs and mean IoU.The blackened figure is the data with the highest index.

Methods Road s.Walk Build Wall Fence Pole t-Light t-Sign Veg Terrain Sky Person Rider Car Truck Bus Train Motor Bike Mean

LRR [43] 97.7 79.9 90.7 44.4 48.6 58.6 68.2 72.0 92.5 69.3 94.7 81.6 60.0 94.0 43.6 56.8 47.2 54.8 69.7 69.7
DeepLabV2 [25] 97.9 81.3 90.3 48.8 47.4 49.6 57.9 67.3 91.9 69.4 94.2 79.8 59.8 93.7 56.5 67.5 57.5 57.7 68.8 70.4
Piecewise [12] 98.0 82.6 90.6 44.0 50.7 51.1 65.0 71.7 92.0 72.0 94.1 81.5 61.1 94.3 61.1 65.1 53.8 61.6 70.6 71.6
PSPNet [17] 98.2 85.8 92.8 57.5 65.9 62.6 71.8 80.7 92.4 64.5 94.8 82.1 61.5 95.1 78.6 88.3 77.9 68.1 78.0 78.8

Multiscale [22] - - - - - - - - - - - - - - - - - - - 77.8
DeeplabV3+ [2] 97.8 83.4 92.8 67.6 63.2 64.5 73.9 79.9 92.7 70.1 94.8 83.1 67.4 95.0 80.0 90.0 73.1 71.6 76.7 79.9

Ours 98.2 86.0 93.9 61.4 67.5 66.8 74.8 81.4 93.2 69.1 95.4 84.7 66.2 95.7 87.0 90.1 84.2 68.5 78.2 81.2
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4.3.1. Baseline Network

Specifically, we set up two baseline networks as the basis of our experiments; one is
ResNet101 [27], which is a very basic feature extraction network, and the other is ResNet101
designed with ASPP added to the end. We have made several experimental comparisons
based on these two baselines.

Baseline1: ResNet101-Dilated. To make ResNet101 more suitable for semantic
segmentation tasks, we set the dilation of the last two layers of ResNet as [1,2] and stride
as [2,1]. Thus, the output stride of the network was set to 16, so that the feature mapping
of 1/16 the image size was finally obtained. We pre-trained the network on the ImageNet
dataset, and then fine-tuned the parameters on the Cityscapes dataset. After pre-training on
the ImageNet dataset, subsequent training for specific segmented datasets converged faster.

Baseline2: ResNet101+ASPP. Just as we detailed in Section 2.2, ASPP is a module
that has achieved tremendous success in semantics segmentation tasks due to its delicate
design. To verify that our proposed module can also work with other modules to improve
network performance, we also set up this ResNet101 + ASPP baseline. Its specific structure
is composed of a global average pooling and three 3 × 3 dilated convolutions (dilated rates
of 6, 12, and 18), which extract context information at multiple scales. Features from four
branches are concatenated. Then, a 1 × 1 convolution was used to reduce the dimension of
the concatenated map channel by 256.

Inter-Level Feature Balanced Fusion Network. The structural design of inter-level
feature balanced fusion network is introduced in detail in Section 3.2. To make the best
use of this module where appropriate, we have applied our designed inter-level feature
balanced fusion module to each feature fusion process at two different levels in the network.
Since we use the global average pooling operation to compute the inter-layer weights,
this part of the calculation is not large (relative to [34,35,37]). We use inter-level feature
balanced fusion module to balance the differences between two levels of features from
ASPP and stage one’s low-level feature of the backbone network. Another time, inter-level
feature balanced fusion strategy is applied in feature mapping fusion between a specially
designed spatial branch and a previous backbone network.

Inter-Level Feature Balanced Fusion Network with Spatial Stream. The spatial
stream was designed to be relatively simple so as to obtain more spatial information in
the input image, and thus the spatial stream consists of only three layers of convolution,
with the number of intermediate feature map channels mimicking the first two layers of
the ResNet network structure. We set the number of intermediate channels to 64. However,
because we were not sure how to control the amount of spatial information, we performed
a set of comparative experiments. We set the number of spatial flow branches with different
output channels to obtain some spatial information of different sizes. To obtain the optimal
result, we finally set the number of spatial stream output channels to 128.

4.3.2. Ablation Study for Inter-Level Feature Balanced Fusion Module

First, we used Baseline1 (101 and 50 of the atrous ResNet series) as the baseline
network for the next series of experiments, and the corresponding output was directly
up-sampled. The results of the experiment are shown in Table 2. We show the comparison
data of two different depth backbone networks. To improve the network performance, we
added the ASPP module at the end of the network, which improved the ResNet50 series
by 2.80% and the ResNet101 series by 2.46% compared with the baseline network.

To verify the effectiveness of our proposed inter-level feature balance fusion module,
we added layer skip-connections to the baseline network ResNet + ASPP. One of the
fusion methods of skip-connection is the common concatenation corresponding to the
“Skip-Connection” in Table 2, and the other is our feature balance fusion mode. From the
experimental data in Table 2, it can be seen that adding layer skip-connection to ResNet50
and ResNet101 improved the performance respectively by 2.06% and 2.40%. The inter-level
feature balanced fusion method has improved separately from the normal fusion method
by 2.43% and 1.19% on ResNet50 and ResNet101, respectively.
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Table 2. Ablation experiments on ASPP, our inter-level feature balanced fusion module, and shape
stream over the ResNet50 and ResNet101 base networks on the Cityscapes validation set. The
blackened numbers represent the best performing group in this set of data.

BaseNet ASPP Skip-Connection Feature Balanced Fusion Spatial Stream Mean IoU (%)

ResNet50 73.82
ResNet50 X 76.62
ResNet50 X X 78.68
ResNet50 X X X 80.11
ResNet50 X X X X 80.45

ResNet101 75.00
ResNet101 X 77.46
ResNet101 X X 79.86
ResNet101 X X X 81.05
ResNet101 X X X X 81.16

4.3.3. Ablation Study for Spatial Stream

In this section, we further analyze the importance of a spatial information stream to
enhance experimental results. In Table 2, we find that adding spatial streams improved both
ResNet50 and ResNet101, respectively by 0.34% and 0.11%. To obtain the most appropriate
spatial flow design, we adjusted the spatial information of the spatial flow, corresponding
to a series of convolution final output channels (16, 32, 48, 64, 128, 256). We controlled
the same settings except for the number of channels. Six sets of comparative tests were
performed on the Cityscapes validation set. As shown in Table 3, we found that when the
number of final output channels is 128, the best prediction results can be obtained.

Table 3. Comparison of experimental data on the Cityscapes validation dataset of shape stream with
different numbers of output channels.The blackened numbers represent the best performing group
in this set of data.

Channel 16 32 48 64 128 256

mIoU% 80.75 80.13 80.99 80.90 81.16 80.70

4.3.4. Ablation Study for Improvement Strategies

As in [16,35,37], we also used similar improvement strategies, as shown in Table 4.
(1) OHEM (online hard example mining): we focused on the training of difficult samples
during the training process, which is reflected in the loss function in Section 3.4. We
classified the samples predicted to be the correct kind with a probability of less than the
threshold of 0.7 as difficult samples. With OHEM the performance on the Cityscapes
validation set was improved by 1.48%. (2) DA (data augmentation with random scaling):
during the training process, we randomly reduced or increased the size of the input pictures
by 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, or 2.0 times, and this increased the experimental results by
1.07%. (3) MS (multi scales): we averaged the inferred predictions of six scale input images
to obtain the final predicted output, which had the sizes of 0.5, 0.75, 1.0, 1.25, 1.5, and 1.75
times. The experimental results were improved with MS by 1.21%. The final performance
was 81.2% mIoU, higher than the 79.9% of Deeplabv3plus on the Cityscapes validation set,
and we improved by about 1.3%.

We added auxiliary loss supervising identical to the loss function in Equation (8). Due
to the uncertainty of the auxiliary loss’s weight combined with the main loss, which can
lead to a better result if it is set properly, we conducted a set of comparative experiments.
On the premise of ensuring the consistency of other parameters, we adjusted the coefficient
of auxiliary loss from 0.1 to 1.0. The experimental results are shown in Table 5. After
comparing the experimental data, we finally determined that when the weight parameter
of auxiliary loss was set to 0.4, we could obtain the best performance on the Cityscapes
validation set.
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Table 4. Performance comparison between different strategies on the Cityscape validation set. OHEM
stands for online hard example mining loss function. DA represents data augmentation with random
scaling. MS represents multi-scale inputs during inference.The blackened numbers represent the best
performing group in this set of data.

Method Backbone OHEM DA MS mIoU%

IFBFNet ResNet101 × × × 77.40
IFBFNet ResNet101 X × × 78.88
IFBFNet ResNet101 X X × 79.95
IFBFNet ResNet101 X X X 81.16

Table 5. Comparison of mIoU with different settings of the λ parameters in Equation (8), which
control the size of the auxiliary loss.The blackened numbers represent the best performing group in
this set of data.

Methods λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 1.0

mIoU (%) 80.29 81.03 80.99 81.16 80.51 80.72 81.03 79.97 79.97 80.64

4.4. Visualization of Inter-Level Feature Balanced Fusion Module

In the previous part, we have introduced the network structure design and exper-
imental data comparison. To show the role of our inter-level feature balanced fusion
module in the network more vividly, we input an image to visualize the feature maps
of different levels when the network processes this image. The visualization results are
shown in Figure 5. We have visualized the low-level features of the network (in our case,
the first stage of the backbone), which are the results of the second line in the figure. They
mainly contain shallow spatial information and some line outlines. The third line is the
deep feature, which contains rich semantic information, and the fourth line is the result
of the fusion of two-level features obtained by the ordinary concatenation method. The
result of inter-level feature balanced fusion is shown in the fourth line. The comparative
results demonstrate that our fusion results can better integrate the two parts of features
from different levels, and can carry clear line contour information while containing rich
semantic information.

Figure 5. Visualization results of inter-level feature balanced fusion compared to common fusion
on the Cityscapes set. For each line, we show an input image, and feature mapping from two levels.
Meanwhile, we show the visualization of general fusion of two hierarchical features and visualization
of fusion results using inter-level feature balanced fusion strategies.
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4.5. Comparing with the State-of-the-Art

On the Cityscapes test set, we further compared our proposed network with the
recently published methods. We input the original test set images into the trained model to
obtain the test set prediction results that meet the requirements of the official test set. In
this reasoning process, we applied multi-scales prediction and flipping strategies, which
should improve the performance of our network. We packaged and uploaded the results
to the official test script, waited for more than ten minutes, and obtained the corresponding
results, as shown in Table 6. Compared with other previous methods, our network achieved
better performance. Compared with the replicated DeepLabV3plus [16], the mIoU index
of our network on the Cityscapes test set exceeded it by 1.1%. In the training process, we
only used the finely segmented data of the Cityscapes dataset to refine our network, which
further demonstrates the effectiveness of the proposed method.

Table 6. Per-class results on the Cityscapes testing set. Our network outperformed existing approaches and achieved 79.6%
in MeanIoU.“-” indicates that the methods did not give the corresponding result.The blackened numbers represent the best
performing group in this set of data.

Methods Road s.Walk Build Wall Fence Pole t-Light t-Sign Veg Terrain Sky Person Rider Car Truck Bus Train Motor Bike Mean

DeepLab-v2+CRF [25] 97.9 81.3 90.3 48.8 47.4 49.6 57.9 67.3 91.9 69.4 94.2 79.8 59.8 93.7 56.5 67.5 57.5 57.7 68.8 70.4
FRRN [3] 98.2 83.3 91.6 45.8 51.1 62.2 69.4 72.4 92.6 70 94.9 81.6 62.7 94.6 49.1 67.1 55.3 53.5 69.5 71.8

RefineNet [15] 98.2 83.3 91.3 47.8 50.4 56.1 66.9 71.3 92.3 70.3 94.8 80.9 63.3 94.5 64.6 76.1 64.3 62.2 70 73.6
DUC [44] 98.5 85.5 92.8 58.6 55.5 65 73.5 77.9 93.3 72 95.2 84.8 68.5 95.4 70.9 78.8 68.7 65.9 73.8 77.6

PSPNet [17] - - - - - - - - - - - - - - - - - - - 78.4
ResNet-38 [45] 98.5 85.7 93.1 55.5 59.1 67.1 74.8 78.7 93.7 72.6 95.5 86.6 69.2 95.7 64.5 78.8 74.1 69 76.7 78.4

DeepLabV3+ [2] 98.6 86.3 92.9 57.4 59.5 64.6 73.0 77.6 93.4 72.5 95.5 85.6 69.5 95.7 69.0 84.6 74.6 67.2 75.0 78.5
IFBFNet (ours) 98.7 87.0 93.3 53.8 60.7 67.7 76.4 80.1 93.8 73.7 95.7 87.3 72.3 96.2 70.7 82.5 75.4 70.2 77.4 79.6

In Figure 6, we provide a comparison of predictions between our network and the
baseline network. We visualize some samples of picture test results on the Cityscapes
validation set for the baseline network and IFBFNet. We mark the areas where the results
were significantly different with yellow lines. Looking at these graphs, we find that IFBFNet
can significantly improve the prediction of object boundaries, and small objects, such as
power poles, can also be well predicted to maintain the correct shape.

Figure 6. Visualization results of IFBFNet based on ResNet101 baseline on the Cityscapes valida-
tion set.

5. Conclusions

In this paper, IFBFNet is proposed for scene segmentation, which solves the problem
that the information of feature fusion between semantic segmentation levels is mixed
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and unclear. Specifically, we adopt an adaptive feature fusion strategy to let the network
learn by itself to reach a state where the low-level information and the high-level complex
semantic information can be integrated more efficiently. At the same time, we add a
shallow spatial information flow to increase the amount of spatial information. A series of
ablation experiments and visualization of intermediate features have shown that using the
inter-level feature balance fusion method can achieve a more balanced and clear feature
representation, as well as a more accurate segmentation result by increasing the flow of
spatial information. Our IFBFNet achieved very competitive results on the challenging
Cityscapes dataset, significantly improving over baselines.

In the future, we will further explore more application scenarios of the inter-level
feature balanced module. The inter-level feature balanced module we designed is mainly
applied to the adaptive integration of different levels of information in the network struc-
ture. It can be extended to some scenarios that need to take into account both spatial
information and high-level semantic information. The design we proposed is applied
to the integration of two levels; considering the complex situation, such as the scene of
feature fusion of three or more levels, one can refer to the same design, but we need to add
corresponding input branches and weight blocks here. The effectiveness of this structure
also needs to be verified in future work.
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